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1Department of Oral Surgery (and Oral Radiology), Johannes Gutenberg-University, Mainz, Germany; 2Institute for Computer Science,
Johannes Gutenberg-University, Mainz, Germany; 3Department of Operative Dentistry, Johannes Gutenberg-University, Mainz,
Germany

Objectives: Presentation and validation of software developed for automated and accurate
application of a reference-based algorithm (reference sphere method: RSM) inferring the effective
imaging geometry from quantitative radiographic image analysis.
Methods: The software uses modern pattern recognition and computer vision algorithms adapted
for the particular application of automated detection of the reference sphere shadows (ellipses) with
subpixel accuracy. It applies the RSM algorithm to the shadows detected, thereby providing three-
dimensional Cartesian coordinates of the spheres. If the three sphere centres do not lie on one line,
they uniquely determine the imaging geometry. Accuracy of the computed coordinates is
investigated in a set of 28 charge-coupled device (CCD)-based radiographs of two human mandible
segments produced on an optical bench. Each specimen contained three reference spheres (two
different radii r1 ¼ 1.5 mm, r2 ¼ 2.5 mm). True sphere coordinates were assessed with a manually
operated calliper. Software accuracy was investigated for a weighted and unweighted algebraic
ellipse-fitting algorithm.
Results: The critical depth- (z-) coordinates revealed mean absolute errors ranging between
1.1 ^ 0.7 mm (unweighted version; r ¼ 2.5 mm) and 1.4 ^ 1.4 mm (weighted version,
r ¼ 2.5 mm), corresponding to mean relative errors between 5% and 6%. Outliers resulted from
complete circular dense structure superimposition and one obviously deformed reference sphere.
Conclusions: The software provides information fundamentally important for the image
formation and geometric image registration, which is a crucial step for three-dimensional
reconstruction from $2 two-dimensional views.
Dentomaxillofacial Radiology (2005) 34, 205–211. doi: 10.1259/dmfr/56357032
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Introduction

It is well known that the projection (imaging) geometry, i.e.
the spatial relation between X-ray source, object and
imaging plane relative to one another, is the fundamental
basis for radiographic image formation. Theoretical work
concerning its standardization in intraoral radiography was
published in 1969.1 However, foreshortening or
elongation due to an oblique position of a given object
under examination in the projection geometry still is a

well-known problem in two-dimensional (2D) dental
intraoral radiography.2 – 4 Due to the anatomical obstacle
of the hard palate, radiographs in the upper jaw are
particularly prone to such distortions, which yield con-
siderable errors when linear measurements are performed.5

Unfortunately, in general, the projection geometry is at best
known partly, e.g. in applying a holding device-based
paralleling technique, where the focal spot is fixed relative
to the image receptor. This technique resembles the well-
known C-arm design in medical radiography. Generalizing
a 2D method for calculating the angular relationship
between the object and a given receptor axis,6 we have
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developed a reference-based algorithm (reference sphere
method: RSM), which allows for a posteriori calculation of
the effective imaging geometry by means of quantitative
image analysis.7 In its most general form, the algorithm
only requires the temporary fixation of three radiopaque
ball bearings (spheres) of known diameter to a rigid object
under study, and the a priori knowledge of the source-to-
receptor distance. Primarily, RSM geometrically deter-
mines the 3D positions of the spheres, thereby providing
three known “object”-points in space. In addition, RSM
enables simple reconstruction of the point of incidence of
the normal dropped from the focal spot onto the image-
plane. This is equivalent to constituting five (three rotations
of the image-plane plus two translations of the focal spot
relative to this plane) out of six possible degrees of freedom
between the two components, only leaving the distance
between them remaining unknown.7 If it is to be used in a
clinical environment, the RSM algorithm requires software
implementation to enable easy, accurate and fast
application.

The aim of this report is to introduce a software solution
for the automated application of RSM. More specifically,
the software was designed to fulfil the following require-
ments: (i) automated detection and classification of the 2D
reference sphere shadows in real world radiographs
containing structural noise; and (ii) automated RSM-
based calculation of the 3D coordinates of each reference
sphere within the effective projection geometry.

This article will describe a software solution developed
according to these specifications. In addition, it will
present results from an ex vivo validation experiment
designed for the assessment of accuracy of the software
with respect to its fundamental target: the localization of
the reference spheres in 3D from quantitative analysis of
their 2D radiographic shadows.

Material and methods

RSM-algorithm
A detailed description of the RSM algorithm may be
obtained from prior work of the authors.7 In brief, the
algorithm exploits the 2D information inherent in the
shadows of radiopaque reference spheres to localize their
centres of gravity in three dimensions with respect to a
given Cartesian coordinate system (Figure 1). Here, the
depth- (z-) axis is aligned with the normal (in general, the
central X-ray) dropped from the focal spot onto the x–y-
receptor-plane and intersects the latter in the origin (0,0,0).
It should be noted that, in this paper and the current
software version, the conventional notation and coordinate
system used is contrary to the original publication,7 where
the depth axis had been labelled as x-axis. RSM makes use
of the fact that the projection of a sphere onto a flat
imaging-(receptor-)plane will generally be an ellipse.8

Only if the central X-ray passes though the sphere centre
and intersects the imaging plane at right angles will the
shadow truly be a circular disc. The algorithm makes use of
the known geometrical correspondence between the
projected major axis of the 2D ellipse and the 3D

coordinates of the X-ray tangent points at the 3D sphere.
In perspective geometry, the connecting line between the
tangent points is mapped to the major ellipse axis. From
this known correspondence and the 2D location of the
radiographic sphere shadow the 3D position of the sphere’s
centre of mass is computed.7 In addition, the fact that the
line extended through each major elliptical axis contains
the point of incidence (0,0,0) of the central X-ray on the
image receptor may be used for reconstruction of this
important reference point.7 If the source-to-receptor
distance is known a priori, in the absence of noise, the
3D coordinates of each sphere’s centre of mass within the
imaging geometry can be determined exactly. These points
may be labelled as “extrinsic object points”. In case of a
rigid object under study with three spheres attached to it in
arbitrary, but non-collinear positions, it is well known that
the knowledge of the 3D coordinates of three non-collinear
points in space entirely constitutes the rigid coordinate
transformation occurring between different views of one
scenery (see, for instance Betke et al9). In addition, RSM
enables simple a posteriori reconstruction of the point of
incidence of the central X-ray on the receptor-plane. This
combination of geometric information, without any further
restrictions, is equivalent to knowing the entire imaging
geometry. The latter provides the fundamental basis for 3D
reconstruction from $2 2D views.10 – 12

RSM-software
The software is developed with Borland Cþþ Builder 6
(Borland GmbH, Langen, Germany), using the raw image
files as basic input data after conversion into 16 bit Tiff-
files by a tool (XSensTest, Version 1.0) provided by the
manufacturer of the radiographic unit (Sirona Dental
Systems GmbH, Bensheim, Germany). The data are
subsequently converted into a 8 bit DICOM-File-Format.
Pixels with grey values above a certain threshold are
recorded in a detection matrix of image size, since it is
reasonable to assume that the 2D images of the reference
spheres are represented by grey values among the highest
within the radiograph. Holes in the segmentation are closed
by geodetic closing.13 In cases of partial occlusion by dense
structures, a circle-based Hough Transform14 is used to
reconstruct the shadow, i.e. its geometric centre. We set
aside a computationally more costly five-dimensional
ellipse-detecting Hough Transform. Instead, the boundary
refinement and ellipse fitting algorithms specified below
are applied on the truncated non-occluded arc of the
ellipse. By means of region growing the pixels in the
detection matrix are clustered into continuous objects.15

Clusters exceeding a threshold area (10 £ 10 pixel) are
further tested for roundness R,16 with

R ¼
4F

p d2
max

[ ½0; 1� ð1Þ

where F denotes the area covered by the pixels and dmax the
maximum distance within the object as assessed through its
centre of gravity C. The roundest objects are defined as
sphere shadows and will be further referred to as ellipses.
All other objects are deleted from the detection matrix.
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Since the RSM algorithm is fundamentally based on the
quantitative assessment of the major elliptical axes,
accurate boundary identification at each ellipse is of
crucial importance. Therefore, using a commercial charge-
coupled device (CCD)-receptor (Full Size; Sirona Dental
Systems GmbH, Bensheim, Germany), a series of
exposures of a naked steel sphere (radius 2.50 mm) glued
onto a low-absorbing acrylic stick was obtained on an
optical bench at nine distances (42 mm to 122 mm, at steps
of 10 mm) from the receptor. From the very beginning, we
used this series for software calibration. A boundary
refinement algorithm was designed for the purpose of
subpixel-accurate border detection. 256 radial scanlines
reaching from C towards the periphery of each ellipse (and
actually exceeding it) are constructed and their density
profiles are recorded. Neglecting local minima, the contrast
between the sphere image and the background is
investigated and the line revealing maximum contrast
(defined as 100%, Figure 2) among all three sphere

shadows is recorded. The global minimum grey value is
defined as gB, whereas local background minima as
measured along each individual scanline are denoted by
gS. The rationale for this approach is that an ellipse will be
most accurately detected if it is completely surrounded by
only minimally absorbing structures (e.g. air). The
transformation of an ideal rectangular input signal due to
the point spread effect mathematically is a convolution of
this signal with the (mostly unknown) point spread
function (PSF) of the imaging system.17 From this
observation and under the assumption of an unknown
PSF, we deduced a linear approximation to find an accurate
boundary definition (Figure 3). In the subpixel domain, the
signal may be modelled as a continuous signal composed
of 2D-Gaussians, the latter representing the approximation
of the point spread effect. Based on the well known “full
width at half maximum” technique we developed an
algorithm referred to as “Full width at x[%] of the
maximum”. Here, x is determined by:

x ¼ Max

�
gmin; gmax 2 0:03

�
gS

gB

2 1

��
ð2Þ

where, considering the point spread effect, gmin and gmax

refer to lower (10%) and upper (40%) bounds, where the
true border of the ellipse is to be expected according to
empirical results. The factor 0.03 was also determined
empirically from the calibration series. The desired grey
value gE defining the boundary point along each scanline is
obtained from:

gE ¼ gS þ xðgC 2 gSÞ ð3Þ

with gC representing the grey value at the centre of gravity
C. All values are computed in the subpixel domain. The so-
computed boundary points are used in an algebraic ellipse
fitting algorithm,18 where the “algebraic distance” F(a, xi)
between a general conic section (including ellipses)

Fða; xÞ ¼ a x ¼ ax2 þ bxy þ cy2 þ dx þ ey þ f ¼ 0 ð4Þ

with a ¼ ½a b c d e f �T and x ¼ ½x2 xy y2 x y 1�, and a data
point (xi, yi) is to be minimized by minimizing the sum of

Figure 1 Projective imaging geometry as effective in typical radiographic images exposed in a C-arm or holding device-based radiographic technique.
We define a Cartesian coordinate system, with the z-axis aligned with the central X-ray (normal dropped from the source point F(0,0,zF)), which intersects
the flat x–y-detector plane in the origin (0,0,0). An arbitrary but non-collinear triplet of reference spheres of known dimensions is temporarily attached to a
rigid object under investigation (here: cube). Using the projection lines, RSM infers the true 3D location of each sphere from its 2D shadow, thereby
constituting the object’s six possible degrees (three translational and three rotational) of freedom

Figure 2 Grey-scale profile as assessed along one scanline in the ellipse
boundary refinement process. The particular scanline represents that line
revealing the highest global contrast (100%), among all scanlines of all
three sphere shadows. gB is defined as globally minimum grey value in the
periphery of any of the three sphere 2D shadows. It is used for a global
calibration of the boundary refinement algorithm
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squared algebraic distances

DðaÞ ¼
XN
i¼1

Fða; xiÞ
2 ð5Þ

of the curve on N ¼ 256 data points. In addition, due to the
above described rational, a linear weighting factor

wi ¼
gB

gS

ð6Þ

is introduced, assigning the “pre-estimated boundary
point” (xi, yi) along each scanline a weight proportional
to the local gradient. wi enters Equation (5) as follows:

DðaÞ ¼
XN
i¼1

ðwi Fða; xiÞÞ
2 ð7Þ

After computing the best-fitting ellipses for the unweighted
(Equation (5)) as well as for the weighted (Equation (7))
case, their major axes in combination with their
2D locations are recorded with subpixel accuracy. These
input data enter the RSM algorithm implemented in the
software. To minimize the propagation of numerical
rounding errors, the software uses 64 bit-floating values
(doubles). In the final step, the software computes the
3D coordinates of each sphere’s centre of mass
MkðxMk

; yMk
; zMk Þ; k [ ½1; 2; 3�:

Experimental validation
Since the software must be robust enough to handle real-
world radiographs, we decided to use dry human mandible
sections obtained from the Department of Anatomy.

Two segments were each equipped with three non-collinear
reference spheres (section No.1: radius 1.50 mm; section
No.2: radius 2.50 mm) placed in an area sufficiently small
and close to the objects of interest (teeth) to be imaged on the
dental CCD-receptor specified above. Exposures were
obtained on an optical bench (Figure 4) providing a
perpendicular incidence of the central X-ray in the centre
(origin of the coordinate system, Figure 1) of the CCD-
receptor described before. Due to the marginal elliptical
distortion on the small area intraoral sensor and to avoid
additional input error, we decided not to use the a posteriori
reconstruction of the coordinate system’s origin. Pixel
spacing was 0.039 mm. Exposures in six arbitrarily selected

Figure 3 Modelling of the point spread effect with Gaussian curves superimposed over the ideal, rectangular response function. The transition between
the high grey values representing the shadow of the sphere (left side) and the lower values produced by a superimposed, less dense structure (right side of
curve) is the area, where the “true” ellipse boundary has to be identified with subpixel accuracy. This is currently done by a linear interpolation based on
empirically determined data, where the intersection of the Gaussian with the ideal response function is assumed to represent the “true” ellipse border. The
corresponding grey value gE is computed from the global minimum gB and linear interpolation (Equations (2) and (3))

Figure 4 Experimental set-up on an optical bench, showing the
specimen with the reference spheres attached in arbitrary, but non-
collinear positions. Arrow indicates the position of the charge-coupled
device (CCD)-sensor
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spatial positions were obtained per specimen, with each
position exposed in two relevant exposure times (0.04–
0.08 s) determined after subjective contrast evaluation with
respect to visual image quality. From previous experiments
we had learned that scatter equivalents did not influence
depth accuracy significantly, thus no scatter phantom was
applied. To avoid additional errors, we only included sphere
shadows which were not partly occluded by equally dense
objects (amalgam or gold restorations). Eighteen reference
sphere positions (3 spheres times 6 positions) were obtained
per segment, and a total of 24 radiographs (12 per specimen
times 2 specimens) entered the evaluation. “True” coordi-
nates ct were assessed by means of a calliper as accurately as
possible. Due to the construction of the optical bench and
the human phantom, only the depth-(z-)coordinates could
be measured with tolerable accuracy of roughly ^0.5 to
^0.75 [mm]. Depth coordinates, however, are the funda-
mental output of the RSM algorithm, since x- and y-
coordinates are linearly correlated with them. Due to beam
convergence towards the source, errors in the latter
coordinates necessarily need to be significantly smaller
than depth errors. Hence, we only included registration of
the z-coordinates in our experimental evaluation of the
software.

Absolute errors ea were computed, i.e. absolute
differences between “true” (ct) and computed coordinates
(co) of each of the three spheres in each position. In
addition, relative errors er were calculated in terms of:

er ¼
ct 2 co

ct

100 ½%� ð8Þ

Possible interactions between eaz
as dependent variable and

sphere size and absolute depth as factors were investigated
in a one-way analysis of variance (ANOVA). In case of a
detected dependency, the Spearman Correlation Coeffi-
cient R was also computed (SPSS for Windows 11.0; SPSS
Inc., Chicago, IL). Errors between the weighted and
unweighted algorithm were compared by means of the
paired Wilcoxon test.

Results

Depth accuracy for the calibration series revealed errors
entirely below 1 mm (mean 20.08 mm; range 20.56–
0.39 mm) for all object-to-receptor distances. Within the
human mandible series, we observed an underestimation of
true depth, with an average eaz

of 1.4 ^ 1.1 mm for
r ¼ 1.5 mm for both the unweighted and weighted
algorithm. For r ¼ 2.5 mm, the average eaz

was
1.4 ^ 1.4 mm as computed with the weighted version
versus 1.1 ^ 0.7 mm with the unweighted version (Table 1;
Figure 5). The paired Wilcoxon test did not reveal a
significant difference between both versions (P ¼ 0.240).
Outliers

�
eaz

. 3 mm
�

are rare for the unweighted version
(Nunweighted ¼ 4), but more frequent for the weighted ellipse
fitting (Nweighted ¼ 7; Figure 5). Although not explicitly
statistically evaluated, outliers were mainly found in
ellipses circularly superimposed by dense structures such
as bone. It is noteworthy that three out of the four outliers

produced by the unweighted algorithm are related to one
single reference sphere, which, compared with the
specifications from the manufacturer, revealed a slightly
larger, but inconsistent radius (<1.6 mm). Obviously this
sphere had been deformed in the production process.
Although we calculated the values with the corrected
radius (1.60 mm), however, the deformation yielded the
reported remaining depth error. The corresponding average
relative depth error ranged between 5% and 6% (Table 1).
Absolute errors in depth were significantly dependent on
sphere diameter (ANOVA; unweighted: P # 0.001;
weighted: P ¼ 0.005), however, the Spearman correlation
was very weak (unweighted: R ¼ 0.034; weighted:

Table 1 Descriptive statistics of absolute (lines 3 to 6) and relative (lines
9 to 12) errors for the critical depth-(z-)coordinate. Absolute errors were
defined as the difference in millimetres between true and calculated
values. Relative errors represent the ratio between absolute error and true
coordinates (in percent). Within each group, errors are given for the
unweighted and the weighted version of the algebraic ellipse fitting
process

Absolute error [mm]

Radius [mm] Mean ^ SD Median Range

1.5 Weighted 1.4 ^ 1.1 0.9 0.11; 4.01
Unweighted 1.4 ^ 1.1 1.1 0.02; 4.14

2.5 Weighted 1.4 ^ 1.4 1.1 0.04; 6.14
Unweighted 1.1 ^ 0.7 0.9 0.01; 3.27

Relative error [%]

Mean ^ SD Median Range

1.5 Weighted 5.5 ^ 4.4 3.6 0.6; 17.8
Unweighted 5.5 ^ 4.5 4.9 0.2; 19.2

2.5 Weighted 5.5 ^ 4.6 4.4 0.06; 17.5
Unweighted 4.8 ^ 3.7 4.1 0.04; 16.8

SD, standard deviation

Figure 5 Boxplots of absolute errors in the critical depth-(z-) coordinate
separated for the weighted (left) and unweighted (right) version of the
algorithm. The boxes contain the data between the 25% and 75%
percentile, with the median indicated by a bold horizontal line. The
whiskers include all values lying not further than three box lengths outside
the box. Outliers are indicated by small triangles. While the vast majority
of errors for both approaches ranged between 0.5 mm and 1.8 mm, there
were more outliers observed for the weighted version (see also Table 1)
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P ¼ 0.131). No significant correlation was found between
actual (“true”) depth and the respective depth error
(unweighted: P ¼ 0.029; weighted: P ¼ 0.160). This
finding is also supported by the modified Bland Altman
plot (Figure 6),19 which shows neither a positive nor a
negative trend towards increasing depth values.

Discussion

The reference sphere method RSM provides depth coordi-
nates of reference objects (metallic spheres) of known size.
These coordinates, however are not computed from simply
relating 2D magnification to 3D dimension by application of
the rule of proportion. Instead, using a priori knowledge
about the geometrical relationship between a computable
3D distance within the reference sphere and the 2D major
axis of the ellipse cast by the sphere, it provides
mathematically precise 3D coordinates of the sphere’s
centre of mass.7 Of course, in reality the input data are
corrupted by noise, thus the output coordinates will contain
error. In the absence of error, by calculating three non-
collinear points (the centre points of three spheres
temporarily attached to a rigid object under study), RSM
constitutes all six remaining degrees of freedom (three
translations plus three rotations) of an object exposed within
a C-arm-like imaging geometry.7 Since a dental holding
device resembles a C-arm technique by fixing the source
relative to the sensor in a reproducible and measurable
position, the entire imaging geometry in such an environ-
ment is constituted. Although not done here to reduce the
overall error due to a small ratio between major and minor
ellipse axis in small-scale intraoral radiography, another
very important property of RSM is to identify the point
where the normal dropped from the focal spot intersects the
imaging plane (origin of the coordinate system).
The knowledge of this reference point reduces the six

possible degrees of freedom between image receptor and
focal spot (neglecting rotations of the latter being non-
relevant due to its point shape) to only one: the (z-) distance
between these two components. If not only relative
positions are to be computed, the algorithm requires the a
priori knowledge of exactly this distance. We believe that
this restriction is relatively unproblematic, since holding
devices which represent the golden standard for intraoral
radiography are commonly used already. The required
distance may be easily obtained once from the dimensions
of the holding device and the tube. From theoretical
considerations we also know that practically relevant errors
within this distance have only minor influence on depth
accuracy.7 In larger scale extraoral applications, the origin
of the coordinate system may be easily reconstructed by
identifying the 2D image point of closest approach between
the lines extended through the three major ellipse axes.

The complete knowledge of the imaging geometry is
particularly important for 3D reconstruction from a set of
2D radiographic images of a given situation.10,11 Hence,
RSM can be used to register several radiographic images
with respect to the geometric transformation having
occurred between the images. Our software was designed
to provide a fully automated application of the RSM
algorithm on digital radiographs. More specifically, it
analyses the image automatically, detects the reference
sphere shadows and performs the quantitative RSM analysis
to produce 3D Cartesian coordinates for each reference
sphere. From a physical point of view, the depth- (z-)
coordinate should be the least accurate, since it is calculated
from fitting the 3D spheres into the tangent projection-lines
indicated by the endpoints of the 2D major ellipse axis.7

Hence, the major axes have to be identified as accurately as
possible. By considering the point spread effect and global
contrast maxima for calibration of the ellipses’ gradient
profiles, the implemented boundary definition algorithm
interpolates the demanded distance also in the presence of a
small local gradient. In doing so, initial estimates are
obtained indicating the “true” boundary of the elliptic
shadow. The algebraic ellipse fit, either weighted or
unweighted, fits an ellipse in a least square sense into
these data points. Both the initial estimations as well as the
final ellipse fit proceed in the subpixel domain, to produce a
best possible estimation of the shadow’s 2D dimension. Our
experimental results still reveal a slight underestimation of
the ellipse’s major axis, resulting in an underestimation of
true depth. The automatic detection procedure erroneously
assigns pixels to neighbouring structures or background,
although they are actually belonging to the sphere’s
shadow. This is probably due to different sorts of noise
and the non-linear degrading of grey values towards the
shadow’s boundary. As anticipated from theoretical con-
siderations, this effect is particularly pronounced when a
sphere shadow is completely superimposed by radio-dense
structures occluding the ellipse boundaries. We neglect the
erroneous results caused by the slightly deformed sphere.
Although a global calibration is implemented, it should be
noted that typical dental images would rarely provide a
location where a highest possible gradient, i.e. only air
superimposition, will be found. Obviously, the simple linear

Figure 6 Modified Bland-Altman plot, where accuracy ( y-axis) in terms
of absolute differences between calculated and true z-coordinates is
plotted against the true z-coordinates (x-axis) for the unweighted and
weighted algorithm. An absolute error of “0” indicates best possible
agreement. The plot shows no trend towards increasing depth coordinates,
indicating neither a loss nor a gain in accuracy
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weighting function currently implemented is unable to
sufficiently compensate for this local effect. One solution
may be a weighting function, compensating for a low
overall local contrast (i.e. the gradient along all 256
scanlines) in one shadow. Another more specific approach
would be to measure the system’s PSF and deconvolute the
image with that function. Altogether, a significant depth-
error reduction is noticeable, when the software results are
compared with the values based on the manual, cursor-
based assessment procedure reported in Schulze et al.7

Interestingly, the anticipated error reduction resulting from
increased reference sphere radius was only very small in our
experiment, most probably due to the computation in the
subpixel domain. This finding makes the method more
applicable in small size intraoral radiography, where,
compared with large area medical radiographs, the occlu-
sion caused by the spheres is a relevant drawback of the
method. Although the software is able to reconstruct the
shadow using a circle-based Hough Transform, we did not
experimentally evaluate the error induced by metallic
partial superimposition over sphere shadows. The sub-
sequent boundary refinement and algebraic fitting pro-
cedure will be based on a truncated arc of the ellipse, since
the boundary refinement will be erroneous within the entire
superimposed shadow area. It is to be expected that the fit
based on such truncated data will produce a decreased
ellipse dimension,18 i.e. further underestimation of true
depth.

Errors in the critical z-coordinate will propagate into x- and
y-coordinates; however, due to the beam convergence
towards the source, errors in the latter coordinates must be
significantly smaller than the depth errors themselves.

To further improve registration accuracy we are
currently implementing a secondary approach making
use of the invariant provided by the triangle between the
3D sphere centres. Yet, the theoretical assumption that this
additional information increasing with the number of
views should reduce the remaining error, has to be proved
experimentally. The research will now proceed to the
reconstruction of 3D structure from at least two 2D
radiographs, which, in theory, is a straightforward task
once the geometric transformation between the underlying
radiographs is known.10 – 12 However, due to its extremely
under-determined nature, additional a priori information
has to be included, e.g. using the Bayesian statistics as
described in Robinson et al, Kolehmainen et al and
Siltanen et al.11,20,21

In conclusion, the software introduced here may be used
for geometric radiographic image registration. Since the
data provided are already 3D, the accuracy of the software
should be reasonable for such purposes. Knowing the
geometric transformation having occurred between several
2D views of one 3D scenery enables straight forward
reconstruction of the 3D information content inherent in
the 2D views. The reconstruction problem is currently
addressed in this ongoing research project.
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Lassas M, et al. Statistical inversion for medical x-ray tomography
with few radiographs: I. General theory. Phys Med Biol 2003; 48:
1437–1463.

RSM softwareRSM software
RKW Schulze et al 211

Dentomaxillofacial Radiology


