
Exact Geometric Collision Detection

Elmar Schömer Jürgen Sellen Markus Welsch ∗

Abstract

Exact computation is an important paradigm for the
implementation of geometric algorithms. In this paper,
we consider for the first time the practically important
problem of collision detection under this aspect. The
task is to decide whether a polyhedral object can per-
form a prescribed sequence of translations and rotations
in the presence of stationary polyhedral obstacles. We
present an exact decision method for this problem which
is purely based on integer arithmetic. Our approach
guarantees that the required binary length of interme-
diate numbers is bounded by 14L+22, where L denotes
the maximal bit-size of any input value.

1 Introduction

Exact computation is widely recognized as one of the
key issues in the design of geometric algorithms in the
near future. Recent work on exact algorithms focuses on
traditional problems of computational geometry, such as
the construction of Voronoi diagrams [9, 1, 6]. However,
there are reasons for believing that exact computation
will also be an important paradigm for the implementa-
tion of future CAD tools, from solid modeling to manu-
facturing applications.

Our interest in exact algorithms for collision detection
is motivated by an ongoing research project [7]: In order
to generate and verify assembly plans in CAD systems,
there is a growing interest in the development of inter-
active simulation tools. The main task of such a tool is
the verification of user-specified motions with respect to
collision-freeness.

Assembly operations usually consist of simple mo-
tions but require high accuracy. The latter fact im-
plies that the simulation software has to be carefully
designed in order not to produce incorrect results be-
cause of rounding errors. If using fixed precision arith-
metic, geometric algorithms such as collision detection
have to deal with robustness issues. This requires a
∗Universität des Saarlandes, Fachbereich 14, Informatik,

Lehrstuhl Prof. G. Hotz, Postfach 151150, D-66041 Saarbrücken,
Germany. E-mail: {schoemer,sellen,welsch}@cs.uni-sb.de
Fax: (049)681-3024421

thorough and consistent handling of tolerances. Though
these are strong arguments for an exact approach, the
computational burden of adequate algorithms – which
may be measured by the maximal bit-length of integer
or floating-point numbers in intermediate computations
– is generally considered as too high for practice. (In the
following, we denote the bit-length above as precision.)

In contrast to the algebraic model, we assume a bit
model in which not only the number of input values n
but also their bit-length L determines the complexity of
algorithms. We note that collision detection in the al-
gebraic model has recently been solved in subquadratic
time by using parametric search [8]. Our focus in this
paper is however the bit model, and our main contribu-
tion is a decision scheme with surprisingly low constants
for the needed precision.

There are two major problems in the design of exact
collision detection algorithms.

The first problem arises because of the desire to deal
with sequences of motions. If rotations are specified by
rotation axis and angle, given by rational numbers, then
successive rotations lead to algebraic numbers of increas-
ing degree. This suggests that the considered problem
is not of bounded algebraic depth as defined in [9], and
that the number of bits that are needed to perform col-
lision tests exactly grows exponentially. This growth
of complexity has two sources: the specification of mo-
tions relative to each other, and the parameterization
of rotations. In our scheme, we describe motions as
transitions between absolutely given intermediate con-
figurations, and use the quaternion calculus to describe
rotations. This allows to decide collision-freeness of mo-
tion sequences with uniformly bounded precision O(L).

The idea to use quaternions to decide collision-
freeness is not new, and is e.g. used by Canny [2, 3].
But this is only one step towards a practicable exact
algorithm. As the practicability crucially hinges on the
constants hidden in the O-notation above, the main part
is to derive clever predicates that can be decided with
low precision. We finally arrive at a bound of 14L+ 22.
To compare this to a standard result in the field, note
that Fortune’s sweep algorithm to compute the Voronoi
diagram for point sites in the plane (with integer coor-
dinates) already requires a precision of roughly 15L.

1.1 Problem Formulation and Results

In our model, assembly parts are rigid bodies, rep-
resented by compact polyhedra. Each polyhedron is
described by its boundary representation, and the co-
ordinates of its vertices are given as L-bit integers. We
consider the motion of one part, specified by a trajectory

τ = (C1, . . . , Ck),

while the other parts are stationary. The trajectory con-
sists of a sequence of intermediate configurations

Ci = (i,oi),

where oi ∈ IR3 is a vector specifying the position of
the polyhedron, and i ∈ IR4 a quaternion specifying
its orientation. We require that either oi = oi+1 or
i = i+1, and assume that the coordinates of Ci ∈ IR7

are L-bit integers. The motion from Ci to Ci+1 is defined
by the linear equation

C(t) = Ci + t(Ci+1 − Ci), t ∈ [0, 1],

and corresponds to either a translation or a rotation.
Under these assumptions, we shall prove

Theorem 1 The problem to decide whether the trajec-
tory τ specifies a collision-free motion can be decided ex-
actly by using integer arithmetic. The maximal bit-size
of intermediate values can be bounded by M = 14L+22.

For this abstract, we did choose to reduce operations
to integer arithmetic. It is important to note that in
practical implementations one can also choose to use big-
floats with precision M , and that one can often avoid to
compute with full precision. (Here, big-float is assumed
to be a floating-point data type with definable preci-
sion.)

Extensions to which our scheme can easily be adapted
include

(a) that input numbers are rational with homogeneous
coordinates (cf. [9]), and

(b) that configurations of stationary polyhedra are
given by quaternions, too. (This would allow to
deal with sequences of motions of different parts.)

Omitting additive factors, we computed a bound of 18L
for case (a), and a bound of 22L for case (b).

1.2 Overview

In section 2, we start with preliminaries on collision
detection and the quaternion calculus. In the first part,

we briefly sketch the use of quaternions to treat rota-
tional motions. In the second part, we compare our col-
lision detection approach to Canny’s classical method
[2, 3], for which we computed a required precision of
roughly 40L.

In sections 3 and 4, we derive predicates to decide
different types of collision. All these predicates can be
decided with a precision of roughly 14L. For simplicity
in this abstract, we only deal with the ‘generic’ cases in
these sections and omit the treatment of degeneracies.

Section 5 contains some experimental results and con-
cluding remarks.

2 Preliminaries

2.1 Orientations Described by Quaternions

The orientation of a rigid body in 3-space can be
described by a quaternion

=
[
u0

u

]
∈ IR4.

This orientation results from a rotation of the world
frame about the axis with direction u ∈ IR3. The rota-
tion angle is determined by |u| and the scalar u0.

The 0-th component of a quaternion is called the
scalar part, the other components comprise the vector
part. Vectors in 3-space are interpreted as quaternions
with scalar part 0. Quaternions form a vector space with
an associative multiplication defined by

· =
[
q0

q

]
·
[
p0

p

]
=
[

q0p0 − qTp
q0p + p0q + q× p

]
.

The quaternion product is linear in and . The conju-
gate quaternion ∗ of is formed by negating the vector
part of . The product · ∗ yields the scalar value
q2
0 + q2, which corresponds to the length of under

the Euclidean metric in IR4. Quaternions which satisfy
· ∗ = 1 are called unit quaternions (in sections 3 and 4

we assume w.l.o.g. that the scalar parts of quaternions
are positive). Let be a given (integer) quaternion.
Then the mapping

=
[

0
a

]
7→ ′ =

[
0
a′

]
=
· · ∗
· ∗

describes a rotation of the vector a about the axis u
about the angle ϕ = 2 arctan(|u|/u0). In matrix nota-
tion, this amounts to a′ = U · a, with

U =
(u2

0 − u2)I + 2uuT + 2u0u×

u2
0 + u2

. (1)

Here, u× denotes the canonical skew-symmetric matrix
corresponding to u.

Now let us have a closer look at the motions defined
by the linear transition between two configurations Ci
and Ci+1, as defined in the introduction.

First consider the translation determined by Ci =
(,oi) and Ci+1 = (,oi+1). Let P be the rotation ma-
trix corresponding to , and s = oi+1 − oi. Then the
position of a vertex v of the moving polyhedron at time
t ∈ [0, 1] is given by v(t) = Pv + oi + ts.

Now consider the linear transition between Ci = (,o)
and Ci+1 = (,o), corresponding to some rotation. Let

(t) = + t(−), t ∈ [0, 1],

and U(t) the adequate rotation matrix. Then the locus
of a vertex v of the moving polyhedron at time t is
v(t) = U(t) · v + o. The described motion is a rotation
around the line with center o and direction vector r =
p0q− q0p + p× q, which is identical to the vector part
of the quaternion product · ∗.

Instead of applying the translation oi to the moving
polyhedron, we can also apply the inverse translation
−oi to the obstacles. Proceeding in this way leads to
simpler formulas in sections 3 and 4. There, we shall
assume that oi = 0, and – to capture the inverse trans-
lation of obstacles – that obstacle coordinates are (L+1)-
bit numbers.

2.2 Collision Between Polyhedra

There are several ways to characterize collisions.
Canny reduces the task of detecting a collision between
two polyhedra to the test whether an edge of one poly-
hedron pierces a face of the other. Roughly speaking,
faces are considered as intersections of half-spaces, and
the test corresponds to intersecting time intervals dur-
ing which edges/halfplanes overlap. This leads to the
need to compare different collision times.

The disadvantage of this method becomes apparent
in the case of rotational motions. In this case the colli-
sion times are roots of quadratic equations with integer
coefficients of size 5L. Thus, we need to compare two
expressions of the form

α1 +
√
β1

γ1
:
α2 +

√
β2

γ2
.

This is a standard primitive which arises in many al-
gorithms, e.g., Fortune’s sweep algorithm for Voronoi
diagrams. Using the known techniques to separate two
such values, we obtained a needed precision of roughly
40L. Though it is not clear whether this gap is sharp, it

is an artifact of the method (for comparison, note that
Voronoi diagrams can be computed incrementally with-
out using the disastrous comparisons that are inherent
in Fortune’s algorithm).

Our improvement is based on avoiding the compari-
son between two collision times. To achieve this, we need
to follow a different strategy to characterize collisions:
Two polyhedra are in contact if an edge (vertex) of one
polyhedron touches an edge (face) of the other. We pro-
ceed in two steps. In the first step we expand edges
to lines and faces to planes and examine the existence
of the resulting collision times. In the second step we
decide whether the corresponding edges (respectively, a
vertex and a face) really collide at these potential col-
lision times. The main point is that the latter test can
be decided by predicates which are independent of the
actual collision times. (We derive these predicates by
exploiting the invariants of the motion in a clever way.)

3 Collision Between two Edges

In this section, we shall decide whether a moving edge
lab(t) collides with a stationary edge lcd. The basic step
in 3.1 and 3.2 is the calculation of the moment of colli-
sion between the corresponding infinite lines Lab(t) and
Lcd. Lab(t) ∩ Lcd 6= ∅ implies that the endpoints a(t),
b(t) and c, d lie in a common plane. This can be ex-
pressed by

det
[

1 1 1 1
a(t) b(t) c d

]
= 0. (2)

3.1 Translation

Let the moving polyhedron be in orientation and
perform a translation in direction s. Then the vertices
move according to a(t) = Pa + t s and b(t) = Pb + t s.

We first compute the time t0 when the line Lab(t)
collides with the line Lcd. Expansion of the determinant
in equation (2) yields a linear equation of the form

α t+ β = 0, with (3)
α = sT (P(b − a)× (d− c)),
β = (c × d)TP(b− a) + (d− c)TP(a × b).

In order to determine α and β exactly one needs integers
of length 5L + 9. If a collision takes place during the
translation, then the solution t0 of equation (3) must
lie in the interval [0, 1]. Omitting the cases t0 = 0 and
t0 = 1, this can be decided as follows:

[0 < t0 < 1] ⇐⇒ [α > −β > 0] ∨ [α < −β < 0].

If the lines Lab(t) and Lcd collide at time t0 ∈ [0, 1], we
additionally need to check whether the corresponding
edges intersect at time t0. For this test, we consider the
plane Hab (Hcd) which is spanned by Lab (Lcd) and the
translation direction s. Then the collision of lines is a
collision of edges iff a and b lie on different sides of Hcd

and c and d lie on different sides of Hab. This can be
decided by the following four predicates:

(s×P(b− a))T (x−Pa) <
> 0, with x ∈ {c,d},

(s× (d− c))T (x− c) <
> 0, with x ∈ {Pa,Pb}.

In both cases, integers of length 5L+8 suffice to calculate
the predicates exactly. (Note that these predicates are
independent from t0. We shall proceed in a similar way
in the case of rotations.)

3.2 Rotation

Let the rotation of each vertex v of the moving poly-
hedron be described by v(t) = U(t) · v. Again, we first
compute the collision times for the rotating line Lab(t)
and the stationary line Lcd. Equation (2) yields

(c× d)TU(t)(b − a) + (d− c)TU(t)(a × b) = 0.

Substituting U(t) according to equation (1), this is
equivalent to the quadratic equation

α1t
2 + β1t+ γ1 = 0, with (4)

α1 = ((q0 − p0)2 − (q− p)2)ω + 2(q0 − p0)(q− p)Tw

+ 2(q− p)T (c× d)(q − p)T (b− a)
+ 2(q− p)T (d− c)(q − p)T (a× b),

β1 = 2(p0(q0 − p0)− pT (q− p))ω
+ 2(p0(q− p)T + (q0 − p0)pT)w
+ 2pT (b− a)(q− p)T (c× d)
+ 2pT (d− c)(q− p)T (a× b)
+ 2pT (a× b)(q− p)T (d− c)
+ 2pT (c× d)(q− p)T (b− a),

γ1 = (p2
0 − p2)ω + 2p0pTw

+ 2pT (c× d)pT (b− a) + 2pT (d− c)pT (a× b).

Here, ω = (c× d)T (b− a) + (a× b)T (d− c), and w =
(b − a) × (c × d) − (d − c) × (a × b). The coefficients
of this quadratic equation have length at most 5L+ 12.

If a collision between the lines Lab(t) and Lcd occurs
(β2

1 − 4α1γ1 ≥ 0), we subsequently investigate whether
the rotating edge lab(t) collides with the edge lcd dur-
ing a full rotation. (We have to consider that the start
orientation of lab(t) is given by the quaternion . To
indicate that both endpoints are in this orientation, we
use the notation a′ = Pa and b′ = Pb.)

c

d

a

b

h

dist

r

t2

t1 h1

h2

Figure 1: Collision of two edges during a rotation

For that purpose, we calculate the height of the colli-
sion point with respect to the rotation axis r. Let

sa′b′(h) = H(h) ∩ la′b′ , scd(h) = H(h) ∩ lcd.

be the intersection points of the two edges with the plane
H(h) : rTx = h. W.l.o.g. we assume

rTa′ < rTb′ and rT c < rTd. (5)

If la′b′ collides with lcd during the rotation, then there
exists some

h ∈ [max{rTa′, rT c} , min{rTb′, rTd}], such that
dist(sa′b′(h), L0r) = dist(scd(h), L0r). (6)

This is equivalent to the question whether two hyper-
bolic segments intersect. As illustrated in figure 1 these
segments result from a representation of la′b′ and lcd in
cylindrical coordinates. With

sa′b′(h) =
r× (a′ × b′) + h(b′ − a′)

rT (b′ − a′)
,

condition (6) can be rewritten as a quadratic equation

α2h
2 + β2h+ γ2 = 0, with

α2 = (d− c)2(r′T (b− a))2 − (b− a)2(rT (d− c))2,

β2 = 2rT ((c × d)× (d− c))(r′T (b− a))2

− 2r′T ((a× b)× (b− a))(rT (d− c))2,

γ2 = (r× (c × d))2(r′T (b− a))2

− (r′ × (a× b))2(rT (d− c))2.

Here, r′ = PT r = p0q − q0p − p × q. The coefficients
α2, β2 and γ2 of this equation have length ≤ 8L + 13,
≤ 11L+ 19 and ≤ 14L+ 22, respectively.

Till now, we have derived two quadratic equations
that define collision times and collision heights. Let

t± =
−β1 ±

√
β2

1 − 4α1γ1

2α1
and

h± =
−β2 ±

√
β2

2 − 4α2γ2

2α2
.

These values are related to each other: assuming (5), the
moment of collision t+ (t−) corresponds to the value h+

(h−). Hence a collision occurs iff

[0 < t+ < 1]

∧ [max{r′Ta, rT c} < h+ < min{r′Tb, rTd}]
∨ [0 < t− < 1]

∧ [max{r′Ta, rT c} < h− < min{r′Tb, rTd}].

It remains to test whether the real roots x± of a
quadratic equation lie in a given interval. This amounts
to deciding predicates of the form [x±<>X]. Under the
precondition that real roots exist, it holds for example:

[x+ < X] ⇐⇒
[α > 0]∧ [2Xα+ β > 0]∧ [X2α+Xβ + γ > 0]

∨ [α < 0]∧([2Xα+ β < 0]∨ [X2α+Xβ + γ > 0])

∨ [α = 0]∧ [β > 0]∧ [Xβ + γ > 0] .

All atomic predicates can be evaluated with integers of
length ≤ 14L+ 22.

4 Collision Between a Vertex and a Face

We proceed similar to section 3 to check whether a
moving point a(t) collides with an obstacle face. W.l.o.g.
we assume that this face is a triangle ∆bcd. Again, the
basic step is to calculate the moment of collision between
a(t) and the infinite plane

Hn : nTx = n0,

with n = b× c + c× d + d× b and n0 = bT (c × d).

4.1 Translation

Let a(t) = Pa + ts. Substituting this into the plane
equation Hn yields a linear equation

αt+ β = 0.

Analogous to 3.1, we can decide if this linear equation
has a solution t0 ∈ [0, 1] by evaluating simple predicates
involving α and β. The bit-length of α and β can be
bounded by 5L+ 8.

In a second step, we check whether the point a col-
lides with the face ∆bcd during an ‘infinite’ translation.
Let Hbc (Hcd, Hdb) be the plane spanned by s and the
direction of edge lbc (lcd, ldb). We reduce the test above
to deciding the relative position of a′ = Pa with respect
to these planes. A collision takes place iff

(s× (c− b))T (Pa − c) ≤ 0
∧ (s× (d− c))T (Pa − d) ≤ 0
∧ (s× (b− d))T (Pa − b) ≤ 0.

This can be decided by computing integers of length
≤ 5L+ 8.

4.2 Rotation

Let the vertex a move according to a(t) = U(t) · a,
where U(t) describes the transition from orientation
to orientation . By substituting this into the plane
equation Hn, we obtain a quadratic equation in t that
defines the collision times:

α3t
2 + β3t+ γ3 = 0, with

α3 = nTa
(
(q0 − p0)2 − (q− p)2

)
+ 2(q− p)Tn(q− p)Ta

+ 2(q0 − p0)(q− p)T (a× n)
− n0

(
(q0 − p0)2 + (q− p)2

)
,

β3 = 2nTa
(
p0(q0 − p0)− pT (q− p)

)
+ 2nTpaT (q− p) + 2aTpnT (q− p)
+ 2

(
p0(q− p)T + (q0 − p0)pT

)
(a× n)

− 2n0

(
p0(q0 − p0) + pT (q− p)

)
,

γ3 = nTa(p2
0 − p2) + 2nTpaTp

+ 2p0pT (a× n)− n0(p2
0 + p2).

This equation has coefficients of length ≤ 5L+ 11. The
roots are

t± =
−β3 ±

√
β2

3 − 4α3γ3

2α3
.

One can verify that at time t+ a(t) crosses from the
back side of the plane Hn to the front side and at time
t− back again. This implies that

a(t+) ∈ H+
n×r , a(t−) ∈ H−n×r ,

with H±n×r : (n× r)Tx>< 0.

A collision of a(t) with the front side of Hn is only possi-
ble if t− ∈ [0, 1] (collisions with the back side may be ig-
nored). This requires that the equation α3t

2+β3t+γ3 =
0 has real roots at all, i.e., β2

3−4α3γ3 ≥ 0. The check of
this condition can be performed with integers of length

≤ 10L + 22, and for the decision whether t− ∈ [0, 1] it
suffices to compute with integers of length 5L+ 12.

In the sequel we study the question under which
condition the point a not only hits the plane Hn but
also the triangle ∆bcd during its rotation about the axis
r = p0q − q0p + p × q. For that purpose we intersect
∆bcd with the plane Hr : rT (x − a′) = 0. In general
this yields a line segment l. Let s1 and s2 be its end-
points. We distinguish three cases in which a collision
of a′ = Pa with the front side of ∆bcd occurs during a
full rotation:

(1) s1, s2 ∈ H−n×r :
a′ collides with l if
min{s2

1, s
2
2} ≤ a′2 ≤ max{s2

1, s
2
2}.

(2) s1 ∈ H−n×r, s2 ∈ H+
n×r :

a′ collides with l if a′2 ≤ s2
1.

(3) s1 ∈ H+
n×r, s2 ∈ H−n×r :

a′ collides with l if a′2 ≤ s2
2.

For the calculation of s1 and s2 we determine the inter-
section of the line segments lbc, lcd and ldb with Hr. The
intersection point s of the line Lbc with Hr is

s = b + λs(c − b), with λs =
rT (a′ − b)
rT (c − b)

.

The point s only lies on lbc if 0 ≤ λs ≤ 1, i.e., if

min{rTb, rT c} ≤ rTa′ ≤ max{rTb, rT c}. (7)

In order to solve this inequality it is sufficient to use
integers of length ≤ 3L + 5. If (7) is fulfilled, then s
is an endpoint of l = Hr ∩ ∂∆bcd. To decide the three
cases above, we need to compare the (squared) distance
of s to the axis of rotation with that of a′. In addition,
the condition s ∈ H±n×r must be decided. All involved
inequalities can be expressed as comparisons between
integers of length ≤ 8L+ 15.

5 Conclusion

Engineering applications such as assembly planning
constitute a challenging target for the exact computa-
tion paradigm. The price we have to pay for an exact al-
gorithm crucially depends on the average precision that
is needed to carry out decisions exactly. In this paper,
we have presented an exact collision detection scheme
with a required worst case precision that beats compa-
rable approaches, and that is well in the reach of existing
big-number packages.

True implementation issues go beyond the scope of
this abstract. Here, conceptual decisions like the rep-
resentation of numbers influence the final performance.
Note that there are recent efforts [5, 4] to provide big-
number platforms with a wide range of functionality,
e.g., a type real in LEDA [5] with implicit error param-
eters and automatic re-evaluation if decisions require
higher than the present accuracy.

To obtain some preliminary estimates on what we
can expect from the exact approach, we implemented
a sign test of the discriminant of equation (4) by using
the LEDA data types double, integer and real. For 10000
randomly chosen input values of bit-length 30, the fixed-
precision double implementation needed 0.8 sec. for all
tests, but failed several times to give the correct answer.
The exact (big-)integer implementation needed 14.2 sec.
and the real-implementation 13.4 sec. for the same val-
ues. Taking into account that real input yields more
critical sign tests than random input, the integer data
type seems favorable. After all, the price to pay for an
exact algorithm seems acceptable for specific applica-
tions. The full algorithm is currently under implemen-
tation, and we expect more thorough empirical results
in the future.

References

[1] C. Burnikel, K. Mehlhorn, S. Schirra: How to compute
the Voronoi diagram of line segments: theoretical and
experimental results, Proc. ESA 94, LNCS Vol. 855,
1994, pp. 227-239.

[2] J. Canny: On detecting collision between polyhedra,
Proc. ECAI, 1984, pp. 533-542.

[3] J. Canny: The Complexity of Robot Motion Planning,
ACM Doctoral Dissertation, MIT Press.

[4] T. Dubé, C.-K. Yap: A Basis for Implementing Exact
Geometric Algorithms, Manuscript.

[5] S. Näher: The LEDA User Manual, Version 3.1, Max-
Planck-Institut für Informatik, Saarbrücken, 1995.

[6] K. Mehlhorn, S. Näher: The Implementation of Ge-
ometric Algorithms, 13th World Computer Congress
IFIP94, Vol. 1, 1994, pp. 223-231.

[7] E. Schömer: Interaktive Montageplanung mit Kollision-
serkennung, PhD Thesis, Saarbrücken, 1994.

[8] E. Schömer, C. Thiel: Efficient collision detection for
moving polyhedra, Tech. Report 94-147, Max-Planck-
Institut für Informatik, Saarbrücken, 1994 (to appear:
11th ACM Symp. on Comp. Geom.).

[9] C.-K. Yap: Towards exact geometric computation, Proc.
5th Canadian Conf. on Comp. Geom., 1993, pp. 405-
419 (to appear: Computational Geometry Theory and
Applications).

