
Packing a Trunk

Friedrich Eisenbrand1, Stefan Funke1, Joachim Reichel1, and Elmar Schömer2

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany?

{eisen,funke,reichel}@mpi-sb.mpg.de
2 Universität Mainz, Department of Computer Science, Germany

schoemer@informatik.uni-mainz.de

Abstract. We report on a project with a German car manufacturer.
The task is to compute (approximate) solutions to a specific large-scale
packing problem. Given a polyhedral model of a car trunk, the aim is to
pack as many identical boxes of size 4 × 2 × 1 units as possible into the
interior of the trunk. This measure is important for car manufacturers,
because it is a standard in the European Union.
First, we prove that a natural formal variant of this problem is NP-
complete. Further, we use a combination of integer linear programming
techniques and heuristics that exploit the geometric structure to attack
this problem. Our experiments show that for all considered instances, we
can get very close to the optimal solution in reasonable time.

1 Introduction

Geometric packing problems are fundamental tasks in the field of Computational
Geometry and Discrete Optimization. The problem we are considering in this
paper is of the following type:

Problem 1. Given a polyhedral domain P ⊆
� 3, which is homeomorphic to a

ball, place as many boxes of size 4 × 2 × 1 into P such that no two of them
intersect.

We were approached with this problem by a car manufacturer whose problem
was to measure the volume of a trunk according to a European standard (DIN
70020). The intention of this standard is that the continuous volume of a trunk
does not reflect the actual storage capacity, since the baggage, which has to
be stored, is usually discrete. The European standard asks for the number of
200mm × 100mm× 50mm = 1 liter boxes, which can be packed into the trunk.
Up till now, this problem is solved manually with a lot of effort.

Contributions

We show that Problem 1 is NP-complete by a reduction to 3-SAT. Further, we
attack this problem on the basis of an integer linear programming formulation.

? This work was partially supported by the IST Programme of the EU under contract
number IST-1999-14186 (ALCOM-FT).

Fig. 1. CAD model of a trunk and a possible packing of boxes

It turns out that the pure ILP approach does not work, even with the use of
problem-specific cutting planes in a branch-and-cut framework. We therefore
design and evaluate several heuristics based on the LP-relaxation and the ge-
ometric structure of the problem. The combination of the exact ILP-approach
and the herein proposed heuristics yield nearly optimal solutions in reasonable
time.

Related work

Various versions of packing problems have been shown to be NP-complete [1].
We derive our complexity result from an NP-complete packing variant inspected
by Fowler, Paterson and Tanimoto [2]. Here the task is to pack unit squares
in the plane. In their work, they do not consider rectangular objects that are not
squares and the region which has to be packed is not homeomorphic to a disk.

Other theoretical and practical results in the area of industrial packing prob-
lems suggest that allowing arbitrary placements and orientations of the objects
even within a two-dimensional domain is only viable for extremely small problem
instances. For example, Daniels and Milenkovic consider in [3, 4] the problem
of minimizing cloth utilization when cutting out a small number of pieces from a
roll of stock material. If arbitrary placements and orientations are allowed only
very small problem instances (≤ 10 objects) can be handled. For larger problem
instances they discretize the space of possible placements and use heuristics to
obtain solutions for up to 100 objects.

A survey of the application of generic optimization techniques like simulated
annealing, genetic algorithms, gradient methods, etc. to our type of packing
problems can be found in [5]. Aardal and Verweij consider in [6] the problem
of labelling points on a map with pairwise disjoint rectangles such that the
corners of the rectangles always touch the point they are labelling. Similar to
our work, this discretization of the possible placements reduces the problem to
finding a maximum stable set in the intersection/conflict graph (which for this
application is much smaller than in our case, though).

2 Continuous Box Packing is NP-complete

In this section, we prove that Problem 1 is NP-complete. In a first step, we show
that a two-dimensional discrete variant of this problem is NP-complete.

Definition 1 (m×n-Rectangle-Packing). Given integers k, m, n ∈ � , m ≥ n
and sets H ⊆ � 2, V ⊆ � 2, decide whether it is possible to pack at least k axis-
aligned boxes of size m×n in such a way that the lower left corner of a horizontal
(vertical) box coincides with a point in H respectively V .

This problem is trivial for m = n = 1. For m = 2, n = 1, the problem can be
formulated as set packing problem with sets of size 2 and solved in polynomial
time by matching techniques [1].

Proposition 1. 3× 3-Rectangle-Packing and 8× 4-Rectangle-Packing

are NP-complete.

Proof. The case m = n = 3 has been shown by Fowler et al. [2] using a
reduction of 3-SAT to this problem. We use the same technique here for m =
8, n = 4 and refer to their article for the details.

Given a formula in conjunctive normal form (CNF) with three literals per
clause, Fowler et al. construct a planar graph as follows. For each variable
xn there is a cycle of even length. Such a cycle has two stable sets of maximal
cardinality which correspond to the two possible assignments of xn. Moreover,
paths of two cycles can cross each other at so called crossover regions, which
have the special property that for each maximum stable set both paths do not
influence each other. For each clause exists a clause region, that increases the
value of a maximum stable set iff the clause is satisfied. The number k can
be easily deduced from the number of nodes, crossover and clause regions. The
proof is completed by explaining how to compute the sets H and V such that
the constructed graph is the intersection graph of the packing problem. Thus
the formula is satisfiable iff there exists a packing of cardinality ≥ k.

For the case m = 8, n = 4, we need to explain how to construct the crossover
and clause region. The crossover region for two cycle paths are realized as shown
in Fig. 2. Note that the rectangle in the center has size 9 × 5 and allows four
different placements of a 8×4 rectangle. Clause regions are constructed as shown
in Fig. 3. Both constructions maintain their special properties as in the case of
3 × 3 squares and the remainder of the proof is identical. ut

The decision variant of Problem 1 is defined as follows:

Definition 2 (Continuous-Box-Packing). Given a polyhedral domain P ⊆
� 3, which is homeomorphic to a ball, and k ∈ N , decide whether it is possible to
pack at least k boxes of size 4× 2× 1 into P such that no two of them intersect.

Theorem 1. Continuous-Box-Packing is NP-complete.

� � �� � �� � �� � �� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

Fig. 2. Crossover region and correspond-
ing intersection graph

� � �
� � �
� � �

	 	 	
	 	 	
	 	 	

� �
� �

� �
� �
� �

� �
� �
� �
� � � � �

� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

Fig. 3. Clause region and corresponding
intersection graph

Proof. We reduce the problem to 8×4-Rectangle-Packing. Let (k, H, V) de-
note an instance of 8× 4-Rectangle-Packing. Intuitively our approach works
as follows: We extrude the shape induced by the sets H and V into the third
dimension with z-coordinates ranging from 0 to 1. On the bottom of this con-
struction we glue a box of hight 1

2 . The size of the box is chosen such that the
construction is homeomorphic to a ball. More formally, P ⊆

� 3 is constructed
as follows:

PH :=
⋃

(x,y)∈H

[

1

2
x,

1

2
x + 4

]

×

[

1

2
y,

1

2
y + 2

]

× [0, 1] ,

PV :=
⋃

(x,y)∈V

[

1

2
x,

1

2
x + 2

]

×

[

1

2
y,

1

2
y + 4

]

× [0, 1] ,

P := PH ∪ PV ∪ X × Y ×

[

−
1

2
, 0

]

,

where X and Y denote the projection of PH ∪ PV onto the first respectively
second coordinate. This construction can be carried out in polynomial time.
It is clear that a projection of a maximal packing to the first two coordinates
corresponds to a maximal packing of the two-dimensional problem of the same
value and vice versa. ut

3 From the CAD Model to the Maximum Stable Set

Problem

The data we obtain from our industry partner is a CAD model of the trunk to be
packed. Since the manual packings used so far had almost all boxes axis aligned
to some coordinate system, we decided to discretize the problem in the following
way. We first Discretize the Space using a three-dimensional cubic grid. Given
the box extensions of 200 mm, 100 mm and 50 mm, a grid width of 50 mm was
an obvious choice. In order to improve the approximation of the trunk by this
grid, we also work with a refined grid of edge length 25 mm. Even smaller grid
widths did not improve the results substantially and for larger CAD models the
number of cubes became too big. In the following, numbers depending on the
grid granularity refer to a grid of edge length 50 mm and numbers for the refined
grid of edge length 25 mm are added in parentheses.

The alignment of the coordinate axes is done such that the number of cubes
which are completely contained in the interior of the trunk model is maximized.
In practice, the best cubic grids were always aligned with the largest almost
planar boundary patch of the trunk model – which most of the time was the
bottom of the trunk. For the remaining translational and one-dimensional rota-
tional freedom we use an iterative discrete procedure to find the best placement
of the grid. The result of this phase is an approximation of the trunk interior as
depicted in Fig. 4.

Fig. 4. Interior approximation of
the trunk of Fig. 1

In the next phase we use the cubic grid to
Discretize the Box Placements. A box
of dimension 200mm × 100mm × 50mm can
be viewed as a box consisting of 4 × 2 × 1
(8 × 4 × 2) cubes of the cubic grid. We will
only allow placements of boxes such that they
are aligned with the cubic grid. So the place-
ment of one box is defined by six parame-
ters (x, y, z, w, h, d), where (x, y, z) denotes
the position of a cube in our grid – we will call
this the anchor of the box – and (w, h, d) de-
notes how far the box extends to the right, to
the top and in depth. (w, h, d) can be any per-
mutation of {4, 2, 1} ({8, 4, 2}), so for a given
anchor, there are 6 possible orientations of
how to place a box at that position.

Our goal is now to place as many such boxes in the manner described above
in our cubic grid such that each box consists only of cubes that approximate the
interior of the trunk and no pair of boxes shares a cube.

It is straightforward to formalize this problem using the following construc-
tion: The conflict graph G(G) = (V, E) for a cubic grid G is constructed as
follows. There is a node vx,y,z,w,h,d ∈ V iff the box placed at anchor (x, y, z)
with extensions (w, h, d) consists only of cubes located inside the trunk. Two
nodes v and w are adjacent iff the boxes associated with v and w intersect.

A stable or independent set S ⊆ V of a graph G = (V, E) is a subset of
the nodes of G which are pairwise nonadjacent. The stable set problem is the
problem of finding a stable set of a graph G with maximum cardinality. It is
NP-hard [1].

There is a one-to-one relationship between the stable sets in G(G) and valid
box packings in G, in particular every stable set in G(G) has a corresponding valid
box packing in G of same size and vice versa. We use this one-to-one relationship
to reduce the maximum box packing problem to a maximum stable set problem
on a graph:

Lemma 1. The maximum box packing problem for a grid G can be reduced to a
maximum stable set problem in the corresponding conflict graph G(G).

To give an idea about the sizes of the conflict graphs we are dealing with,
we show in Table 1 the sizes of the conflict graphs for our (rather small) trunk

model M1 and grid widths 50 mm and 25 mm. We will use the 50 mm discretiza-
tion of this model as a running example throughout the presentation of all our
algorithms in the next section.

Table 1. Grid and Conflict Graph sizes for trunk model M1

grid granularity [mm] # interior cubes # nodes in G(G) # edges in G(G)

50 2210 8787 649007

25 19651 68548 62736126

4 Solving the stable-set problem

4.1 A branch-and-cut algorithm

In the previous section, we modeled our packing problem as a maximum stable-
set problem for the conflict-graph G(G) = (V, E) for a given grid G. In this
Section we describe how we attack this stable-set problem with a branch-and-
cut algorithm.

The stable-set problem has the following well known integer programming
formulation, see, e.g. [7]:

max
∑

v∈V

xv (1)

{u, v} ∈ E : xu + xv ≤ 1

u ∈ V : xu ∈ {0, 1} .

It is easy to see that the characteristic vectors of stable sets of G are exactly the
solutions to this constraint system.

Standard ILP solvers try to solve this problem using techniques like branch-
and-bound. These techniques depend heavily on the quality of the LP relaxation.
Therefore, it is beneficial to have a relaxation which is strong. We pursue this
idea via incorporating clique inequalities and (lifted) odd-hole inequalities.

Clique inequalities A clique C of G is a subset of the nodes C ⊆ V , such that
every two nodes in C are connected. If S is a stable set and C is a clique, then
there can be at most one element of S which also belongs to C. This observation
implies the constraints

∑

v∈C

xv ≤ 1 for each C ∈ C , (2)

where C is the set of cliques of G.

If C is a maximal clique, then the corresponding clique inequality (2) defines
a facet of the convex hull of the characteristic vectors χS of stable sets S of G,
see [8]. Thus the clique inequalities are strong in the sense that they cannot
be implied by other valid inequalities. The number of maximal cliques can be
exponential and furthermore, the separation problem for the clique inequalities is
NP-hard for general graphs [9]. However, in our application the number of cliques
is polynomial and the maximum cliques can be enumerated in polynomial time.
This result is established with the following lemma. A proof is straightforward.

Lemma 2. Every maximal clique in G(G) corresponds to the box placements in
G which overlap one particular cube.

Therefore we can strengthen the formulation (1) by replacing the edge con-
straints with the clique constraints (2) and obtain the polynomial clique formu-
lation.

Odd hole inequalities An odd hole [10] H of G is a cordless cycle of G with
an odd number of nodes. If S is a stable set of G, then there can be at most
b|H |/2c elements of S belonging to H . This implies the constraints

∑

v∈H

xv ≤ b|H |/2c for all H ∈ H , (3)

where H denotes the set of odd holes of G. These inequalities can be strengthened
with a sequential lifting process, suggested in [8, 11], see also [12]. We apply the
algorithm of Gerards and Schrijver [13] to identify nearly violated odd hole
inequalities and strengthen them using different lifting sequences.

For our running example M1 / 50mm, the LP relaxation yields an upper
bound of 268 liters. Running our branch-and-cut approach for 24 hours and
taking the best result found, we obtained a packing of 266 liters.

4.2 Heuristics

Unfortunately, the above described branch-and-cut algorithm works only for
small packing instances and not for trunks of real-world size. On the other hand,
the ILP-approach is an exact algorithm for the discretized problem that we wish
to solve. In the following we propose several heuristics for our problem that can
be combined with our exact ILP-approach. Depending on the employed heuristic
we obtain trade-offs between running time and solution quality.

Partitioned ILP Formulations

This approach partitions the packing problem into independent sub-problems,
which are exactly solved with branch-and-cut individually and thereafter com-
bined. We partition a given grid by axis-parallel planes into smaller sections.
Tests have shown that one should choose the sizes of the sections ranging from
50 to 100 liters.

But the cutting of the grid into smaller sections leads to waste and ob-
tained solutions can be further improved by local optimization across section
boundaries. By moving some of the packed boxes it is possible to bring several
uncovered cubes into proximity, such that one more box can be packed. This
inspired the following modification.

We slightly change the objective function of (1) such that some packings
of a given cardinality are preferred. The old objective function is replaced by
∑

v∈V cvxv, i.e. we solve a weighted stable set problem and the coefficients cv ∈ IR
are computed as follows. Assume the box corresponding to node v is anchored at
(x, y, z) and contained in the section [xmin, xmax] × [ymin, ymax] × [zmin, zmax].
The coefficient cv is then computed as

cv = 1 +
1

u
·

xmax − x + ymax − y + zmax − z

xmax − xmin + ymax − ymin + zmax − zmin

, (4)

where u is an upper bound for the optimal value of (1) for this section. The new
objective function still aims for packings with largest cardinality, but among
packings of the same cardinality those with boxes anchored as near as possible
to (xmin, ymin, zmin) are preferred. Thus uncovered cubes tend to appear near
the x = xmax, y = ymax and z = zmax boundaries of the section and can be
reused when processing the adjacent sections.

Using this approach, we achieved a packing of 267 boxes with 24 hours run-
time. Although the quality of the solution has been improved by a small amount,
it takes too long to achieve good results.

A greedy Algorithm

The most obvious idea for a heuristic for the stable set problem in a graph is
to use a greedy approach. The greedy algorithm selects a vertex with smallest
degree and adds it to the stable set S determined so far, then removes this vertex
and all its neighbors and repeats.

The algorithm tends to place boxes first close to the boundary and then
growing to the inside until the trunk is filled. This is due to the fact that place-
ments close to the boundary ’prohibit’ fewer other placements and therefore
their degree in the conflict graph is rather low.

There is a bit of ambiguity in the formulation of the Greedy algorithm. If
there are several vertices with minimum degree, we can choose the next ver-
tex uniformly at random. This randomized version of the greedy algorithm is
repeated several times.

As one might expect, the Greedy algorithm is very fast, but outputs a result
of rather low quality. We achieved a solution of 259 liters in less than a minute.
The maximum of ten runs of the randomized version was 262 liters.

Geometry-Guided first-level Heuristics

Looking at the model of the trunk, one observes that it is quite easy to tightly
pack some boxes in the center of the trunk, whereas difficulties arise when ap-

proaching the irregular shape of the boundary. The following two heuristics ex-
ploit this fact by filling the center of the trunk with a solid block of boxes. This
approach significantly decreases the problem complexity.

Easyfill This algorithm strongly simplifies the problem by restricting the set of
allowed placements for boxes. Supposing the first box is packed at (x, y, z, w, h, d),
we solely consider boxes with the same orientation anchored at (x + ZZw, y +
ZZh, z + ZZd). This leads to a tight packing in the interior of the trunk and
the remaining cubes near to the boundary can be packed by one of the other
algorithms.

For each of the 6 orientations, there are 8 (64) possibilities to align the first
box on the grid. The quality of the results heavily depends on the placement of
the first box. Thus we repeat the procedure with all different placements of the
first box.

As it turns out, if one exactly uses this algorithm, the remaining space is not
sufficient to place many additional boxes, but a lot of cubes are left uncovered.
To overcome this problem, we use the following approach. In the first phase we
peel off some layers of the cubes representing the interior of the trunk, and then
run the Easyfill algorithm. In the second phase we re-attach the peeled-off layers
again and fill the remaining part using some other algorithm.

By using Easyfill we were able to improve the results obtained so far. In
combination with the Greedy algorithm, we achieved a solution of 263 liters in
1 minute. A better solution of 267 boxes was achieved in combination with the
ILP algorithm. Here we also had to terminate the branch-and-cut phase after
about 30 minutes for each combination of orientation and alignment of the first
box to limit the total running time to 24 hours.

Matching Another interesting idea to get a compact packing of a large part
of the trunk is to cluster two boxes to a larger box consisting of 4 × 2 × 2
(8 × 4 × 4) cubes and then interpret these boxes as 2× 1× 1 cubes on a coarser
grid of side length 100 mm (50 mm). As we have seen in Section 2, this special
packing problem can be solved in polynomial time using a maximum cardinality
matching.

Similar to the Easyfill algorithm, there are 8 (64) possibilities to align the
coarse grid with the original grid. Likewise, there is little freedom for packing
the remaining cubes and we use the same approach as in the case of the Easyfill
algorithm.

The results for the Matching approach combined with Greedy algorithms are
comparable to the Easyfill approach. So we obtained a volume of 263 liters with
a slightly better running time. In combination with the ILP approach we get a
slightly worse result of 265 liters.

LP Rounding

As solving the ILP to optimality is pretty hard, one might wonder how to make
use of an optimal solution to the LP relaxation – which can be obtained in

reasonable time – to design a heuristic. One way is to solve the LP and round
the possibly fractional values of the optimal solution to 0/1-values, of course
obeying the stable set constraints. This heuristic is implemented in the ILP-
solver, but is not very effective. So we came up with the following iterative
procedure:

1. solve the clique LP for G to optimality
2. let B be the box placements corresponding to the 5 % largest LP values
3. use greedily as many placements from B as possible, remove their corre-

sponding vertices and neighbors from G and goto 1

This approach took 45 minutes to compute a solution of 268 boxes. This is
the value of the LP relaxation and thus optimal.

5 Experimental Evaluation

In this section, we present experimental results showing the performance of the
algorithms. We present results for three models, named M1, M2 and M3 in the
following, with grids of granularity of 50 mm and 25 mm.

Table 2 shows some characteristics of both models. Model M2 is about 40%
larger than model M1 and model M3 about three times larger than M2. Note
that refining the grid granularity quickly increases the size of the conflict graph
and enlarges the grid volume, whereas the upper bound obtained by the LP
relaxation does not grow by the same factor.

Table 2. Some characteristics of the used models

model M1 M1 M2 M2 M3

grid granularity [mm] 50 25 50 25 50

nodes in G(G) 8787 68548 12857 95380 44183

edges in G(G) 649007 62736126 974037 88697449 3687394

grid volume [l] 276 307 396 429 1214

upper bound (LP relaxation) [l] 268 281 389 398 1202

best solution [l] 268 271 384 379 1184

For model M1 our industrial partner provided a manually achieved solution
of 272 liters (which applies to the original trunk model only, not the discretized
grid), whereas our best solution has a value of 271 liters.

In Table 3 we present results for the Greedy, Randomized Greedy, LP

Rounding and ILP algorithm – standalone as well as combined with the Match-

ing and Easyfill algorithm. The table is completed by the data for the Par-

titioned ILP algorithm. Each run was stopped after at last 24 hours and in
this case, the so far best result is reported.

Table 3. Computed trunk volumes (in liters) and running-times (in minutes). For the
results marked with an asterisk (*), we stopped the computation after 24 hours and
took the best result found so far.

model M1 M2 M3

grid granularity [mm] 50 25 50 25 50

vol. time vol. time vol. time vol. time vol. time

Greedy 259 1 262 2 373 1 364 2 1148 1

Easyfill + Greedy 263 1 269 61 378 1 376 79 1169 1

Matching + Greedy 263 1 268 5 375 1 373 7 1167 1

Randomized Greedy 262 1 265 19 377 1 365 27 1147 2

Easyfill + Rand. Gr. 264 5 271 807 381 5 377 1038 1171 26

Matching + Rand. Gr. 263 1 268 67 377 1 373 83 1165 4

LP Rounding 268 45 – – 384 427 – – 1184 189

Easyfill + LP Round. 267 29 269 24h
∗ 384 48 376 24h

∗ 1184 95

Matching + LP Round. 265 35 267 453 383 2 379 792 1178 8

ILP 266 24h
∗ – – 384 24h

∗ – – 1136 24h
∗

Easyfill + ILP 267 24h
∗ 269 24h

∗ 383 24h
∗ 379 24h

∗ 1180 24h
∗

Matching + ILP 265 24h
∗ 270 24h

∗ 383 24h
∗ 379 24h

∗ 1176 24h
∗

Partitioned ILP 267 24h
∗ 260 24h

∗ 384 24h
∗ 378 24h

∗ 1175 24h
∗

All algorithms using LP- or ILP-based techniques were run on a SunFire
15000 with 900 MHz SPARC III+ CPUs, using the operating system SunOS
5.9. CPLEX 8.0 was used as (I)LP-solver. All other algorithms were run on a
Dual Xeon 1.7 GHz under Linux 2.4.18. Our implementation is single-threaded
and thus does not make use of multiple CPUs.

For the Matching and Easyfill algorithms, one layer of cubes was peeled
off for the first phase. This has turned out as a good compromise between enough
freedom and not too large complexity for the second phase. For Randomized

Greedy, the best results of ten runs are reported.

One observes that the randomization of the Greedy algorithm leads to bet-
ter results while the runtime increases according to the number of runs. Both
algorithms can be improved by applying Easyfill or Matching first. This im-
poses a further increase in the running time, due to the many subproblems that
have to be solved.

However, all Greedy algorithms are outperformed by (I)LP-based tech-
niques, whereas LP Rounding is significantly faster than the ILP algorithm.
Combining both algorithms with Easyfill and Matching leads to worse re-
sults on a grid with granularity 50 mm, whereas it is absolutely necessary on the
refined grid due to its huge complexity. The results obtained by Partitioned

ILP are comparable to LP Rounding and ILP.

6 Conclusion

In this paper we have considered the problem of maximizing the number of
boxes of a certain size that can be packed into a car trunk. We have shown that
this problem is NP-complete. Our first approach which was based on an ILP
formulation of the problem did not turn out to be very practical. Therefore we
have designed several heuristics based on the ILP formulation and the geomet-
ric structure of the problem. In this way we obtained good trade-offs between
running time and quality of the produced solution. In fact, at the end we could
compute solutions as good or even better than the best ILP based solutions
within a certain time frame.

There are still a number of interesting problems left open. In our problem
instances, we could restrict to only axis-aligned placements of the boxes without
sacrificing too much of the possible volume, but there might be other instances
(maybe not of trunk-type) where this is a too severe restriction.

References

1. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory
of NP-completeness. Freeman (1979)

2. Fowler, R.F., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in
the plane are NP-complete. Information Processing Letters 12 (1981) 133–137

3. Milenkovic, V.J.: Rotational polygon containment and minimum enclosure using
only robust 2d constructions. Computational Geometry 13 (1999) 3–19

4. Daniels, K., Milenkovic, V.J.: Column-based strip packing using ordered and com-
pliant containment. In: 1st ACM Workshop on Applied Computational Geometry
(WACG). (1996) 33–38

5. Cagan, J., Shimada, K., Yin, S.: A survey of computational approaches to three-
dimensional layout problems. Computer-Aided Design 34 (2002) 597–611

6. Verweij, B., Aardal, K.: An optimisation algorithm for maximum independent set
with applications in map labelling. In: Algorithms—ESA ’99 (Prague). Volume
1643 of Lecture Notes in Comput. Sci. Springer, Berlin (1999) 426–437

7. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Volume 2 of Algorithms and Combinatorics. Springer (1988)

8. Padberg, M.W.: On the facial structure of set packing polyhedra. Mathematical
Programming 5 (1973) 199–215

9. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1 (1981) 169–197

10. Chvátal, V.: On certain polytopes associated with graphs. Journal of Combinato-
rial Theory Ser. B 18 (1975) 138–154

11. Wolsey, L.: Faces for a linear inequality in 0-1 variables. Mathematical Program-
ming 8 (1975) 165–178

12. Nemhauser, G.L., Wolsey, L.A.: Integer programming. In et al., G.L.N., ed.:
Optimization. Volume 1 of Handbooks in Operations Research and Management
Science. Elsevier (1989) 447–527

13. Gerards, A.M.H., Schrijver, A.: Matrices with the Edmonds-Johnson property.
Combinatorica 6 (1986) 365–379

