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ABSTRACT 

Multi-modal registration is still a big challenge in image processing. In this article we present a variation of the well-
known fast Fourier transform (fft) accelerated methods for finding the alignment between two datasets, i.e. the rigid 
transformation consisting of a rotation as well as a translation mapping all regions in both datasets belonging together in 
an optimal manner. Our method can be applied to such multi-modal registration problems as computer tomography 
(CT)/positron emission tomography (PET) matching, or matching CT data with data obtained by magnetic resonance 
imaging (MRI). 
We reformulate the alignment problem into an optimization problem concerning a metric measure. The particular form of 
the proposed objective function can be exploited to fft-accelerate the translational part of the alignment-problem. Thus 
the reduced problem can be solved for the three remaining degrees of freedom of the rotatory part using standard 
optimizers, such as downhill-simplex or Powell’s method. 
A further advantage of our approach is the straight forward parallelization of the objective function’s computation. Our 
implementation on a graphic processing unit (GPU) yielded a speedup factor between 5 and 25 depending on the size of 
the data. The results show, that the application of a GPU can be highly rewarding for all fft accelerated algorithms. 
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1. INTRODUCTION 

The most common approach in multi-modal registration is based on the concept of mutual information (MI). 
Albeit MI based metric measure has been shown to be robust and generally applicable (see Maes, F.  et al 
(1997), Mattes, D.  et al (2003), and Viola and Wells (1997)), a series of drawbacks are known. In particular 
the following two facts are problematic: The distributions of the random variables needed for computation of 
mutual information are unknown and their estimation can consume a lot of processor resources; furthermore, 
the resulting objective function possesses many local maxima (Haber and Modersitzki (2005)).

If both datasets have been recorded with the same technology, it is possible to use the meansquare error 
as a metric. Its main advantage is the possibility to fft-accelerate the optimization process in some degrees of 
freedom. A fast method for the solution of the pure translational alignment problem was presented in Cowtan 
(2001), and a combination of translational and rotatory degrees of freedom was introduced in Kovacs et al 
(2003). Fourier methods, in particular the phase correlation method, are pretty well known and play a 
prominent role in 2D image processing and pattern analysis (see Castro and Morandim (1987), Pan et al 
(2009), Reddy and Chatterji (1996)). 

Trying to match CT and PET datasets, we face the following dilemma: the MI based general approach is 
too slow, because it cannot be fft-accelerated, and the methods which can be accelerated are not applicable to 
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multi-modal data. In this article we present an approach that is not as universal as the conventional MI 
method but then can be fft-accelerated. Our alignment method is based on�metrics of the form 

�
Ω∈
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x

xgxfxwgf
�

��� 2|)()(|)(),(ϕ  , 

with Ω  - a domain in 3N , w  - a weight function and gf ,  - arbitrary scalar functions. The weight 

function is the most important difference to the cases considered in Reddy and Chatterji (1996) and Castro 
and Morandim (1987). Both papers assume that one function of the two to be aligned is a rotated and 
translated replica of the other one, but for the multi-modal data this is almost never true. The presence of 
dissimilar parts has a negative impact on the reliability of the phase correlation method. Therefore we are 
going to use an idea similar to that proposed in Cowtan (2001), with a weight function as a fragment mask. 

The remainder of this paper is structured as follows. In the next section we introduce relevant definitions 
and mathematics as well as the core algorithm of our method. Section 3 covers the parallelization of the 
algorithm on a GPU, whereby we are also going to discuss the performance of the parallelized version. 
Experiments with synthetic data are presented in section 4, whereas section 5 contains some widespread 
applications, for which the proposed method yields good results. 

2. MATHEMATICS 

We consider a three-dimensional dataset as a periodic function Rf →Ω: . The set of these functions will 

be denoted by ),( RAbb Ω . To evaluate the distance between two elements gf ,  from ),( RAbb Ω , we use 

the pseudo metric 
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with 0)( ≥xw
�

. wd  is a metric if and only if Ω∈∀> xxw
��

0)( . Using a pseudo metric for distance 

estimation enables us to neglect parts of the data, which are for sure dissimilar in the multi-modal datasets. 

A rigid body transformation );,( •ζα
��

T  between elements of Ω , which depends on three rotatory 

degrees of freedomα� and three translational degrees of freedom ζ
�

, generates the operator T̂ defined by 
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Thereby f
~
 is the continuation of the data record f  from Ω  to continuous space 3R which can be computed 

by means of trilinear, nearest neighbor or any other interpolation scheme. In our experiments both methods 
yielded similar results. 

With the help of wd we can define the objective function  

2),'(:),;,( gfdgf w=ζαϕ
��

with [ ] )(,ˆ:' fTf ζα
��= beeing the transformed dataset.ϕ measures the quality of a coordinate transform or 

rather the quality of a given data matching.  
Now we can consider the alignment problem as the following optimization problem. 

Problem 1 (General alignment-problem) 
Given gf ,  from ),( RAbb Ω , find 
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Initially we consider only the translational part of the alignment problem, i.e. the problem of finding the 
best translational movement for a fixed rotation. Therefore we obtain the following reduction of the general 
alignment problem: 
Problem 2 (Translational alignment-problem) 

Given gf ,  from ),( RAbb Ω , evaluate 
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From now on we only consider the integer translational movements, establishing the "≈ " in the equation 
above. The objective function for a fixed α� given by 
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��α=  and Ω∈dζ
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, can be rewritten as: 
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By using the mirror operator )(:))((ˆ −•=• ffS  and convolution for periodic functions 
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with 0U  a constant originating from the third term. The above equation holds, because of the following 

calculation for two periodic functions ),(, 21 RAbbff Ω∈ : 
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It is well-known, that the convolution of two functions 1f   and 2f  can be efficiently computed using fft 

by: 

( ))(ˆ)(ˆˆ
21
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whereby F̂ denotes the Fourier transform and the factor N depends on the size of the domain Ω . 
This leads us to the following form of the objective function (see Cowtan (2001) or Dranischnikow 

(2008) for more details): 

( ) ( )( ) 0
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By using fft we can calculate the best translation in ( )nnO log   whereas the naïve implementation would 

result in an ( )2nO  time complexity. It is easy to transform these formulae into an efficient parallel algorithm, 

which we will discuss in section 3.  
We split the general alignment problem 1 into the translational alignment problem 2 just mentioned and 

the problem of finding the best rotational movement assuming that we had solved problem 2. This leads to 
the following subproblem. 
Problem 3 (Rotatory alignment-problem) 

Given gf ,  from ),( RAbb Ω , evaluate 

);,(min
3

αϕ
α
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�
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To solve problem 3 we resort to conventional optimizers such as downhill-simplex from Nelder and 
Mead (1965) or Powell’s method (Press et al (2002)). Our experiments clearly indicate, that the downhill-
simplex method is more suitable (see table 2). In comparison to the initial problem, the search-space has been 
reduced to three dimensions. The main advantage of this procedure is that the objective function 

);,( αϕ �
gfR  possesses, according to experience, considerably less local extrema. 
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3. PARALLELIZATION 

The evaluation of the objective function );,( αϕ �
gfR  consumes the lion’s share of the computation time 

and consists of the following steps: 
1. Computation of the rotated dataset by means of trilinear interpolation 
2. Solving the translational alignment problem: 

          (a) Squaring the values of the rotated dataset 
          (b) Fourier transform 
          (c) Multiplication (point wise) and addition of vectors in the frequency domain 
          (d) Inverse Fourier transform 
          (e) Search for the minimum 

Steps 1, 2a and 2c do not demand any communication between the processes and are therefore easy to 
parallelize. It is known, that the Fourier transform (2b and 2d) possesses a quite high potential for 
parallelization (Gupta and Umar (1993), Tong and Swarztrauber (1987), and Swarztrauber (1987)). Search-
ing for a minimum (2e) is a typical example for reduction (compare Zomaya (1996) or Harris (2007)) and can 
be efficiently implemented on most parallel architectures. 

The architecture of our choice for the parallelization of the algorithm was a NVIDIA GPU. The CUDA-
framework from NVIDIA makes it possible to use a GPU without casting the problem into a graphical API. 
Despite the simple handling, a careful implementation is necessary. Careless memory access can be dev-
astating for the performance because of the absence of a cache. However, with texture and shared memory 
the programmer has enough tools on his disposal to evade most of the bottle necks caused by the relative 
slow global memory. Furthermore, with CUFFT (NVIDIA Corporation (2007)) an efficient implementation 
of the necessary fft routines is available. 

We are using textures for computation of the rotated dataset because otherwise it is quite challenging to 
optimize the global memory access. The efficient global access for steps 2a and 2c is straight forward, 
because the simple data layout allows the simultaneous memory accesses to be coalesced into a single 
memory transaction. The optimal size of the blocks can be found in fftw manner (Frigo and Johnson (2005)) 
during a testing phase. This ensures that the best possible performance can be reached on different GPUs. 

When using real-to-complex in-place Fourier transforms a padding is necessary (see NVIDIA 
Corporation   (2007) for more details). Due to the SIMD architecture of the GPU it is more efficient to treat 
those padded elements the same way as the other "normal" elements. 

Table 1. Comparison of the run times between GPU with trilinear interpolation, CPU with trilinear interpolation and CPU 
with nearest neighbor interpolation. Because of the textures the GPU has a kind of intrinsic advantage over the CPU, 

therefore we also offer a comparison with a CPU implementation, that applies the less costly nearest neighbor 
interpolation. We used an Intel Core2 Duo 2.4 GHz with NVIDIA 8800GTX (CUDA2.1) for this benchmarking test 

Kind of Computation 
Number of voxels in the dataset: 2N.  

N=18 N=19 N=20 N=21 N=22 N=23 N=24 N=25 

CPU (time in ms) 99   220 410 870 1800 3500 7100 14000 
CPU Nearest Neighbor 
(time in ms) 

42  100 190 400 850 1700 3500 7000 

GPU (time in ms) 22  25 40 63 86 150 290 500 
Speedup CPU/GPU 4.5 8.8 10.3 13.8 20.1 23.3 24.5 28.0 

Table 1 shows the gains, which can be achieved through parallelization on a GPU. The biggest speedup 
can be obtained for embarrassingly parallel tasks. The computation of the rotated volume profits enormously 
from the use of textures, which are faster than the normal global memory. The fft computation does not yield 
the same speedup because the main part of the communication must pass through the slow global memory. 
However the size of the CPU cache is insufficient for fft on bigger datasets, therefore the speedup factor of 
fft increases with the size of the dataset. 
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4. EXPERIMENTS WITH SYNTHETIC DATA  

Before going to the real life examples, we investigate the ability to recover the rotation with help of synthetic 
data. There are two major questions to answer. The first one is which method�downhill-simplex or Powell’s 
method yields better results and is more suitable and the second one is, what is the probability of finding the 
right rotation. 

We used two kinds of data: Rotations uniformly distributed over the whole range and only rotations up to 
45° but otherwise uniformly distributed. Both 128x128x128-datasets were cut out from a bigger CT volume 
and share an identical region, which is precisely known. This scenario is similar to section 5.3, compare also 
figure 2. A matching was considered successful, when the inaccuracy of the calculated rotation did not 
exceed 1°. 

Table 2: Experimental results with synthetic data. Success rate and the number of function evaluations per case are 
averaged over 500 runs 

method 
all rotations rotation up to 4/π

success rate # evaluations success rate  # evaluations 

downhill-simplex 0.338    82  0.864   83 

Powell 0.264  349  0.784  338 

     
The experimental results in table 2 suggest that downhill-simplex turns out to be a better choice. The 

higher success rate and the lower computation cost are two powerful arguments. The high success rate 
implies, that a few starting configurations are sufficient to find the global minimum. It also turns out that an 
additional Gaussian noise does not have any notable impact on the success rate of the algorithm. 

5. APPLICATIONS  

In this section we are going to describe some real-world alignment problems of multi-modal data for which 
our method can be successfully used. 

5.1 PET/CT-Matching 

The research project FUNMIG (Fundamental processes of radionuclide migration) studies the behavior of 
inserted radioactive elements in diverse rocks. The results of computer simulations, which predict the 
migration of the radioactive substance, should be compared with experimental results in order to evaluate 
correctness and accuracy of the underlying model. 

The inner structure of a rock has been investigated by means of CT, whereas PET was used for 
monitoring the diffusion of the radioactive elements. Because the two measurements were carried out from 
within two different coordinate systems (and as a matter of fact in two different cities), there is the necessity 
to find the right transformation in order to be able to compare the data (Ulenkampff et al (2008)). 

The CT-record of the rock is available as a Boolean model. The hollow voxels are denoted by 1, the 
massive voxels by 0. This dataset must be matched with 5 PET records. Each record describes the 
configuration of the radioactive elements in the rock for a fixed point in time. The values of the voxels can 
vary between 0 (nonradioactive) and 216 (very radioactive). All PET-measurements have been carried out 
from within the same coordinate system. 

We assume that high radioactivity (the term "high" should be seen in relationship to the radioactivity of 
the other voxels) can be reached only in hollow voxels, because only there a large accumulation of 
radioactive elements is possible. It is indeed thinkable, that some thin fissures have not been registered by 
CT, but still can contain a non-negligible amount of radioactive atoms. However, the radioactivity of such 
voxels should not be very high. On the other hand, the radioactive material does not spread over the whole 
crevice; therefore hollow voxels exist that are not contaminated. 
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These considerations lead us to the objective function 
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where c denotes the transformed CT data, p  denotes the PET data and v  the threshold from which on we 

consider a voxel as being radioactive. The objective function punishes voxels, that are considered to be 
radioactive (i.e. vxp >)(

�
) but are not hollow. According to our assumption, that higher radioactivity 

increases the probability that a voxel is hollow, the punishment is severer for massive voxels with high 
radioactivity. This simple approach is sufficient to accomplish a successful matching, as the left hand side of 
figure 1 illustrates. Further details and results can be found in Dranischnikow (2008). 

5.2 MRI/CT Matching 

The next application of our registration method arises in medical science. The lung of a patient has been 
examined with the help of two different methods. Conventional CT acquires the tissue of the lung whereas 
inhaled ³He gas made visible by means of magnetic resonance imaging (see Kauczor et al (1997)) depicts the 
parts of the lung with proper function. Merging the two datasets would help to diagnose the state of a disease 
more precisely and choose a more adequate treatment. 

A certain resemblance to the problem above is evident. Comparing this scenario to the above, the lung 
plays the role of the crevice and the ³He gas the role of the radioactive material. With this interpretation the 
objective function (1) can be reused and again delivers successful matchings, as figure 1, right-hand side, 
illustrates. More details and results are provided in Dranischnikow (2008). 

5.3 CT-Fusion 

The last application of our method copes with a task from the field of dentistry. Here sometimes an object 
(usually the head of a patient) is too large for an available cone beam CT with small or medium size field of 
view. Therefore�it is necessary to perform two or more measurements. Afterwards the small datasets should 
be merged into one large dataset. Figure 2 (left-hand side) depicts, how this task can be reduced to the 
alignment problem of the shared region. 

We choose =:f  first dataset, =:g  second dataset and 

Figure 1. On the left-hand side: The CT and PET (after 60 minutes) datasets are successfully matched. First volume 
shows the PET data, where red color corresponds to high radioactivity. Second volume shows the matching with the CT 

data, where the crevice is depicted brown. Third volume shows the surface of the radioactive voxels matched with the CT 
data. On the right-hand side: Four slices through the lung of a patient: gray color displays the lung in the CT data, the 

more intense the red color the higher the concentration of ³He. 

IADIS International Conference Applied Computing 2009

335



Ax

Ax
xw

∉
∈

�
�
�

= �

�
�

,0

,1
:)(

whereby A denotes the (estimated) shared region of two datasets. These definitions allow us to use our 
algorithm in order to merge the small volumes into a bigger one. The results are shown in figure 2 on the 
right-hand side. 

6. CONCLUSION 

In this paper we presented a new method to register multimodal data. Our approach is based on a special 
metric that makes it possible to neglect subsets of the data that are for sure dissimilar. The proposed metric 
has been successfully used for matching multi-modal datasets. Experiments showed that this approach is 
applicable for PET/CT- and MRI/CT-matchings. The algorithm also operates on single-modal data and can 
be applied to register an object/pattern in an n-dimensional space. 

The main advantage of our approach is the possibility to fft-accelerate the search in some degrees of 
freedom. In this paper we considered the acceleration of the search for the translational movement, which 
resulted in fewer local minima of the new objective function. This leads to a better performance in terms of 
success rate of matching as well as in terms of run time. 

A further improvement can be achieved by using parallel hardware such as a GPU. A speedup factor up 
to 25 could be achieved using modern commodity graphics hardware. Thus, the utilization of GPUs for 
computation, because of the impressive performance that GPUs offer at a very modest financial cost can be 
an alternative to the use of expensive hardware such as combined PET/CT- or MIR/CT-scanner. 

The proposed strategy for parallelization can also be used for other fft-accelerated algorithms such as the 
phase correlation method and therefore can substantially speed up those applications. 

Figure 2. Left-hand side: The solution for the alignment problem of the shared region enables the required merging of 
two datasets. Right-hand side: The result of merging two small datasets into one big record of a jaw. Two possibilities to 

expand the data are shown. The left volume completed with parts of the right volume and the other way around. The 
accuracy of the merging as well as the junctions is clearly visible. 
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