
Interactive Rigid Body Manipulation
with Obstacle Contacts

Matthias Buck

Daimler-Benz AG

Research and Technology

P.O.Box 2360

D-89013 Ulm

Germany

phone: +49 731 505 2109

fax: +49 731 505 4224

email: m.buck@dbag.ulm.DaimlerBenz.COM

Elmar Schömer

Universität des Saarlandes

Lehrstuhl Prof. Hotz

Im Stadtwald

D-66123 Saarbrücken

Germany

phone: +49 681 302 3264

fax: +49 681 302 4812

email: schoemer@cs.uni-sb.de

ABSTRACT

The interactive manipulation of rigid objects in virtual reality environments
requires an object behaviour which is at least physically plausible to be useful
for applications like interactive assembly simulation or virtual training. Physi-
cally plausible behaviour implies that collisions between simulated solid objects
are taken into account, and that the motion of objects with obstacle contacts
can be controlled without force feedback mechanisms in an intuitively correct
manner. We present a real-time framework which enables the simulation of
interactively controlled solid objects with a dynamically changing set of con-
tact constraints. In this paper, all contact configurations are replaced by a
canonical set of point contacts, which is updated dynamically. The basic step
to determine the contact forces and the object motion consists in the solu-
tion of a non-linear complementarity problem (NCP), which results from the
unilateral contact conditions together with an adequate discretization of the
corresponding differential equations of motion.

Keywords: Virtual reality, motion simulation, contact constraints, non-linear
complementarity problem, NCP-functions, Newton iteration

1 Introduction

Certain virtual reality (VR) techniques have already been used for many years in industrial

applications, such as in flight simulators or drive simulators. In these cases, the navigation

in virtual worlds and the real time visualization of these worlds have been major issues,

while interaction has not taken place in virtual but in real environments, i.e. in car or

aircraft cabins with real instruments and real control devices.

Recently, new applications have been considered which require the user to directly

interact with and to manipulate simulated objects within virtual worlds, among these

ergonomy studies, digital mockup, assembly simulation, simulation of co-working, tele-

operation, and training applications.

Such interaction in virtual environments requires more than just realistic visualization

- it requires also realistic physical behaviour of the virtual objects. Realistic here not nec-

essarily means physically correct behaviour, but at least physically plausible behaviour.

For interactions in virtual worlds, this means in particular that solid objects do not in-

terpenetrate if they collide, that there is friction if two touching objects slide along each

other, and that objects have appropriate gravitational, mass and inertia properties. In

our paper, we address the motion simulation of rigid bodies subject to contact constraints

without or with sliding friction. This requires first a suitable mathematical representation

of the contact situations between two or more touching bodies, together with a mechanism

which automatically updates this representation if the contact situation changes during

the simulation. This further requires a method to determine the motion of each involved

moving object such that the contact conditions are enforced at each contact situation.

As we have interactive applications in mind, all this has to be achieved under real-time

conditions. Finally, input data from an external device has to be connected to the motion

simulation to enable interactive motion control of virtual objects.

1.1 Previous work

The simulation of the kinematics and dynamics of rigid bodies in the presence of contact

constraints has been studied by several authors. Early papers are by [17] with important

contributions to the simulation of friction, by [5], and by [13], who pioneered dynamic

simulation and modeling of contacts. A thorough study on the dynamics of non-penetrating

rigid bodies was presented by [1], who is one of the most active contributors to this field

([2, 3]). Cremer, Stewart, and Vanecek [9, 21] use similar methods in their dynamic

simulation systems Newton and Isaac.

The reported approaches generally set up the contact conditions for each contact in

terms of the local contact acceleration. As long as the normal component of this acceleration

remains zero, the contact persists. However, during numerical integration of the resulting

motion equations, small numerical errors accumulate, which leads to a drifting problem:

the contact condition is not enforced in terms of the contact distance, and the touching

objects drift away from each other or even interpenetrate. As one of the main contributions

of this paper, we will describe a method to remedy this problem.

While these approaches are based on the solution of continuous dynamic equations

and contact forces, Mirtich and Canny [19] proposed an impulse-based method. Here any

impact among contacting bodies is exchanged through trains of impulses.

The formulation of motion constraints of rigid bodies due to contact is discussed in a

number of papers [5, 18, 20, 3]. Quite a number of formulations have been proposed to

determine the dynamic behaviour of objects which are subject to motion constraints, as

there are Newton-Euler, D’Alembert, or Gauss’ principle of least constraint. In [3], the

author states that ultimately all these approaches differ mainly in one basic point. Either

constraints are modeled by reducing the number of coordinates which are necessary to

describe the remaining degrees of freedom, or forces have to be introduced to maintain the

constraints. A very good overview over the pros and cons of this choice is given in that

paper.

The geometric representations of objects in VR and simulation systems in most cases

are polyhedral surface descriptions. Such geometries yield simple contact constraint condi-

tions, as long as the touching geometric elements (vertices, edges, faces) remain the same.

If objects in contact are sliding along each other, contact conditions are changing discon-

tinuously as the set of touching geometric elements is changing. In [4], the authors give a

detailed analysis of collision contacts between polyhedral objects. In the case of face-face

contacts, the area of touch is represented by a set of point contacts. If there are more than

the 3 necessary contact points, they classify the remaining contacts as inactive. The set of

3 active contact points is determined through solving a quadratic programming problem.

Although collision detection mechanisms are necessary to detect new contacts, we do

not treat this topic in our paper. We just want to mention here, that the main research

direction in this field is to find methods which speed up the detection of object intersections,

by using efficient data structures or by using suitable bounding volumes which allow fast

collision tests. A good state-of-the-art paper is by Gottschalk et.al. [12].

1.2 Contributions of this work

In this paper, we first discuss the representation of any contact situation by a minimal set

of point contacts. This is the basis for a uniform mathematical treatment of the motion

simulation with contact constraints. We further discuss how this minimal set of point

contacts updates in the course of changing contact configurations.

Further we present a reformulation of the kinematic contact conditions in terms of

contact distances, as opposed to the classical formulation in terms of contact accelerations.

This approach allows to enforce the contact conditions without any drift problem due to

error accumulation.

In the classical approach, the motion equations with contact constraints are formulated

using a linear complementarity problem (LCP), which can be solved with the Lemke algo-

rithm. In our case, we encounter a non-linear complementarity problem instead, which we

propose to solve using so-called NCP-functions.

Finally, we will discuss the performance of our approach, and present practical appli-

cations and simulation results.

2 Motion constraints

2.1 Mechanical constraints due to obstacle contacts

Contact configurations between polyhedra can be composed of a subset of 9 contact prim-

itives, which correspond to the pairwise combinations of the 3 geometric primitives vertex,

edge, and face. Contact primitives which are not point contacts by themselves can be

replaced by an appropriate number of point contacts. To replace a face-face contact we

need 3 point contacts, and for an edge-face contact we need 2. (In fact, in the physical

world, there are no perfectly planar faces or perfectly straight edges, and on a microscopic

level all contacts can be modeled as a composition of point contacts.) For our problem,

the formulation of motion constraints, it is useful to determine a canonical set S of point

contacts, that is a non-redundant (and thus minimal) set of point contacts which repre-

sents a given contact situation. The number k of point contacts in such a set equals the

number of degrees of freedom (DOF) which are removed from the moving objects due to

contacts. This set can be translated directly into a set of k scalar constraint equations for

the motion simulation.

How can we efficiently obtain the set S? It is not sufficient to replace for example

each face-face contact with three point contacts, because this can lead to redundancies.

Furthermore, S has to be updated each time the contact situation changes during the

motion simulation, i.e. if new contacts are established or existing contacts vanish.

In the following, we present an algorithm which dynamically determines a canonical set

S of point contacts during motion simulation. This requires to register new contact points

as well as vanishing contact points.

2.2 Updating the set of point contacts

To keep the set of point contacts S canonical, we must avoid to include any redundant

contact point. Let S be canonical at the beginning of a given simulation interval. If during

this interval the two objects start to intersect at some location, the collision detection

mechanism (which we treat as a black box in this paper) reports one or several points

of collision. Each point of collision may be either of the type vertex-face, face-vertex, or

edge-edge. Furthermore, for each point of collision the time of collision is reported by the

collision detection module. Now we are only interested in the earliest point of collision,

because this is the location where both objects start to intersect, and where a new contact

constraint should be placed. Accordingly, the simulated motion is stopped at the time

instance tc at which the intersection starts, and the corresponding new contact point is

added to S, which is still canonical. Subsequently, the motion simulation continues exactly

where the current simulation step was interrupted by the collision.

Obviously the new contact point cannot be redundant, otherwise an intersection could

not have been occurred at this location. Note that only the earliest contact point is

guaranteed to be non-redundant, therefore it is important to add only this single new

contact point to S. If there are several simultaneous earliest collision points, just one of

them is selected (according to some rule or arbitrarily) for the new contact point. This is

however no severe restriction, as further contact points may follow shortly one after the

other in subsequent simulation intervals, if necessary.

To find the earliest new contact point between the two involved objects, the collision

detection module looks for all points of collision between these objects, and determines

the corresponding collision times. The determination of the exact collision times and of

the earliest point contact is not trivial, because the objects may move along complicated

trajectories. In our present implementation, we are using linear interpolations to deter-

mine the collision times, which is appropriate as long as the rotational components of the

specified motion during each timestep are sufficiently small.

The second mechanism required to update S is to determine breaking contact points.

Contact points break either if attractive contact forces would be necessary to maintain an

existing contact, or because a contact point moves outside a contact region (e.g. an object

vertex slides along an obstacle face and leaves it at a convex edge). In both cases, the

corresponding contact point is eliminated. Note that no redundancies can be introduced

into S by a removal of contact constraints.

Object B Object B

Object B Object B

Object A
Object A

Object A Object A

P1 P1

P1 P1

P2

P2 P2

P3 P3

P4 P4

S

h

f e x t

Figure 1: Several steps of a changing contact configuration (from top
left to bottom right). Used contact points are marked by black dots.

The mechanism described above is illustrated in fig.1, where at the beginning object

A has already one vertex-face contact with the fixed object B at point P1. As object A

rotates around P1, a collision is detected at a second vertex-face contact, P2. Now, object

A may rotate around the axis h through P1P2, until two edge-edge point collisions occur at

P3 and P4. These two collisions virtually occur simultaneously, however one of them (say

P3) is selected according to some rule or arbitrarily as a new contact point. As long as the

motion restrictions originated by the three contact points P1, P2, and P3 are maintained, no

interpenetration can occur at P4, and thus no redundant contact point will be established

there.

Now let an additional force fext be applied to object A at point S, the projection of

which lies outside the triangle (P1, P2, P3). This will cause object A to rotate slightly

around axis P2P3, and the point contact at P1 will break. Further, a collision will occur

at P4, and a new point contact will be established there. Note that the contact point

at P4 now is non-redundant, because the contact constraint at P1 no longer exists. It

should be mentioned that only in this example the new contact point is close to the other

contact points and even belongs to the same object faces. In general, new contact points

can be established anywhere on the surfaces of the involved objects, if the earliest collision

between them occurs there.

This example indicates how the canonical set of point contacts can change automatically

in the course of the simulation as necessary to maintain the dynamic force and torque

equilibrium.

2.3 Unilateral motion constraints

Contacts, in contrast to joints or hinges, represent unilateral constraints, as they restrict

the local object motion only in one direction (the one which would lead to interpenetration).

In the mathematical formulation, such unilateral constraints correspond to inequality con-

ditions, in contrast to the equality conditions of bilateral constraints. This makes the

simulation of contact constraints mathematically more complicated. Consider two objects

which are touching without friction at a set of k point contacts, and with external forces

and torques acting on them. The resulting motion of these objects depends on the exter-

nal forces as well as on the contact forces. A contact force however can be only repulsive,

otherwise the contact vanishes. The relation between contact forces and the kinematics of

contact i is generally described by the following complementary set of conditions:

ai ≥ 0, fi ≥ 0, fiai = 0 (1)

which says that neither the normal acceleration ai nor the normal contact force fi may be

negative, and at least one of both must be zero. If we collect all ai and fi in the respective

vectors a and f , we obtain

a ≥ 0, f ≥ 0, fTa = 0 (2)

Since a can be expressed as a linear function of f this leads to a linear complementarity

problem (LCP) (see [7, 8]) for the determination of a and f . An efficient way to determine

the solution of this LCP is the Lemke algorithm (see [16]).

As already mentioned, a disadvantage of this classical approach is that it constrains the

normal contact accelerations ai, and not directly the normal contact distances wi, which

leads to numerical error accumulation during the integration of the motion equations. To

avoid this problem, we reformulate eq. 2 as

w(f)t+∆t ≥ 0, f ≥ 0, fTwt+∆t = 0 (3)

where w(f)t+∆t indicates that the contact distances at the end of each simulation time

interval ∆t are a function of the unknown contact forces f . In contrast to the classical

approach, this function however is non-linear in our case, and methods to solve an LCP

like the Lemke algorithm cannot be used.

In the following section, we will derive this function w(f)t+∆t. In section 4, we will

employ so-called NCP-functions to set up an equation system in the unknown forces f ,

which can be solved efficiently with the Newton iteration. Once these forces are determined,

it is trivial to derive the resulting object motion.

3 Motion simulation with constraint forces

3.1 Contact forces and contact impulses

In the simulation of object motion with contacts, two situations can be distinguished, in

both of which the contacting objects have to be prevented from interpenetration. The first

situation occurs at the time of collision, when the two objects are touching but have a non-

zero normal velocity at the contact point. Generally, in this situation a contact impulse

p = ∆tf is assumed to cause the instantaneous velocity change p = m∆v necessary to

prevent object intersection. The time of impact ∆t here is generally assumed very short

(however it will never be zero in reality as unbounded contact forces f do not exist).

The second situation concerns the case where a contact is already established, and the

normal velocity at the point of contact is zero. Here normal contact forces are assumed

to maintain the contact without interpenetration. The magnitude of such contact forces

depends on the external or dynamic forces acting on the objects. In interactive applications

however, the user interface provides desired object velocities, which have to be modified in

the presence of contact constraints. So we handle contact situations similarly as collision

situations, and take contact impulses here as well to prevent interpenetration.

In the context of time-discrete numerical simulation, the impact of an impulse is always

distributed over an entire simulation time interval. In this sense, we do not have to distin-

guish between forces and impulses. Velocity changes are seen as being caused by forces f

which act over the simulation interval ∆t, which correponds to an impulse of p = ∆tf .

3.2 The motion equations

The motion of a rigid body subject to external forces is described by the Newton-Euler

motion equations:

v̇ =
1

m

k∑
i=1

fi (4)

ω̇ = I−1

(
k∑
i=1

ri × fi − ω × Iω

)
(5)

where fi are the external forces (including contact forces), ri are the vectors which point

from the center of mass to the points where the forces apply, I denotes the inertia tensor,

and m the object mass.

As we want to integrate these equations numerically, we switch from the differential

formulation to a discrete one. Let us for the moment assume, that only the k constraint

forces are present (other external forces can be added without difficulty), then we obtain

vt+∆t = vt + ∆t
1

m

k∑
i=1

fin
t
i (6)

ωt+∆t = ωt + ∆t (It)−1

(
k∑
i=1

fir
t
i × nti − JtI

)
(7)

where JtI = ωt × Itωt represents the gyroscopic forces. In (6) and (7), fi are the force

magnitudes and ni are the force directions, which in the frictionless case are identical with

the contact normals. The position of the moving object is given by the vector c, and its

orientation by the quaternion . (See appendix A for details on quaternions).

Another integration step yields the position and orientation of the moving object:

ct+∆t = ct + ∆tvt+∆t (8)

t+∆t = t +
1

2
∆t (0, ωt+∆t) · t (9)

where (0, ωt+∆t) and are quaternions, and the dot represents the quaternion product (see

appendix A).

Note that for (6) and (7) we choose forward differentiation, and for (8) and (9) backward

differentiation. This allows to plug (6) into (8) and (7) into (9), which results in an equation

system for the position ct+∆t and orientation t+∆t of the moving object at the end of the

simulation interval, with the contact forces f1, . . . , fk as unknowns.

In the following we want to derive the contact distances wi at each contact as a function

of ct+∆t and t+∆t. To this end, we first rewrite (9) by replacing the quaternions by their

equivalent rotation matrices:

R(t+∆t) = R(1,
1

2
∆t ωt+∆t) ·R(t) (10)

This allows us to express the position pt+∆t of a general point P of a moving object in

terms of its coordinates p̂ in an object fixed coordinate system:

pt+∆t = R(t+∆t)p̂ + ct+∆t

3.3 Extension to multibody systems

In the previous sections we assumed that only contacts between two rigid objects have to

be taken into account. In many practical applications however this is not true. Imagine

for example that one interactively controlled object is a kind of tool which is used to

manipulate several other moveable objects.

If more than two objects are in contact with each other, their motion cannot be simu-

lated independently, as they are mutually constraining their relative motion. Instead, they

have to be simulated as one articulated combined object. A cluster of n connected movable

objects can have up to 6n non-redundant point contacts, which corresponds to a system

of 1 ≤ k ≤ 6n scalar motion constraints.

The mathematics for the motion simulation of such a cluster of touching objects is

basically the same as described in the previous sections. For each object, there is a set of

motion equations (4) ... (10), and for each point contact there is an entry in the set of

complementarity conditions, eq. (3).

To formulate the motion equations for a multibody system, we introduce first matrix

C ∈ IR6n×k which describes the contact geometry as follows

CT =

i j
↓ ↓

0 . . . 0 nTij (rij×nij)
T 0 . . . 0 nTji (rji×nji)

T 0 . . . 0

where rij denotes the vector from the center of mass ci of body i to the contact point

between the bodies i and j, and nij = −nji denotes the the contact normal of this contact.

Each column vector of C has in case of a contact between two moving bodies i and j an

entry of the form [nT , (r×n)T]T with indices (ij) und (ji), or in case of a contact between

a moving body i and a fixed obstacle just an entry with index i.

Let further u ∈ IR6n denote the generalized velocity vector

uT = [v1,ω1, . . . ,vn,ωn]T

and M ∈ IR6n×6n the generalized mass matrix

M =

m1E 0
I1

. . .

mnE
0 In

The contact forces’ magnitudes are collected in the vector f ∈ IRk, and ae denotes the

vector of external accelerations:

(ae)T = [g,−I−1
1 ω1 × I1ω1, . . . , g,−I−1

n ωn × Inωn]T

Using these notations, we can formulate the motion equations (4, 5) as

u̇ = M−1Cf + ae

From this equation, the discrete motion equations can be derived in the same manner

as for a single body system. The numerical effort to determine all k contact forces is

dominated by the solution of linear equation systems. Since this step has complexity

O(k3) great values of k are inhibitive for real-time solutions. So far, we limited ourselves

to applications with few moveable objects, which can be handled in real-time as indicated

in section 6.

3.4 The contact distances and contact normals

As described in section 2, all contact configurations between polyhedra can be represented

by a set of the two basic point contacts vertex-face and edge-edge. In this section we give

the contact distances and contact normals for these contacts as a function of the global

motion parameters Ri and ci, i = 1, 2 of the two touching objects.

Vertex-face contact: Let a be a vertex of object 1 which is in contact with a face of

object 2. Assume that this face lies in the plane with equation nTx = n0. We describe the

motion of the vertex and the plane as follows:

a = R1â + c1, n = R2n̂, n0 = n̂0 + cT2 n,

where Ri denotes the current orientation matrix of object i, and ci the current position

of its center of mass. â, n̂ and n̂0 describe the position of the vertex and the plane in the

objects’ fixed coordinate systems.

The contact normal of a vertex-face contact is given by the face normal n and the

contact point lies at a. The contact distance is given by:

w = n̂TRT
2 (R1â + c1 − c2)− n̂0 (11)

Edge-edge contact: Let a1 and b1 be the endpoints of an edge of object 1 which is

in contact with an edge of object 2 with endpoints a2 and b2. We describe the motion of

the endpoints as ai = Riâi + ci and bi = Rib̂i + ci. The contact normal in this case is

given by n = (b1 − a1) × (b2 − a2). Without a detailed derivation, we give the contact

distance for this case as:

w =
(b2 − a2)T (a1 × b1)

|n| +
(a2 × b2)T (b1 − a1)

|n| (12)

Finally, we can express the contact distances wt+∆t
i , i = 1...k at the k contact points

as functions of the normal contact forces f1, . . . , fk, if we plug eqs. (8, 10) into (11)

respectively (12). We refer to this function in the following using the vector notation

w = g(f) (13)

4 Solving the non-linear complementarity problem

In the previous section, we derived the contact distances w = g(f), g : IRk → IRk. Together

with the complementarity conditions

w(f) ≥ 0, f ≥ 0, fTw = 0

we obtain a non-linear complementarity problem (NCP) for the determination of f . The

mathematical literature proposes for the solution of this problem the application of so-

called NCP-functions ([14, 15]). These functions transform the NCP into a non-linear

equation system, which can be solved with standard methods like the Newton iteration .

The class of NCP-functions ϕ(a, b) : IR2 → IR is defined by the property

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0 (14)

Particularly interesting properties have been reported for the following NCP-function,

which is also called Fischer function ([10]):

ϕ(a, b) =
√
a2 + b2 − a− b (15)

With this auxiliary function, we define the operator Fϕ : IR2n → IR2n as follows:

Fϕ(f ,w) =

(
g(f)−w
φ(f ,w)

)
. (16)

where

φ(f ,w) = (ϕ(f1, w1), . . . , ϕ(fn, wn))T

A set of (f ,w) in consequence solves the above NCP exactly if Fϕ(f ,w) = 0 holds.

The equation system Fϕ(f ,w) = 0 has the degree 2n. As pointed out in [14], the

solution of this system can be reduced to the solution of an equivalent equation system of

degree n, as the n components of w basically don’t represent independent variables.

With the Jacobian

dFϕ

d(f ,w)
(f j ,wj) =

[
dg
df

(f j) −I
dφ
df

(f j ,wj) dφ
dw

(f j ,wj)

]

we can transform the Newton-approach

dFϕ

d(f ,w)
(f j ,wj)

(
∆f j

∆wj

)
= −Fϕ(f j ,wj)

into the system(
dφ

df
(f j ,wj) +

dφ

dw
(f j ,wj)

dg

df
(f j)

)
∆f j = −φ(f j ,wj)− dφ

dw
(f j ,wj)(g(f j)−wj)

To determine ∆f j we have to solve a linear equation system of degree n. Subsequently,

∆wj follows by direct substitution:

∆wj =
dg

df
(f j)∆f j + g(f j)−wj

The iteration

f j+1 = f j + ∆f j

wj+1 = wj + ∆wj

continues until |Fϕ(f j ,wj)| falls below a threshold value.

This Newton-type method converges quadratically, if we have sufficiently good esti-

mates for the initial values (f0,w0). To obtain such initial values, there are several possi-

bilities. A good approach is to use the contact forces from the previous simulation interval

as estimates for the current interval. For new contacts, where no such estimate can be

derived from the last interval, we set the initial values to zero.

Alternatively, we can solve the LCP of eq. (2) to obtain even better estimates for the

contact forces. Using this approach, fewer Newton iterations are required until the error

threshold is reached. However, solving the LCP takes some time as well, which compensates

the advantage such that the overall computation time is comparable to the one obtained

with the first method.

5 Contact simulation with friction

According to the Coulomb friction law, the sliding friction force is determined by the

direction of the sliding motion and the normal force as follows:

fR = −µfN
vT
|vT |

(17)

where µ denotes the friction coefficient. We can now combine the normal contact force and

the friction force to one contact force fi:

fi = fNi + fRi

= fini − µfi
vi
|vi|

= fi

(
ni − µ

vi
|vi|

)

This allows us to replace the contact normal ni of the frictionless case in eqs. (6, 7) by the

term ni − µ vi
|vi| for the case of sliding friction. The relative contact velocity vi has to be

determined at the beginning of each simulation interval [t, t + ∆t] according to

vti = vt1 + ωt1 × rti1 − vt2 − ωt2 × rti2.

This formulation corresponds to the forward differentiation we already used in eqs. (6, 7).

6 Applications and experimental results

The methods described in the previous sections have been tested in different interactive

applications. To enable the interactive control of one of the virtual objects, we translated

input data from a spaceball or a data glove into a virtual force and torque. These external

forces and torques have been applied to the selected object by simply adding these values

to the motion equations (4, 5). A gravitational effect is easily included by just adding a

negative vertical acceleration to equation (4).

The first example we want to present consists of a runway and an aircraft model, which

can be manipulated interactively in all 6 degrees of freedom with a spaceball (see fig.2). The

aircraft model can be placed onto the runway without intersection, and can be slid along

its surface. This example illustrates clearly the presented contact simulation mechanisms.

To visualize the contact forces at each contact point, force arrows are shown which indicate

the size and the orientation of the respective contact forces.

This example has been tested by many unexperienced users successfully. It showed, that

the interactive manipulation of simulated objects with obstacle contacts can be performed

with the presented methods without difficulties. The task was perceived by the test persons

as easy and intuitive.

The second example, illustrated in fig.3, is an assembly simulation, where the user has

to insert a virtual car radio into the console of the car, using a data glove. In this example,

the simulation of sliding contacts is essential in order to perform the task in a realistic and

intuitive manner.

Average computing times on an SGI O2TM (R10000, 150MHz) for the iterative solution

of the equation system for different numbers of contacts are given in the following table:

Figure 2: Interactive manipulationof an aircraft. The arrows illustrate
the contact forces.

contacts 1 2 3 5 10
time (ms) 0.3 0.4 0.6 2.1 11.5

For a visualisation frame rate of 30 Hz, 33 ms are available for the motion simulation.

In this application, we are far below that limit. So the computing times for the motion

simulation with up to 10 point contacts are clearly adequate for real-time solutions.

7 Summary and further research

In this paper, we presented a real-time framework which enables the simulation of inter-

actively controlled solid objects with contact constraints. Due to the chosen physically

oriented simulation model with contact forces, the resulting object motion in case of me-

chanical contacts is realistic and intuitively correct. This is an important prerequisite

for practical applications like assembly simulations or virtual training. The simulation of

physical effects like gravity or friction fits neatly into the presented framework. The com-

puting times for the motion simulation with up to 10 point contacts are clearly adequate

for real-time solutions. The framework scales with any number of involved objects, how-

Figure 3: Ergonomy study and assembly simulation in a virtual car
interior. The user has to install the car radio.

ever for large contact clusters with many mutual contacts the simulation times will go up

significantly.

If the complementarity condition eq. (3) for unilateral motion constraints is replaced

by the contact condition w(f)t+∆t = 0, bilateral constraints (like joints or hinges) can be

included as well.

Another potential field of improvements concerns the mechanical user interface. For a

perfectly realistic user interaction with virtual environments, force feedback mechanisms

would be necessary. Otherwise, even though the motion behaviour within the simulated

environment is correct, the user does not feel the reaction forces, and mainly depends on

the visual feedback, which is a significant limitation. Nevertheless, as long as practical force

feedback devices are not available, the described techniques allow a satisfactory solution

for interactive manipulation tasks in virtual environments.

8 Appendix A: Description of rotations as quater-

nions

A quaternion = (q0,q) ∈ IR4 is composed of a vector component and a scalar, which

together describe the orientation or rotation of an object by the rotation axis r ∈ IR3,

|r| = 1, and the rotation angle ϕ as follows:

r,ϕ =
(

cos
ϕ

2
, sin

ϕ

2
r
)

The rotation matrix which corresponds to the quaternion = (q0,q) is given by

R() =
(q2

0 − q2)E + 2qqT + 2q0q
×

q2
0 + q2

(18)

The concatenation of rotations is determined by the multiplication of the corresponding

quaternions R() · R() = R(·), where the quaternion product · is defined as

(a0, a) · (b0,b) =
(
a0b0 − aTb, a0b + b0a + a× b

)
For further details on quaternion derivation and arithmetics, refer to [11].

References

[1] D. Baraff: Dynamic simulation of non-penetrating rigid bodies, Ph.D. Thesis 92-1275,

Cornell University, March 1992

[2] D. Baraff: Fast contact force computation for nonpenetrating rigid bodies, SIG-

GRAPH 94, Orlando, July 1994

[3] D. Baraff: Linear-time dynamics using Lagrange multipliers, Technical Report CMU-

RI-TR-95-44, Carnegie Mellon University, January 1996

[4] W. Bouma, G. Vaněček: Contact Analysis in a Physically Based Simulation, ACM

Symposium on solid Modeling and Applications, Montreal, Canada, May 1993

[5] C. Cai, B. Roth: On the spatial motion of a rigid body with point contact, IEEE

International Conference of Robotics and Automation, pp.686-695, 1987

[6] K. Carr, R. England (edts): Simulated and Virtual Realities - Elements of Perception,

Taylor & Francis, 1995

[7] R.W. Cottle, G.B. Danzig: Complementarity pivot theory of mathematical program-

ming, Linear Algebra and its Applications, 1:103-125, 1968

[8] R.W. Cottle, J.S. Pang, and R.E. Stone: The Linear Complementarity Problem,

Academic Press, 1992

[9] J.F. Cremer, A.J. Stewart: The Architecture of Newton, a general-purpose dynamic

simulator, IEEE International Conference of Robotics and Automation, pp.1806-

1811, 1989

[10] A. Fischer: A special Newton-type optimization method, Optimization 24, pp. 269-

284, 1992

[11] P.-G. Maillot: Using quaternions for coding 3d transformations, Graphic Gems (A.S.

Glassner, edt.) pp. 498-515, Academic Press, Boston, 1990

[12] S. Gottschalk, M.C. Lin, D. Manocha: OBBTree: A Hierarchical Structure for Rapid

Interference Detection, SIGGRAPH 96, Computer Graphics Proceedings, pp. 171-

179, August 1996

[13] J.K. Hahn: Realistic animation of rigid bodies, Computer Graphics 22(4):299-308,

August 1988

[14] C. Kanzow: Global Convergence Properties of some Iterative Methods for Linear

Complementarity Problems, SIAM Journal of Optimization, Vol.6, No.2, pp.326-341,

May 1996

[15] C. Kanzow, H. Kleinmichel: A New Class of Semismooth Newton-Type Methods for

Nonlinear Complementarity Problems, Manuskript, Institut für angewandte Mathe-

matik, Universität Hamburg, Januar 1997

[16] C.E. Lemke: Bimatrix equilibrium points and mathematical programming, Manage-

ment Science 11:681-689, 1965

[17] P. Lötstedt: Mechanical systems of rigid bodies subject to unilateral constraints,

SIAM Journal of Applied Mathematics, 42(2):281-296, 1982

[18] D.J. Montana: The kinematics of contact and grasp, The International Journal of

Robotics Research, Vol.7, No.3, June 1988

[19] B. Mirtich, J. Canny: Impulse-based dynamic simulation, in K. Goldberg, D.

Halperin, J.C. Latombe, and R. Wilson (edts.) The algorithmic foundations of

robotics. A.K. Peters, Boston, MA, 1995

[20] Y. Shan, Y. Koren: Obstacle accomodation motion planning, IEEE Transactions on

Robotics and Automation, Vol.11, No.1, Febr. 1995

[21] G. Vanecek, Jr., J.F. Cremer, Project Isaac: Building Simulations for virtual envi-

ronments, Technical Report, Purdue University, June 1994

