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Accurate registration of random radiographic projections based on three spherical
references for the purpose of few-view 3D reconstruction.
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Precise registration of radiographic projection images acquired in almost arbitrary geometries
for the purpose of 3D reconstruction is beset with difficulties. We modify and enhance a regis-
tration method presented in[20] based on coupling a minimum amount of three reference spheres
in arbitrary positions to a rigid object under study for precise a posteriori pose estimation. Two
consecutive optimization procedures (a, initial guess; b, iterative coordinate refinement) are applied
to completely exploit the reference’s shadow information for precise registration of the projections.
The modification has been extensive, i.e. only the idea of using the sphere shadows to locate each
sphere in three dimensions from each projection was retained whereas the approach to extract the
shadow information has been changed completely and extended. The registration information is
used for subsequent algebraic reconstruction of the 3D information inherent in the projections.
We present a detailed mathematical theory of the registration process as well as simulated data
investigating its performance in the presence of error. Simulation of the initial guess revealed a
mean relative error in the critical depth coordinate ranging between 2.1% and 4.4%, and an evident
error reduction by the subsequent iterative coordinate refinement. To prove the applicability of the
method for real-world data, algebraic 3D reconstructions from few (≤ 9) projection radiographs
of a human skull, a human mandible and a teeth-containing mandible segment are presented. The
method facilitates extraction of 3D information from only few projections obtained from off-the-shelf
radiographic projection units without the need for costly hardware. Technical requirements as well
as radiation dose are low.

I. INTRODUCTION

Established techniques for radiographic three-
dimensional (3D) reconstruction such as computed
tomography (CT) are based on an extensive set of
projections from all around the object. Since the
imaging geometry of each and every projection has
to be precisely known a priori, large-scale scanners
operating with sophisticated hardware technology are
required. Nowadays the quality of CT images is ex-
cellent but the radiation dose is still very high since
it is directly related to the number of projections and
total exposure time. Furthermore CT scanners are
expensive high-tech machines, which are not readily
available everywhere. Recently, increasing interest
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has been directed towards three-dimensional recon-
structions from few two-dimensional (2D) radiographic
projections,[1–7] frequently also suffering from limited
angular range exposure.[3–6] Although in theory some of
the techniques may be extended to random geometries,
however, the latter mostly had been constrained to a
circular orbit and equidistant projection.[2, 4, 5, 8] We
propose a technique opposing the CT-philosophy by
using only very few 2D radiographic projections, which,
in addition, may be freely positioned around the object
in random geometries. This approach however, poses
two major challenges. First, 3D reconstruction from
projections requires the precise knowledge of the imaging
geometry the projections have been acquired in.[5, 9]
Second, 3D reconstruction from few views distributed
over a limited angular range is an inherently ill-posed
problem.[10] Recent results from implementation of
knowledge about the objects under investigation seem
promising with respect to suppression of few-view and
limited-angle artifacts.[3–5] This issue, however does
not fall within the scope of this work. We concen-
trate on registration of the projections, which remains
problematic if the latter have been acquired in almost
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arbitrary geometries. Although extensive work has been
published on image registration in general (for detailed
review see [11, 12]), the precise radiographic projection
registration for the purpose of extracting 3D information
has rarely been focused on lately. The registration of 2D
radiographic projections is substantially more complex
than registering 2D photographs. The main problem is
the loss of information resulting from the many-to-one
mapping in summation images. It is important to realize
here, that the prerequisite to extract 3D information
from few projections is their formation from different
imaging geometries. This, vice versa necessarily yields
very different images, particularly if the degrees of
freedom in the imaging geometry are high. Together
with the lack of point-like features in radiographs this
fact makes accurate registrations of such projections a
challenging task. Registration basing on the well-known
general eight-point algorithm [13] to reconstruct a
scene from planar projections had been adopted to
radiographic situations.[14–16] Yet the technique is
rather inaccurate due to its strong dependence on
accurate input coordinates.[17] 3D reconstructions from
real world radiographic projections have been presented
for coronary vessels using internal landmarks in biplane
images.[18] Here, however gantry information was used
to supplement the geometric informations acquired
from the projections. In nondestructive material test-
ing a rather large reference object providing massive
redundant information was used for the reconstruction
of industrial objects from unconstrained radiographic
views.[19] An interesting and novel approach estimating
the geometry together with the 3D object by means
of sophisticated application of Bayesian theory has
been published recently.[8] Albeit being revolutionary
in nature, however, it is computationally extremely
demanding and, at this stage, still requires assumptions
on the imaging geometry as well as a meaningful initial
guess on the 3D object being reconstructed.
Except of the recent paper just introduced, we are
not aware of other published solutions using intrinsic
references capable to register radiographic projections
precisely enough to allow for 3D reconstruction when no
additional geometric information is available. Extrinsic
reference bodies, however are inconvenient in applica-
tion, may occlude image information or induce artifacts
in the reconstruction. Hence, if necessary, their number
should be limited to an absolute minimum and they
should be rather small in size. An arbitrary radiographic
projection system contains nine image-relevant degrees
of freedom: six degrees of the rigid object (translations
+ rotations) plus three degrees of the source relative to
the (flat) image-receptor. At least in theory, up to eight
degrees of freedom may be registered by means of three
reference spheres attached to an object under study in
such, that their center-of-gravity points (COP) form an
arbitrary triangle.[20] Using the elliptically distorted
sphere shadow as input information, one obtains three
points in space per projection, i.e. the three COPs.

This is enough information for rigid pose estimation.[21]
Since one obtains 3 · 3 instead of 3 · 2 coordinates
from each projection for registration, this approach
differs fundamentally from the common use[7, 9] of
(spherical) fiducials, where only their 2D image-centroid
is considered. We base our registration-technique on
this principal idea, however, the mathematics to extract
the information within the shadow(s) is completely
different. Contrary to[20] we do not only consider the
major elliptical axis of each sphere shadow but exploit
the shadow information by means of optimization
methods. To extract additional information, we do
not only consider each shadow separately, but also the
combination of i) the three shadows in one projection
and ii) the shadows in all k projections simultaneously.
This enhances the method in[20] to a stage where
completely arbitrary object pose may be registered
with sufficient accuracy for real world radiographic
3D reconstruction. The complete theory of our ap-
proach is introduced, which consists of two consecutive
optimization procedures. The first makes use of the
entire reference information within each projection,
whereas the second processes the information from all
projections available simultaneously. The robustness
of the registration process is tested using simulated
data. To demonstrate the usefulness of the method,
in the sequel referred to as Reference-Sphere-Method
(RSM), algebraic 3D reconstructions from few real world
radiographic projections registered with the proposed
algorithms are presented. Experimental radiographs of
a human mandible segment, a human dry skull and a
dry mandible exposed with varying degrees of freedom
are used for the reconstructions. Although we include
a section explaining the 3D reconstruction algorithms
applied here, the general few-view and limited angle
problem, however, fall not within the scope of this paper.

II. METHODS

A. Image segmentation and quantitative ellipse
evaluation

The areas GA,GB and GC covered by the shadows
of the three reference spheres A,B, C are segmented by
a circular Hough-Transform using a sobel operator fol-
lowed by the computation of the barycenter c within each
shadow. We search for the best fitting ellipse represented
by the points belonging to each sphere shadow. The
quantitative evaluation of the shadow’s point-cloud has
to be very precise to ensure accurate registration. Conse-
quently, finding the best possible estimate for each ellipse
is of crucial importance. Using c as starting point, n ra-
dial scan lines extending beyond the segmented shadow
area are constructed and their individual intensity pro-
file is evaluated to determine n boundary points of the
ellipse with subpixel accuracy (see. Fig. 1). We obtained
good results for n = 256.
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FIG. 1: Extract of a radiograph displaying one scanline, the
intensity-profile of which is plotted underneath. Due to the scaling
of the x-axis and the radiodensity of the steel sphere, the pro-
file of the sphere shadow appears rather flat. The exact ellipse
boundary point pi is located somewhere between the gray value
gc at the barycenter c and the point with local minimum gray gl.
An estimate gpi is obtained from eq. (1). For details see text.

X-ray absorption decreases non-linearly towards the
sphere’s boundary due to its spherical geometry. Conse-
quently the true sphere-image boundary is disguised by
background noise and located further peripherally than
the intensity profile would indicate at first sight. Tak-
ing this into account, we prepared one calibration series
of nine images with known sphere positions altered in
a step-wise fashion. It should be noted, that this cal-
ibration was carried out only once, i.e. for the dental
ccd-sensor (see below). Using this series, a simple em-
pirical approach was designed, modeling intrinsic system
parameters. Assuming that the most accurate shadow
definition is provided when it is surrounded by air only,
we defined a global minimum gray value (air) gg > 0 for
each projection, whereas local minima on the scan lines
are denoted by gl where gl ≥ gg. In the subpixel do-
main, the signal convolved with the point spread function
may be approximated by a continuous signal composed of
2D-Gaussians. Consider a gray profile plotted along one
scanline as in Fig. 1. Obviously, the true ellipse bound-
ary point pi (with gray gpi) must be located somewhere
between c (with gray-value gc) and the point, where a
local minimum gray gl is found. An estimate of gpi can
be obtained from:

gpi
= gl + y (gc − gl) . (1)

where, by modification of the well known ”full width at
half maximum” technique, we establish a ”full width at
y% of the maximum” criterion:

y = max
(

ωmin, ωmax − ρ

(
gl

gg
− 1

))
. (2)

Here, ωmin, ωmax and ρ are normalized scaling factors
defining the interval, wherein the actual border pi

(indicated by a gray value gpi) of the ellipse is to be
found. Although they were determined empirically from
only one calibration series using the dental ccd-receptor
specified below, we obtained good results for ωmin = 0.1,
ωmax = 0.4 and ρ = 0.03 for all series shown in this work.
It should be noted, however, that specific calibration to
a certain radiographic system essentially means adapting
these factors in a calibration process.

By piecewise linear interpolation between neighboring
pixels along the scanline the individual boundary point
pi can be estimated with subpixel accuracy. In rare
cases, where due to superimposition of highly dense ob-
jects pi cannot be determined, that particular scanline is
neglected. We now have defined a set of boundary points
pi with i ∈ {1, ..., n} for each elliptical sphere shadow.

B. Computing the initial guess

The boundary points pi represent the input for the
following procedure designed to compute an initial guess
on the 3D coordinates of each COP. This stage of the
registration procedure utilizes the image information of
each projection separately. The general radiographic sys-
tem we consider here consists of a point-like x-ray source
e located at a known distance d from the flat image-
plane. As shown in,[20] a sphere of known radius R may
be located in 3D by carefully evaluating its 2D ellipti-
cally distorted radiographic shadow. It is important to
realize, that by locating three non-collinear spheres in
3D from each projection, the absolute minimum infor-
mation for pose registration is provided: three points
in space forming a non-degenerated triangle.[21] While
the authors in[20] only considered the major ellipse axis,
we select a more complete approach implementing conic
sections theory. The x-rays tangential to the reference
sphere’s surface form a cone with symmetry axis r, apex
e and half-opening angle ϕ (see Fig. 2a) given by the
standard cone equation

rT (x− e) = cos ϕ |x− e| (3)

with side condition |r| = 1. If we intersect the cone
with the image-plane, we obtain an ellipse with diame-
ters λ1, λ2. Assuming a known position e of the focal
point, which is a reasonable assumption for the major-
ity of medical radiographic devices, we search for a cone
with known apex e optimally fitting into the set of el-
lipse boundary points pi within the image-plane. The
unknown symmetry axis r and half-opening angle ϕ of
the cone can be determined by solving the equation

n∑
i=1

(
rTqi − cos ϕ

)2 −→ min (4)

where qi = pi−e
|pi−e| represent the x-ray directions.
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FIG. 2: a) Sketch of the exposure geometry in a Cartesian coordinate system. A sphere (COP: m) exposed from a focal point lo-
cated at a known position e fits into the cone of x-rays tangential to its surface, with half-opening angle ϕ and symmetry axis r. It
casts an elliptical shadow (barycenter: c, axis lengths: λ1, λ2) defined by the intersection of the cone with the image-plane. b) The
triangle spanned by the three reference sphere COPs m(α),m(β),m(γ) at two arbitrary positions (indices: 1, 2) yields different ellip-
tical shadows (area: G). Note, that only for illustration purposes two possible triangle-positions are shown. The difference between
measured (GA,GB ,GC) and computed (Gα,Gβ ,Gγ) areas covered by the sphere’s shadow is minimized to obtain a best fit position.

Due to the normalization of r only the three parame-
ters ϕ and two of the components of r have to be found.
To account for the side condition |r| = 1, the Lagrange-
function L with factor µ is used:

L (r, cos ϕ) =
n∑

i=1

(
rTqi − cos ϕ

)2 − µ
(
r2 − 1

)
. (5)

The essential constraints for minimizing eq. (5) are:
∂L

∂ cos ϕ = 0 and ∂L
∂r = 0. Thus, we receive:

cos ϕ = rTs with s =
1
n

n∑
i=1

qi (6)

and

Q · r = µr with Q =
n∑

i=1

qi (qi − s)T ∈ R3×3. (7)

The matrix Q represents the sum of
the dyadic products of the vectors qi and
qi − s. From eq. (7) follows

Q =
n∑

i=1

qiqT
i −nssT =

n∑
i=1

(qi−s)(qi−s)T = QT . (8)

Equations (6) and (8) indicate that s is the expected
value of the x-ray directions qi whereas Q represents
their covariance matrix. Referring to the cone deter-
mination, we have reduced our problem to finding the

eigenvectors of the covariance matrix Q. The eigenvec-
tor with the smallest eigenvalue represents the symmetry
axis r of our target cone (see Fig. 2a). Finally, the 3D
position of the reference sphere’s COP is given by ηr
with η = R/ sinϕ, where ϕ is computed from equation
(6). Again, it is important to realize, that from the initial
guess we obtain independent coordinates of three points
in space of which we know, that they de facto form a
rigid triangle fixed somewhere to a (rigid) object.

C. Focal point determination

At least in theory, the position of the focal point may
also be determined from analysis of the elliptical dis-
torted shadows. It has been found, that the major el-
lipse axes necessarily intersect in the projection of the
optical center on the image plane.[20, 22] This knowledge
may be used to extend the algorithm to situations, where
only the distance between focal spot and imaging plane
is known, i.e. two more degrees of freedom are in-
volved. Under this prerequisite, the search space for
e is a two-dimensional plane parallel to the receptor-
plane. We introduce a function Z measuring the con-
sistency between calulated cones (eqs. (3) to (8)) and
the observed boundary points pi for a given focal point
e. Hence, by searching over the appropriately bounded
two-dimensional search we solve

Z(e) =
n∑

i=1

3∑
v=1

(
r(v)Tq(v)

i − cos ϕ(v)
)2

−→ min , (9)
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where q(v)
i define the x-ray directions on the vth ellipse.

The solution of eq. (9) indicates a best fit location of e.
Preliminary results on real data seem promising, if ellip-
tical distortion is large (λ1 � λ2). If λ1 ≈ λ2, however,
at this stage numerical instability renders determination
of e impractical. Future work will focus on further inves-
tigation of this issue.

D. Coordinate-Refinement

From the initial guess we obtained estimated coordi-
nates of three points in space (i.e. the COPs) for every
single projection. These three points are the fundament
on which we aim to compute the rigid transformation
between the views. Due to error in the initial estimates,
however, the triangle spanned between the points may
vary considerable between the projections. On the other
hand we securely know that in reality the triangle must
be rigid (under the assumption of a rigid object). In
other words, the knowledge that the triangle is indeed
rigid may be used to generate a best fit rigid transforma-
tion from an erroneous, non-rigid one. In the following
we formulate a fitting algorithm making use of exactly
this a priori information.

1. Triangle Fit – Theory

Let lαβ , lβγ and lαγ be the side lengths of a given trian-
gle. Note, that at this stage we assume the side lengths
of the triangle are known and constant. We define unit
direction vectors ra, rb, rc pointing along the projection
lines, i.e. the symmetry axes r of the cones (Fig. 2).
The location of the triangle vertices are parameterized
by m(α) = αra, m(β) = βrb and m(γ) = γrc. From
the incidence constraints for the triangle vertices and the
line equations we obtain three second order equations in
the parameters α, β, γ:

(αra − βrb)2 − l2αβ = 0 ,

(βrb − γrc)
2 − l2βγ = 0 ,

(γrc − αra)
2 − l2αγ = 0 .

(10)

Eq. (10) is well-established for pose estimation in
photogrammetry and computer vision.[23] The Bézout
bound of this polynomial system is 2 · 2 · 2 = 8 solutions.
Through resultant elimination of β and γ, we receive an
univariate polynomial in α of degree 8. As all impair coef-
ficients of the polynomial disappear, the solutions for α2

correspond to a polynomial of degree 4. Thus, at maxi-
mum 8 solution triples (α, β, γ) are feasible. Observe that
we only have to consider positive triples solving (10). The
solution set for image i with i ∈ {1, . . . , k} is given by

Si := {(α, β, γ)|α, β, γ > 0 solutions of (10) for image i} .

By fitting the triangle into the three projection lines we
obtain all possible sphere locations. Fig. 2b exemplar-
ily shows two possible solution sets. By comparing the
fitted shadow areas Gαβγ := (Gα, Gβ , Gγ) and the mea-
sured areas GABC := (GA, GB , GC), we obtain the opti-
mal (αo, βo, γo) among the eight possible solutions of eq.
(10) for image i from

(αo, βo, γo) = arg min
(α,β,γ)∈Si

∥∥Gαβγ −GABC
∥∥2

. (11)

2. Triangle fit – Coordinate refinement

We now extend the TF to the real situation, where due
to errors in the initial guess (section II B) registration, the
triangles differ between the projections. For this purpose,
we introduce an optimization function F , which measures
the squared differences between measured GA,GB ,GC

and computed Gα,Gβ ,Gγ elliptical shadow areas for the
given triangle side lengths lαβ , lβγ , lαγ :

F (lαβ , lβγ , lαγ) =
k∑

i=1

min
(α,β,γ)∈Si

||Gαβγ −GABC ||2 . (12)

From the different triangles obtained from the initial
guess, we compute a mean triangle by calculating the
center of mass points between the sphere positions for
each vertex. Around this starting triangle, the search
space is limited to an appropriate interval, e. g. the
mean ± standard deviation. For each given triangle,
the squared area difference between measured values
GA,GB ,GC and computed values Gα,Gβ ,Gγ is recorded.
Due to the limited search space brute force methods
perform quite well and protect against erroneous local
minima, if the variation in the triangle lengths is high.
In other words, starting from a mean triangle its side
lengths are varied in such, that the area-error between
measured and computed sphere shadows is minimized
over k projections. The minimum indicates an optimal
position of the projections relative to one another, i.e. a
best fit geometric transformation between the views.
Hence, TF does not necessarily produce accurate 3D
coordinates of the sphere’s COP in a world coordinate
system, rather it enhances accuracy of relative positions.

E. 3D Reconstruction

Algebraic reconstructions (ART, for examples refer
to[24]) were obtained by iteratively solving the sparse
linear system Ax = b. Here A represents the matrix
modeling the projection parameters, b the vector con-
taining the projection data and x defines the volume to
be reconstructed. It should be noted, that we refer to
ART as a generic term for algebraic methods iteratively
solving the sparse matrix system. We used a single-step
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TABLE I: Parameters of the two scenarios selected to
reflect a typical dental or medical radiographic situa-
tion. R: sphere radius; d: source-to-receptor distance

scenario d (mm) R (mm) pixel size (mm)

dental 250 1.5 or 2.5 0.039
medical 1000 3.0 or 5.0 0.143

iterative solver based on an adapted conjugate gradi-
ents algorithm (CG),[25] using the zero-vector as start-
ing point. To avoid high frequency artifacts, distance-
driven backprojection[26] was used. 3D reconstructions
were carried out on the graphics processing unit (GPU;
GeForce 7900 GT, NVIDIA Corp., USA) interfaced with
a standard desktop PC (Intel Dual Core 2.4GHz). All
real world data presented here display the raw recon-
struction data. We only use manually determined opacity
transfer functions to control which parts of the data are
visible. These functions map the reconstructed densities
to suitable gray values as well as real numbers between 0
and 1. The latter represent the opacity associated with
the data, with 0 being transparent and 1 being opaque.

F. Simulated data

1. Initial Guess

Simulations were performed with a tool allowing for
projection of a sphere, the absorption of the which was
defined by the Lambert-Beer law. Two typical projection
scenarios specified in Tab. I were evaluated.

We investigated the accuracy of increasing depth
coordinates (0.04 d to 0.20 d) with respect to different
levels of Gaussian noise (standard deviations rang-
ing between 0% to 20%). Absolute errors ea (true
(zt) minus computed (zc) coordinates) and relative
errors ( ea

zt
) were defined. Depth accuracy was also

evaluated for partly superimposed sphere shadows.
Partly ( 1

2 to 2
3 ) covering the sphere shadow, increasing

intensities were superimposed in a stepwise fashion
consisting of 11 steps each of which increasing the
superimposed gray by 10%. The mean gray value within
the uncovered sphere shadow was taken as starting point.

2. Triangle Fit

For illustration purposes, we selected a simplified den-
tal scenario of two synthetically created radiographs of
three spheres providing a rigid triangle. They were re-
lated geometrically by a known rigid rotation (Rt) only,
with no additional translation. Error was established by
shifting one sphere’s COP by ≤40 mm along its projec-
tion line in only one radiograph. This resembles a real-
world situation, where e.g. due to local superimposition

of a highly dense object, the initial guess returnes a large
error for one sphere. After calculation of the rotation ma-
trices with (RTF ) and without (Ro) TF, we computed
the overall angular error by R−1

t RTF or R−1
t Ro, respec-

tively. Ideally, the products would yield the identity ma-
trix I, thus deviations from I define the actual error.

G. Experimental data based on real-world
radiographs

All experimental data were acquired in radiographic
systems with a fixed transversal relation between fo-
cal point and image receptor. The distance d between
these components was variable but known. A dry human
mandible segment containing three teeth was exposed us-
ing an optical bench and a commercial dental ccd-sensor
(Full Size, Sirona Dental Systems GmbH, Bensheim, Ger-
many; pixel size: 0.039 mm). Three steel spheres (R:
2.5mm) were glued to the specimen in a random trian-
gular geometry. By freely positioning the specimen in the
system roughly rotating it at 2π, tilting it between rota-
tions (± 20◦) plus varying d (± 20%), eight projections
of the specimen were acquired. In addition, a human dry
skull was exposed in nine freely selected positions on a
medical amorphous selenium detector (R: 5.0 mm; pixel
size: 0.143 mm). No extra calibration to the particular
radiographic system was performed for this series. To
investigate the versatility of the method, we decided to
expose a third series (entire human mandible, nine pro-
jections, R: 5.0mm; pixel size: 0.075 mm) with an indi-
rect digital system (storage phosphor plate; Duerr Dental
GmbH & Co. KG, Bietigheim-Bissingen, Germany). The
image information captured on storage phosphors has to
be read out by a laser-scanning system (here VistaScan,
Duerr Dental GmbH & Co. KG, Bietigheim-Bissingen,
Germany) posing an additional (unknown) spatial trans-
fer function on the data. However, so far we used the
image data after read-out as is, i.e. without any further
geometrical correction. For processing the image data of
all series were encoded into DICOM-format.

III. RESULTS

A. Simulated Data

1. Initial Guess

Mean relative depth error (± standard deviation) in
the medical scenario was 2.1 % (± 5.2%), versus 4.4 %
(± 8.2%) in the dental simulation. Depth errors were
positively correlated with increasing depth (Fig. 3).
Since absolute depth errors are more instructive with re-
spect to registration accuracy, they are displayed in Fig.
3.

As expected, a significant (p ≤ 0.05) positive correla-
tion (dental: r = 0.904, medical r = 0.613) of Gaussian
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FIG. 3: Initial Guess: absolute depth error (mm) for in-
creasing depth of the sphere’s COP for a typical noise
free a) medical and b) dental radiographic situation.

FIG. 4: Initial Guess: relative error (%) over all
depths with respect to varying Gaussian noise for a typ-
ical a) medical and b) dental radiographic situation.

noise and depth accuracy was found (Fig. 4). Not sur-
prisingly, the simulated data revealed increasing depth
errors with increasing intensities superimposed over the
shadow (Fig. 5). It should be noted here, that 100%
means an intensity twice as high as within the uncovered
shadow.

2. Triangle Fit

In the simplified simulation scenario displayed in Fig.
6, error reduction by the TF-algorithm is evident. While
the rotational error without TF rapidly increases, it re-
mains stable and close to zero for up to ≤15 mm after
TF correction. Note, that the peak following by roughly
23 mm simulated depth error is due to a sudden switch to
another possible triangle position (see also Fig. 2b). The
exact location of such peaks depends on the geometrical
situation of the projection scenario and on the triangle
itself.

FIG. 5: Initial Guess: absolute error (mm) with respect to
superimposed shadows of increasing intensity, starting from the
mean within the uncovered sphere shadow (0%). The boxes
contain 50 % of the data lying within the interquartile range
(IQR) between the 75th and 25th percentiles, with the median
indicated as bold line. Outliers and extreme values lying more
than 1.5 IQR from the end of the box are displayed as asterisk.

FIG. 6: For a given depth-error ≤40 mm simulated for one
sphere in one out of two projections, the resulting rota-
tional error (≤ π) with (dashed line) and without TF (solid
line) is plotted. The rotational error after TF-correction re-
mains underneath 5◦ (= 0.087 rad, gray horizontal line) for
depth errors up to ≤15 mm. The peak in the TF graph
at roughly 23 mm depth error is due to a switch to another
possible triangle position at that point (see also Fig. 2b).

B. Experimental Results

1. Performance

Registration time on the CPU ranged between 132 s
and 343 s. Roughly over 90 % of that time is consumed
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by the automated shadow detection (Tab. II). Due to
restrictions in the current GPU-implementation of our
reconstruction algorithm, large-scale images were down-
sampled for reconstruction (Tab. II). Reconstruction
time for a 3003 voxel volume ranged between 64 s and
104 s (Tab. II). Without going into detail here, recon-
struction time mainly depends on image size, the num-
ber of projections as well as volume size and number of
iterations.

2. Real world reconstructions

Slices through a teeth-containing human mandible seg-
ment (3003 voxels, three iterations) obtained from eight
projections are presented in Fig. 7. The projections were
obtained in an approximately circular orbit with addi-
tional angulations of the specimen of appr. ± 20◦ and
varying d (± 20%). Fig. 8 displays the human mandible
(3003 voxels, three iterations) reconstructed from nine
projections distributed around the object approximat-
ing a random spherical orbit. This was carried out by
placing the mandible in nine positions on a aluminum-
cassette containing the storage phosphor plate (18 cm
× 24 cm). Without calibration to that indirect digital
system, RSM-registration yielded sufficient precision for
3D reconstruction. Internal structures of the mandible
such as an impacted retained root with circular translu-
cency or extrinsically added steel wires are clearly recon-
structed (Fig. 8). The human skull (Fig. 9) was radio-
graphed on an amorphous selenium detector in nine vary-
ing positions. Again, no specific calibration for the ra-
diographic system was carried out for RSM registration.
By application of an opacity transfer function, a volume
rendered display of the surface was obtained (Fig. 9 d to
f).

IV. DISCUSSION

Despite a huge body of literature dealing with image
registration (for extensive review, see[11, 12]), only a lim-
ited number of papers concentrate on registration for 3D
reconstruction from few radiographic projections.[14–
17, 27] Intrinsic point-based registration methods,
where corresponding point pairs have to be identified,
have limited accuracy simply because the underlying
anatomic landmarks produce very different images
when exposed under significantly varying geometries.
The latter, however is the fundamental prerequisite
for acquisition of 3D information. Other registration
methods based on voxel properties, to date, are still
relatively inaccurate.[12] Except of a technical paper[19]
dealing with radiographic nondestructive testing and the
very recent work in,[8] we are not aware of published
solutions for 3D reconstructions from few projections
acquired in arbitrary geometries. In the latter work a
new solution to the problem has been introduced.[8]

The authors propose to solve the registration together
with the 3D reconstruction without any reference points
at all using non-linear algebraic solver in combination
with Bayes theory. Because of the high complexity,
at present computation time will be a limiting factor.
Also, the real world data presented in[8] were acquired
in a relatively constrained (affine) geometry from rather
many (23) equally spaced projections from around the
object. Furthermore, a good initial guess is necessary
to avoid local minima solutions and the output is a
stack of 2D slices. Contrary to[8] our approach enables
precise modeling of the realistic perspective radiographic
imaging geometry. Our reconstructions are completely
three-dimensional and, due to the nature of the regis-
tration process, inherently free of scaling ambiguities.
Since the overall amount of information inherent in the
projections limits the innovative approach in,[8] the
extension to 3D as proposed by the authors will be an
extremely challenging task.
The elementary idea to localize a spherical reference
body in 3D from a single projection originates from.[20]
Contrary to the original method, we did not only
consider the major axes of the sphere’s elliptical shadow,
rather we completely exploited the shadow information
using conic section theory. By supplementing the image
analysis with mathematical a priori knowledge we obtain
a more reliable initial guess on the sphere’s depth.
Nevertheless, we still observed that the latter is strongly
dependent on noise and other disturbances.
The definition of the shadow boundary is a crucial
first step, as our simulation experiments show. It is
well-known in point-based registration, that error in the
image input coordinates drastically affects the computed
depth-coordinate.[15, 17, 28] Hence, an additional mini-
mization function F (eq. (12)) was designed processing
shadow information from all projections simultaneously.
A minimum obtained from eq. (12) indicates the best
possible geometric correspondence of the projections to
one another, which is the essential information for the
backprojection process. Yet it should be realized that
the TF-corrected COP-coordinates are not necessarily
closer to truth in a world coordinate system. Rather
their relative position to one another is optimized.
This is clearly indicated by our simulation results and
the real-world reconstructions. Almost in all series,
3D reconstructions carried out without TF correction
were inferior in quality or, even worse, did not produce
meaningful reconstructions at all.
Although extrinsic reference bodies may seem somewhat
out-dated,[12] the method described here has some
distinct advantages listed below. Reference-based regis-
tration techniques have been successfully used in clinical
routine, e.g. for tomosynthetic reconstructions.[29]
These, however, were obtained from an imaging geom-
etry constrained in a way that the object was rigidly
coupled to the image receptor. We have demonstrated
experimentally, that the RSM-algorithm is capable to
register arbitrary radiographic projections accurately
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TABLE II: Registration (CPU) and reconstruction (GPU) time for the real world data displayed in Fig. 7, 8 and 9

specimen projections image size registration time downsampled size reconstruction time total time
mandible segment 8 664× 872 132 s 664× 872 104 s 236 s
entire mandible 9 2800× 2000 343 s 750× 500 94 s 437 s
skull 9 2200× 1600 223 s 550× 400 64 s 287 s

FIG. 7: Unprocessed reconstruction from eight projections of a dry human mandible segment containing three teeth.
Images display frontal (a to c) and transversal (d to f) slices. The shadows of the reference spheres are clearly
visible, however, no attempt to suppress them or other few-view and limited-angle artifacts has been carried out.

enough to obtain 3D reconstructions. One specific
advancement of our approach is, that due to the 3D
nature of the points used for registration, in the absence
of error, the registration is inherently free of distortion
and scaling ambiguities. The latter is clearly illustrated
by the series of the mandible segment, where d varied
significantly (± 20%). Also, in contrast to others[9, 19]
we register six degrees of freedom with a minimum
amount of rather small reference objects, the position
of which relative to the object may be freely chosen, as
long as their COPs are not collinear. No assumptions
on the geometry have to be made, except that at the
current stage, the spatial relation between source and
image-receptor has to be known a priori. In theory, the
x−, y− relation of the latter components may also be
computed from the elliptically distorted sphere shadows
by intersecting the major ellipse axes.[20, 22] Equation
(9) has been designed to provide exactly these coordi-
nates. From preliminary results we observed promising
stability for excentric ellipses (λ1 � λ2), as for instance
produced by oblique projections or a large angle of the
beam-cone. Yet in cases of low excentricity, results
returned from (9) are not numerically stable enough for

accurate registration. This problem is currently being
further investigated.

Compared to GPU reconstruction time, at present reg-
istration is relatively time consuming. It should be noted,
however that the current implementation of the sphere
shadow detection has not been optimized with respect
to speed. We are currently working on that issue and
preliminary results suggest that registration time can be
reduced drastically.
The reconstruction process itself was not the primary
scope of the paper, since the reconstructions were only
included to illustrate the practical applicability of the
registration procedure. For the same reason, we did not
discuss typical few-view and limited-angle reconstruction
problems also present in our data.[3, 4, 27] By implemen-
tation of a priori knowledge in the algebraic reconstruc-
tion process, however the quality of the reconstructed
volumes may be enhanced considerably.[4]
Advantages of RSM-registration in practical application
include low hardware cost and a very low radiation dose
for 3D reconstruction. If costly hardware is not available
or, due to technical reasons such as object size simply not
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FIG. 8: Unprocessed reconstruction of an entire human mandible placed in nine varying positions on a storage phos-
phor plate. Axial slices are presented in images a to c, whereas images d and e show sagittal slices. Image f repre-
sents a frontal slice through the region of a retained impacted root tip, which is obviously surrounded by a circular translu-
cency (white arrows, b, c and f). Another fine reconstruction detail is the thin copper wire (black arrows, d and e).
Volume rendered views computed by application of an appropriate opacity transfer function are shown in images g to i.

applicable, projection images of the objects from common
radiographic devices may be used as alternative to gener-
ate 3D information. Obviously, the overall radiation dose
of only a few digital radiographic projections is very low
as compared to conventional computed tomography. Few
skull radiographs registered with the RSM-procedure, for
instance, could be used to obtain a reliable 3D bone sur-
face, e.g. for preoperative planning procedures. Future

work in this ongoing research project will focus on further
enhancement of the registration as well as the 3D recon-
struction procedure. Integration of more mathematical
and physical knowledge in the sense of a more sophisti-
cated calibration procedure could help to further advance
RSM-registration. By inclusion of a priori information,
i.e. implementation of non-linear constraints,[3, 4] recon-
struction artifacts could be reduced.
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FIG. 9: Unprocessed axial a), frontal b) and sagittal c) slice through a human skull CG-reconstruction (3003 voxels) from
nine projections on a selenium detector. d) RSM-registered imaging geometry (arrows indicate two sphere positions); e)
and f) display a volume rendered reconstruction after suppression of gray values outside the reconstructed skull (see text).

V. CONCLUSION

The reference-based procedure describe here enables
accurate registration of radiographic projections acquired
in almost arbitrary geometries. Only a minimum number
of three rather small extrinsic references is required that
are fixed to an object in an arbitrary triangular geometry.
The registration process facilitates reconstruction of the
3D information inherent in the projections. Radiographic
3D reconstructions acquired with our approach may be
useful, where established 3D techniques are not available,
not applicable or imply an unacceptable high radiation
dose.
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