
Computing a 3-dimensional Cell in an Arrangement of
Quadrics: Exactly and Actually!

Nicola Geismann
Fachrichtung 6.2 Informatik
Universität des Saarlandes

66123 Saarbrücken, Germany

nicola@cs.uni-sb.de

Michael Hemmer Elmar Schömer
Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany

hemmer | schoemer@mpi-sb.mpg.de

ABSTRACT
We present two approaches to the problem of calculating a
cell in a 3-dimensional arrangement of quadrics. The first
approach solves the problem using rational arithmetic. It
works with reductions to planar arrangements of algebraic
curves. Degenerate situations such as tangential intersec-
tions and self-intersections of curves are intrinsic to the pla-
nar arrangements we obtain. The coordinates of the inter-
section points are given by the roots of univariate polynomi-
als. We succeed in locating all intersection points either by
extended local box hit counting arguments or by globally
characterizing them with simple square root expressions.
The latter is realized by a clever factorization of the univari-
ate polynomials. Only the combination of these two results
facilitates a practical and implementable algorithm.

The second approach operates directly in 3-space by ap-
plying classical solid modeling techniques. Whereas the first
approach guarantees a correct solution in every case the sec-
ond one may fail in some degenerate situations. But with
the help of verified floating point arithmetic it can detect
these critical cases and is faster if the quadrics are in gen-
eral position.

1. INTRODUCTION
We consider 3-dimensional arrangements of quadric sur-

faces, for example ellipsoids, paraboloids, and hyperboloids.
Our goal is to develop an exact, implementable, and fast al-
gorithm that computes the topological description of a cell.

Efficient methods for the calculation of arrangements of
algebraic surfaces are an important area of research in differ-
ent branches of computer science. For example, the problem
typically arises in solid modeling (see [11]) when perform-
ing boolean operations for quadric surfaces, which play an
important role in the design of mechanical parts. The al-
gorithms in CAD systems have the advantage that they are
quite fast. They profit from floating point arithmetic and
often use numerical procedures for tracing the intersection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’01, June 3-5, 2001, Medford, Massachusetts, USA.
Copyright 2001 ACM 1-58113-357-X/01/0006 ...$5.00.

curves and then approximate them as spline curves. But
just this makes them very sensitive to approximation and
rounding errors. Thus they achieve the good running time
at the expense of exactness in degenerate situations which
are nevertheless frequent in the design of geometric objects.

Also in computational geometry there is a great focus on
computing arrangements. For a good and brief overview see
[10]. The geometric methods have the drawback that nearly
all of them are based on an idealized real arithmetic. The
assumption is that all, even irrational, numbers are repre-
sentable and that one can deal with them in constant time
per operation. This postulate is not in accordance with
real computers. However, algorithms coping with arrange-
ments of hyperplanes can be implemented with exact ratio-
nal arithmetic and with a good performance, because they
only deal with linear algebraic primitives. The situation be-
comes more difficult if the hyperplanes are replaced by arbi-
trary algebraic surfaces. There are many theoretical results
about constructing arrangements of curved surfaces which
rely on idealized real arithmetic, see for example [5], and a
few which discuss the topological description of a single pla-
nar algebraic curve using rational arithmetic [19]. But it is
still a wide area of research how to implement the necessary
algebraic primitives in a robust way without accepting an
extremely high running time. Since the coordinates of the
intersection points of three surfaces will in general be irra-
tional numbers, one has to compute with algebraic numbers.
This often causes a dramatic loss of speed.

Thus the challenge lies in finding an implementable method
for calculating a cell in an arrangement of curved surfaces
that uses exact algebraic computation and also has an ac-
ceptable running time. We are the first who provide such an
algorithm for a set of quadrics. Of course we could exploit
the fact that a single cell of the arrangement has a smaller
complexity than that of the whole arrangement, but we want
to concentrate on the handling of the algebraic primitives,
because they have a very strong impact on the practicability
and robustness of the whole algorithm. There are a lot of
degenerate cases that can appear. Our method is of univer-
sal nature in the sense that it can deal with each kind of
degenerate input. Especially it can cope with all situations
described in [16] and [8].

There are some geometric and algebraic libraries that con-
centrate on similar implementation issues. For example LE-
DA [15], CGAL [3], APU [18], and MAPC [13]. LEDA pro-
vides basic data types and a lot of geometric algorithms,
CGAL does the same with more emphasis on the geomet-

ric aspect, APU is a tool for real algebraic numbers, and
MAPC is a library for exact computation and manipulation
of algebraic points and curves.

We have developed and implemented two different ap-
proaches. The first one (section 2) uses exact algebraic com-
putation and operates similar to the cylindrical algebraic
decomposition [5]. We reduce the problem to computing
planar arrangements of algebraic curves of degree up to 4
(see Figure 1). In these arrangements self-intersections and
tangential intersection points are very common. During the
calculation we use algebraic techniques like resultants and
root separation of univariate polynomials. Root separation
can be done for example with the help of a Sturm sequence
computation or the algorithm of Uspensky [6]. We further
apply a method called box hit counting, which was also used
in [13]. With its help we can detect a lot of event points
of the planar arrangement, namely transversal intersection
points of two curves (Figure 1, point c) and points of a curve
that have a vertical tangent (Figure 1, point a). But it fails
for tangential intersection points of two curves (Figure 1,
point d) and for self-intersections (Figure 1, point b). Our
contribution, and what is new, is that we succeed in fixing
all event points including tangential intersection points and
self-intersections while keeping the running time low. This
works for two reasons: First we succeed in factorizing all
univariate polynomials describing the x- and y-coordinates
of the event points into polynomials of small degree. Second
for tangential intersection points of two curves we locally
introduce a new curve of small degree to the arrangement.
The auxiliary curve enables us to determine nearly all event
points of the arrangement by an extended box hit counting
argument. Only a small fraction cannot be handled in this
way. In these cases the factorization enables us to switch to
a global argument. We have to decide whether a simple ex-
pression involving square roots of rational numbers is zero.

A prototype implementation of the main part of our algo-
rithm including the computation of all relevant points of the
two dimensional arrangements shows a good performance in
practice. Our implementation uses the basic data types of
LEDA [15] and the rational polynomial class as well as the
resultant computation of MAPC [13].

The second approach (section 3) operates directly in 3-
space and pursues a classical solid modeling technique in
order to calculate the intersection cell of a set of quadrics.
In contrast to many existing CAD-systems we keep track
of all occurring rounding and approximation errors by using
interval arithmetic (see [17]). In interval arithmetic each nu-
merical value is represented by an interval of floating-point
numbers, which enclose the true value. The use of interval
arithmetic is greatly simplified thanks to the existence of an
explicit parametric representation of the spatial intersection
curves between two quadrics (see [14]). If the input does
not lie too near to a degenerate configuration our algorithm
will succeed in predicting the correct topological structure
of the intersection, otherwise it can detect the existence of
a critical situation and switch to the first approach.

In the last part of this paper (section 4) we show how to
apply our results via duality to the convex hull problem of
a set of ellipsoids, see also [9]. Finally we discuss further
research.

2. AN EXACT APPROACH
From now on we use the notation q̃ for the zero set of a

polynomial q ∈ Q[x1, . . . , xn]:

q̃ = {(x1, . . . , xn) | q(x1, . . . , xn) = 0}.

A set of quadrics forms a 3-dimensional arrangement and
partitions affine space in a natural way into four different
types of maximal connected regions: cells are on either side
of each quadric, faces lie on exactly one quadric, edges are
on the intersection curve of two quadrics and vertices are
intersection points of three or more quadrics or rather inter-
section points of at least two intersection curves.

We want to compute the topology of a cell in an arrange-
ment of quadrics. Therefore we independently consider each
quadric q̃ and calculate the sub-arrangement of all edges and
vertices of the 3d arrangement that lie on the surface of q̃.
Afterwards we decide which of these edges and vertices be-
long to the desired cell and join together all separate topo-
logical information to a unified description of the cell. It
is easy to see that this last reunion step only involves some
combinatorial and administrative effort. We omit the details
here.

We want to compute the sub-arrangement on the surface
of a quadric q̃ that is build by the intersection curves of
q̃ with all other quadrics. In general there is no rational
parameterization of the intersection curve of two quadrics in
space. Therefore it is hard work on the surface of q̃ directly
if we do not want to give up our aim to develop an exact
and fast algorithm. But we can project the sub-arrangement
into the (x, y)-plane and thereby reduce the problem to the
question of calculating a planar arrangement of algebraic
curves of degree up to 4. Our main contribution consists in
an implementable, exact, and fast method to compute the
planar arrangements that arise from this projection. We will
describe our approach in details in the next three sections.

2.1 Computing planar arrangements – the
ideas

The projection of the sub-arrangement on the surface of a
quadric q̃ is realized by projecting the silhouette of q̃ and all
its intersection curves with other quadrics into the (x, y)-
plane. This yields a set of planar algebraic curves of de-
gree at most 4. Figure 1 illustrates this: We can see an
arrangement of three ellipsoids. There are three pairwise
intersection curves. The pale and the dark one are inter-
section curves of the middle ellipsoid q̃ with the two other
ellipsoids. Next the planar arrangement that appears as a
result from the projection phase for q̃ is shown. The bor-
dering ellipse is the projection of the silhouette of q̃. The
other two curves are the projections of the pale and the dark
spacecurve.

Next our task is to determine a topological description of
the planar arrangement we get from the projection phase.
Let F = {f̃1, . . . , f̃k} be the set of curves of this planar ar-
rangement. We want to sweep parallel to the y-axis. What
are the event points in the plane the sweep line has to stop
at? It has to stop at intersections of two curves, at self-
intersections, and at points with a vertical tangent because
there a branch of the curve starts or ends. We call points
with a vertical tangent extreme. For a curve f̃ ∈ F its
extreme and self-intersection points are exactly the inter-
section points of f̃ and f̃y. Thus each event point can be
seen as an intersection point of two curves. Consequently

d

b

c

a

a b

c d

Figure 1: Planar arrangement of the middle ellipsoid

computed by our algorithm

we have to locate the intersection points of f̃i and f̃j for all

1 ≤ i < j ≤ k and the intersection points of f̃i and (f̃i)y for
all 1 ≤ i ≤ k.

The most serious problem we have to cope with is that in
general the intersection points of two curves f̃ and g̃ have
irrational x- and y-coordinates. That is why we cannot deal
with them directly, instead we have to handle algebraic num-
bers. But we are able to determine small stripes with ratio-
nal endpoints parallel to the y-axis with the following two
properties: All real intersection points of f̃ and g̃ lie inside
these stripes, and we can achieve that there is at most one
intersection point per stripe. In this part of our algorithm we
work over the complex numbers which causes some trouble.
For example, there can be stripes with no real valued inter-
section point inside and we cannot detect this algebraically.
We also compute stripes parallel to the x-axis and the inter-
section of the stripes yields boxes with rational corners the
number of which is roughly quadratic in the number of real
intersection points of f̃ and g̃. Each real intersection point
lies inside such a box, but it is not clear which boxes contain
such a point and which ones do not. This part of the algo-
rithm is realizable using the algebraic tools resultants and
root separation.

We have to identify the boxes that contain an intersection
point of the two curves f̃ and g̃ in its interior. This turns out
to be quite difficult because we only have at our disposal the
discrete information of what happens on the boundary of the
box. We know nothing about what happens inside. We can
only determine the sequence of hits of f̃ and g̃ in order along
the boundary of the box with the help of a root separation
algorithm. This information may be sufficient. For example,

number of digits 5 10 15 20 25 30
running time in seconds 18 33 56 92 126 186

Figure 2: Running time for computing the planar

arrangements of three quadrics.

if there are no hits or only hits from one curve then we
know that there cannot be an intersection point inside. Or,
if the two curves f̃ and g̃ intersect in order f̃ , g̃, f̃ , g̃ (see
for example box number c in Figure 1) then we can be sure
that an intersection must have taken place. But for a lot of
event points this method called box hit counting fails. For
example if we consider tangential intersection points or self-
intersection points through which the partial derivation also
cuts through, then the scenario on the boundary of the box
is the same independently of whether there is an event point
inside or not. In the next section (section 2.2) we introduce
some mathematical tools and then we present our results
how to overcome these difficulties (section 2.3).

After we have located all event points, we sweep the ar-
rangement connecting the boxes, or rather event points, in
the right way. This can easily be done and we will not go
into further details.

We have implemented the algorithm described above up
to and including the computation of all event points. The
planar arrangement in Figure 1 appears during the run of
our algorithm and is part of the visualization of our imple-
mentation. Here one can see that tangential intersections
and self-intersections are not exceptional but intrinsic to the
planar arrangements we obtain. We have measured the run-
ning time of our algorithm for three input quadrics on an
Intel Pentium 700 varying the number of decimal digits of
the coefficients of the input polynomials, see the table in
Figure 2.

In the planar arrangement of Figure 1 one can see that
our implementation has discovered all event points inside
the boxes and has thrown away all empty boxes.

In the following we assume that all event points have dif-
ferent x- and y-coordinates. This is not a real restriction
because on the one hand our algorithm can detect the vi-
olation of this assumption and on the other hand the co-
ordinates depend on the direction of projection and with a
”small number” of random affine transformations in space
we can achieve that our assumption is fulfilled.

2.2 The main mathematical tools
In this section we briefly describe the main mathematical

ingredients we use in our algorithm.

Resultants: One important concept is that of resultants
and subresultants. For further information see for example
[7] and [2]. Let

f(x1, . . . , xn) = αlx
l
n + αl−1x

l−1

n + · · · + α0, αl 6= 0

g(x1, . . . , xn) = βmx
m
n + βm−1x

m−1

n + · · · + β0, βm 6= 0,

be polynomials with coefficients αi, βi ∈ Q[x1, . . . , xn−1].
The resultant res(f, g, xn) of f and g with respect to xn is
a polynomial in Q[x1, . . . , xn−1] defined by the αi and βi

such that the following proposition holds: the vanishing of
the resultant at a point (c1, . . . , cn−1) ∈ Cn−1 is a necessary
condition for the extendibility of this point to a common root
of f and g. Additionally the vanishing of the k-th principal

subresultant coefficients psck(f, g, xn) ∈ Q[x1, . . . , xn−1] for

1 ≤ k < j is a necessary condition that f(c1, . . . , cn−1, xn) ∈
C[xn] and g(c1, . . . , cn−1, xn) ∈ C[xn] have a common factor
of degree j. Again the psck(f, g, xn) are defined by the αi

and βi. If αl and βm both are constant and nonzero the con-
ditions for extendibility are necessary as well as sufficient.

Multiplicity of intersection points: Let f, g ∈ Q[x, y].
f and g define algebraic curves in the complex plane and
common roots of the polynomials are intersections of the
curves. An intersection point (a, b) yields res(f, g, y)(a) = 0.
Remember our assumption that no two intersection points
have common x- or y-coordinates. Then we state that the
multiplicity of the intersection at (a, b) is the same as the

multiplicity of the root a of res(f, g, y). For example, if f̃

and g̃ intersect transversally at (a, b) then a is a root of the
resultant of multiplicity 1. If they intersect tangentially the
multiplicity of the root a of the resultant is at least 2. The
same holds for res(f, g, x) and b.

Multiplicity factorization: When we deal with the re-
sultant of two bivariate polynomials f and g we can factor
it according to the multiplicity of its roots by using multiple
differentiation and division of polynomials. For example the
polynomial

p(x) = x
9 − x

7 − x
5 + x

3 = (x − i)(x + i)(x + 1)2(x− 1)2x3

can be factored into three polynomials p1(x) = x2 + 1 =
(x − i)(x + i), p2(x) = (x + 1)2(x − 1)2, and p3(x) = x3.

Let u ∈ Q[x] and v ∈ Q[y] be the factors of res(f, g, y) and
res(f, g, x) belonging to multiplicity i, respectively. Then all
coordinates of intersection points of multiplicity i are roots
of u and v.

Explicit solutions: Let again f and g be two bivariate
polynomials. Let additionally u ∈ Q[x] and v ∈ Q[y] be
factors of res(f, g, y) or res(f, g, x), respectively, each of de-
gree at most 2. The roots of u and v define four points in
the plane and we can give explicit terms for them involv-
ing only one square-root per coordinate. Substituting these
terms into f and g reduces the question of whether f̃ and
g̃ intersect at one of the points to the question whether two
terms simultaneously become zero.

2.3 Computing planar arrangements - the de-
tails

The projection phase for a 3-dimensional quadric q̃ can
be realized with the help of resultants. The projection of
the silhouette of q̃ is the set of roots of res(q, qz, z). We
call this planar curve projectioncurve. The projection of the
spatial intersection curve of q̃ with another quadric p̃ is the
set of roots of res(q, p, z). Such a planar curve we name
cutcurve. The algebraic degree of the projectioncurve is 2
and the degree of each cutcurve is ≤ 4.

Let F be the set of all algebraic curves of this planar ar-
rangement. Now we have to locate as described before the
intersection points of all pairs of algebraic curves f̃ and g̃,
whereby either f̃ , g̃ ∈ F or f̃ ∈ F and g̃ = f̃y. In general the

intersection points of f̃ and g̃ will have irrational (even com-
plex) coordinates. But again with the help of resultants we
compute two univariate polynomials X = res(f, g, y) ∈ Q[x]
and Y = res(f, g, x) ∈ Q[y] the roots of which contain the
x- and y-coordinates of all intersection points, respectively.
Thus the roots of X and Y together define a grid the in-
tersection points of f̃ and g̃ lie on. For the same reason as
before we cannot deal with the points on the grid directly

but a root isolation algorithm can determine rational in-
terval representations for the real algebraic roots of X and
Y . The intervals on the x- and on the y-axis define dis-
joint boxes with rational corners. The real grid points are
contained in these boxes. What remains to do is testing
each box for a real intersection point of f̃ and g̃. In some
cases this can easily be done using a method we call simple

box hit counting in contrast to our extended method we will
introduce soon:

Simple box hit counting argument: With the help
of a root separation algorithm we determine the hits of f̃
and g̃ along the boundary of the box. We shrink the box
until there are at most two hits from each curve. If there are
exactly two hits from each curve we have to look whether
they alternate or not. In the case that there are exactly two
hits and they alternate the test is successful: f̃ and g̃ have
a transversal intersection point inside the box.

One problem of this method is that it cannot detect tan-
gential intersection points of f̃ and g̃. In most cases this dif-
ficulty can be solved by introducing a new curve to the box,
see the dotted curve in Figure 1, picture d). To our knowl-
edge we are the first who additionally consider an auxiliary
curve in order to solve degeneracies:

Jacobi curve: Let f and g be two bivariate polynomials
the planar curves of which intersect tangentially in the point
(a, b). We define a third polynomial

h := fxgy − fygx.

The set of roots of this polynomial h we call Jacobi curve.

With the help of the Jacobi curve we can detect most
tangential intersection points.

Theorem 1. Let f and g be two bivariate polynomials

the planar curves of which intersect tangentially in the point

(a, b). Then either the Jacobi curve given by h = fxgy−fygx

intersects f̃ as well as g̃ transversally in (a, b) or a and b
are roots of multiplicity ≥ 3 of res(f, g, y) and res(f, g, x),
respectively.

Proof (The idea) f̃ and g̃ intersect tangentially in (a, b).
This implies that a is a root of res(f, g, y) of multiplicity at
least 2. The same holds for res(f, g, y) and b. Further (a, b)
is a root of the Jacobi determinant fxgy − fygx.

If either (fx, fy) or (gx, gy) become zero for (a, b) then

(a, b) additionally is a self-intersection point of f̃ or g̃ and
the theorem follows immediately from the multiplicity of
intersection points.

Otherwise there exists λ ∈ IR, λ 6= 0, such that fx(a, b) =
λgx(a, b) and fy(a, b) = λgy(a, b). If the curve of h = fxgy −

fygx does not intersect f̃ and g̃ transversally in (a, b) then
(a, b) is also a root of hxfy−hyfx. Substituting the definition
of h into this term and making use of fx(a, b) = λgx(a, b)
and fy(a, b) = λgy(a, b) leads after some calculation to the

statement that in this case f̃ and g̃ have the same curva-
ture in (a, b). Therefore the intersection has multiplicity at
least 3 and we are done. 2

This auxiliary curve leads to a new test for tangential
intersection points of f̃ and g̃:

Extended box hit counting argument: We addition-
ally consider the Jacobi curve h̃ defined by f and g. We
shrink the box until it contains at most one intersection

point between f̃ , g̃, and h̃. This can again be done with the
help of resultants and and a root separation computation.
Now we apply simple box hit counting arguments to f̃ and
h̃ and to g̃ and h̃. If both tests are successful the extended
box hit counting argument is successful. f̃ and g̃ have a
tangential intersection point inside the box.

Till now we are able to locate boxes that either contain
a transversal intersection point of f̃ and g̃ or that contain
a tangential intersection point the multiplicity of which is
2. What remains to do is locating self-intersection points
and tangential intersection points of multiplicity > 2. We
would like to do this using explicit solutions described in
the previous section. So what we need is factorizing X and
Y into products of polynomials of smaller degree. Before
explaining the ideas how to factorize the polynomials we
need some notation:

Definition 1. 1. Let u ∈ Q[x] and v ∈ Q[y]. By R(u)
we denote the set of real roots of u. By #(u, v) we

mean the grid R(u) ×R(v).

2. Let f, g ∈ Q[x, y], X = res(f, g, y) and Y = res(f, g, x).
We call the pair (X, Y) the bi-resultant of f and g.

3. Let u1, u2 ∈ Q[x] and v1, v2 ∈ Q[y]. The expression

(u1, v1) · (u2, v2) is called bi-factorization of the bi-

resultant (X, Y) iff X = u1 ·u2, Y = v1 ·v2, and all in-

tersection points of f̃ and g̃ lie on #(u1, v1)∪#(u2, v2).
The pairs (u1, v1) and (u2, v2) are called bi-factors.

For example, a factorization X = res(f, g, y) = u1u2 and
Y = res(f, g, x) = v1v2 according to multiplicities 1 and
≥ 2 yields two bi-factors (u1, v1) and (u2, v2) of (X, Y).
As before we can compute boxes around the grid points of
#(u1, v1) for the bi-factor (u1, v1) of (X, Y). All transversal

intersection points of f̃ and g̃ are then contained in these
boxes.

Just multiplicity factorization is not enough. Let us con-
sider a cutcurve f̃ . Its extreme and self-intersection points
are exactly the intersection points of f̃ and g̃ = f̃y. Let

(X, Y) be the bi-resultant of f̃ and g̃. The coordinates of ex-

treme points of f̃ are roots of multiplicity 1 of X and Y and
the coordinates of self-intersection points are roots of mul-
tiplicity ≥ 2. Thus a multiplicity bi-factorization gives us a
bi-factor (u, v) describing all self-intersections. But it is pos-
sible that a cutcurve has more than 2 self-intersections. That
is why the degree of u and v can be more than quadratic
and this prevents the use of explicit solutions. We are able
to distinguish two different kinds of self-intersections, both
of which are describable by quadratic polynomials. Top-

bottom intersections are a result from the projection phase
because points on the top and on the bottom of q̃ are pro-
jected on top of each other. Genuine intersections are self-
intersections that already existed in space. They appear
when two quadrics additionally have the same tangential
plane at an intersection point.

Theorem 2. Either a cutcurve has at most two top-bot-

tom intersection points or all points of the curve are of this

kind. In the first case we can compute a line that passes

through these points.

Proof Let q̃ and p̃ be the quadrics that caused the cutcurve.
Every top-bottom point (a, b) is also a root of psc1(q, p, z).

An easy calculation shows that psc1(q, p, z) is a polynomial
of degree at most one. If psc1(q, p, z) is the zero polyno-
mial every point of the cutcurve is top-bottom. Otherwise
psc1(q, p, z) either is constant and nonzero in which case
there is no top-bottom point, or it defines a line. A line
intersects an algebraic curve of degree 4 at most four times.
Since it cuts through the self-intersection points each inter-
section has multiplicity 2. 2

Theorem 3. Either a cutcurve has at most two genuine

self-intersection points or all points of the curve are of this

kind.

Proof Assume that there are three different tangential in-
tersection points a, b, c ∈ C3 of two quadrics q̃ and p̃. One
can construct a complex hyperplane through these points.
The hyperplane intersects q̃ and p̃ in space-curves q1 and
p1. From the point of view of the hyperplane q1 and p1

are conics which have the same tangent in their common
points a, b, and c. Because of that q1 = p1 must hold. In
space all tangential planes to the points on q1 intersect in
one point, namely the apex of the cone the tangential planes
define. This point is uniquely defined by the three tangen-
tial planes in a, b, and c. Therefore the surfaces of q and
p have the same tangential plane for each point on q1. A
brief investigation on the degree of a cutcurve yields the de-
sired result that in this case all points on the cutcurve are
genuine. 2

For ease of exposition we assume that each cutcurve only
has finitely many self-intersections.

Now we are ready to prove our main theorem that we are
able to locate every event point in our arrangement.

Theorem 4. Let F be the set of curves of the planar ar-

rangement we obtain from the projection phase. Let f̃ , g̃ ∈ F

or f̃ ∈ F and g̃ = f̃y. All intersection points of f̃ and g̃ can

be determined either by locally applying simple or extended

box hit counting arguments or by factorizing the bi-resultant

of f̃ and g̃ and computing explicit solutions.

Proof Remember our assumption that all event points have
different x- and y-coordinates. Let in the following X :=
res(f, g, y) and Y := res(f, g, x).

If f̃ is the projectioncurve and g = fy then we apply a
simple box hit counting argument to every box.

The case that f̃ and g̃ both are projectioncurves has not to
be considered, because there is exactly one projectioncurve
in every arrangement.

Let f̃ be a cutcurve and g = fy. The resultants X and
Y have degree at most 12. We compute a multiplicity bi-
factorization (u1, v1) · (u2, v2) of (X, Y) such that all inter-
section points with muliplicity 1, i.e. all extreme points,
lie on #(u1, v1) and all intersection points with multiplicity
≥ 2, i.e. all self-intersection points, lie on #(u2, v2). The
boxes around #(u1, v1) can be handled with simple box hit
counting arguments. The second bi-factor (u2, v2) can be
factored again into bi-factors (u3, v3) and (u4, v4) of (X, Y)
according to the top-bottom and genuine distinction of self-
intersections. This can be done with the help of psc1(f, g, y)
according to theorem 2, see also the dotted line in Figure 1
picture b). The details are omitted. From theorem 2 and

3 it follows that u3, u4, v3 and v4 are at most quadratic
polynomials and we can compute explicit solutions.

Let f̃ be the projectioncurve and g̃ a cutcurve. It is clear
that both curves can have at most tangential intersection
points. That is why each root of X and Y either has degree
2 or ≥ 4. X and Y have degree at most 8. This yields
that they can have at most two roots of multiplicity 4. We
compute a bi-factorization (u1, v1) · (u2, v2) of (X, Y). All
intersections points with multiplicity 2 lie on #(u1, v1) and
the boxes around #(u1, v1) can be handled with extended
box hit counting arguments. The bi-polynomial (u2, v2) con-
sists of two at most quadratic polynomials for which we can
determine explicit solutions.

The last case is that f̃ and g̃ both are cutcurves. They are
the result of the intersection of q̃ with two other quadrics
p̃1 and p̃2. We distinguish spatial and artificial intersection
points. Spatial intersections are projections of common in-
tersection points of q̃, p̃1 and p̃2. Artificial intersections take
place because one intersection curve runs on the top of q̃ and
the other on the bottom of q̃ and both space curves are pro-
jected on top of each other causing an intersection point.
The resultants X and Y have degree at most 16. We com-
pute a bi-factorization (u1, v1) · (u2, v2) of (X, Y) according
to the distinction of spatial and artificial intersection points.
This bi-factorization can be done by additionally computing
the resultant k = res(p1, p2, z) and a greatest common divi-
sor computation between X, res(f, k, y), and res(g, k, y) and
between Y , res(f, k, x), and res(g, k, x). An alternative way
would be to use the results of [4] and the method described
in the proof of the next theorem. In the next theorem we
additionally show that u1, u2, v1 and v2 all have degree ≤ 8.
Then we refine the bi-factorization according to the multi-
plicities of the intersection points. The boxes belonging to
multiplicity 1 or 2 are handled by simple or extended box
hit counting arguments, respectively. Both polynomials of
the remaining bi-polynomials are at most quadratic and we
compute explicit solutions. 2

Theorem 5. There are at most 8 spatial and at most 8

artificial intersections.

Proof (The idea) The first part follows by the theorem
of Bezout. For the second part we mirror p̃1 parallel to
the z-axis at the plane which separates the top of q̃ from
the bottom of q̃. Let p̃3 be the new surface. We can
show that p̃3 is again a quadric. This transformation has
the effect that all intersection points of q̃ and p̃3 have the
same (x, y)-coordinates as the intersection points of q̃ and
p̃1, i.e. res(q, p1, z) = res(q, p3, z). But a root (a, b) of
res(q, p1, z) = res(q, p3, z) that corresponds to an intersec-
tion point of q̃ and p̃1 lying on the top of q̃ now corresponds
to an intersection point of q̃ and p̃3 lying on the bottom of
q̃ and vice versa. In this way the spatial and artificial in-
tersections have changed place and we can again apply the
theorem of Bezout to q, p2 and p3. 2

3. A SOLID MODELING APPROACH
In this section we briefly describe our approach to calcu-

late the intersection of a set of oriented quadric surfaces as-
suming that no degenerate situation exists. We use an incre-
mental algorithm to compute the boundary representation

of the intersection body. This body may be composed of dis-
joint lumps each having several shells. The whole boundary
consists of faces, edges and vertices which are embedded in
quadric surfaces, intersection curves and intersection points,
respectively. First of all we have to point out how to ade-
quately represent the intersection curves (section 3.1) and
their intersection points (section 3.2). Then we explain the
data structure (section 3.3) and the necessary topological
operations to intersect a new quadric with an intermediate
intersection body (section 3.4). Last but not least we deal
with the detection of all situations, in which our algorithm
may fail because of the rounding and approximation errors
(section 3.5).

3.1 Parameterization of the intersection curve
between two quadrics

Let A and B be two quadric surfaces. Suppose A is a
ruled quadric, i.e. a plane, a cylinder, a cone, a hyper-
boloid of one sheet or a hyperbolic paraboloid. In this case
A can be generated by a family of lines, which has a simple
parametric representation. In order to obtain a parametric
representation of the intersection curve A∩B, we can simply
intersect each line of this family with B. This only requires
the solution of a quadratic equation.

The key observation to handle the case when A is an ar-
bitrary quadric, is to reduce it to the special case above.
This can be achieved by looking for a ruled quadric in the
pencil of quadrics A + λB (λ ∈ IR) and intersecting this
ruled quadric instead of A with B. This substitution is fea-
sible, since any two quadrics in the pencil have the same
intersection curve in common.

A theorem of Levin [14] guarantees that a ruled surface
can always be found in the pencil of quadrics:

Theorem 1 (Levin). The intersection of two quadric

surfaces lies in a ruled quadric.

In appendix B we review and simplify the proof of this the-
orem for the most general case when the ruled quadric in
the pencil is a hyperbolic paraboloid. In this case the inter-
section curve s(t) can be parameterized as follows

s(t) = U · [t b(t), a(t) ±
√

c(t), t (a(t) ±
√

c(t)), b(t)]T

where s(t) ∈ IR4 and U ∈ IR4×4. a(t) and b(t) are poly-
nomials of degree 2 and c(t) is a polynomial of degree 4.
Unfortunately the coefficients of these polynomials are irra-
tional numbers (roots of polynomials of degree 3).

3.2 Intersection of three quadrics
Let A, B and C denote the three quadrics we want to

intersect. We are interested in all common points on their
boundary. First of all we determine the intersection curve
s(t) between A and B and put this formula into s(t)T Cs(t) =
0. In this way we obtain an equation of the following form:

f(t) c(t) ± g(t)
√

c(t) + h(t) = 0

where f(t), g(t) and h(t) are polynomials in t of degree 2, 4
and 6, respectively. We eliminate the square root by squar-
ing and get a polynomial of degree 12. The real roots of this
polynomial provide all parameter values at which a triple
intersection point can occur.

f
2(t)c2(t) + (2f(t)h(t) − g

2(t))c(t) + h
2(t) = 0

3.3 The data structure
We consider all input quadrics as solid bodies. The re-

sult of a sequence of intersection operations on these bodies
can again be regarded as a solid body. We represent such
a solid body by describing its boundary, which may con-
sist of several connected components. The topological en-
tities of the body are its lumps, shells, faces, loops, edges
and vertices. The geometric entities are the quadric sur-
faces, the intersection curves between two surfaces and the
common intersection points of three or more surfaces. The
two-dimensional boundary of the body consists of a set of
faces. Each face is embedded in a quadric surface. The one-
dimensional boundary of a face is characterized by its loops.
Each loop is composed of a set of oriented edges. The geo-
metric information associated with an edge is given by the
space curve the edge lies on. These space curves arise when
two quadrics intersect. The zero-dimensional boundary of
an edge consists of two vertices whose Cartesian coordinates
correspond to multiple intersection points between the input
quadrics.

In order to facilitate an efficient handling of the entities of
the boundary representation we store some additional infor-
mation about the neighborhood of the topological entities.
It is sufficient to arrange the lumps of the body, the shells
of a lump, the faces of a shell, and the loops of a face in
simply linked lists. Every entity also has a pointer to its
superior entity. A loop is represented as a doubly linked list
of its oriented edges and it knows about the face it belongs
to. In a two-manifold each edge is adjacent to exactly two
faces. We store edges as two opposite oriented edges with
a mutual reference. In addition each edge has a pointer to
the unique loop it occurs in and pointers to its two vertices.

3.4 Topological operations

Q1

Q2

p1

p7

p15

p13

p14

p10

p11

p16

p3

p2

p6

p8

p9

p12

p4

p5

f

s(t)

r(t)

Figure 3: The intersection of a face f embedded in

Q1 with the second quadric Q2.

We want to intersect a face f , which is embedded in a
quadric Q1, with a second quadric Q2. See Figure 3! The
boundary of face f may consist of several loops (broken
lines). For the sake of lucidity the different edges and ver-
tices of the loops are not shown. The orientation of the

edges within a loop is chosen such that the interior of f

always lies to the left when moving in forward direction of
the edges and looking opposite to the surface normal. This
means that the vector n(p)× d r

d t
(p) points into the interior

of f for each point p = r(t) of the edge. Here n(p) is the
normal vector of Q1 and d r

d t
(p) is the tangential vector of

r(t) at the point p.
The first step in the computation of f ∩Q2 is the determi-

nation of the parametric intersection curve s(t) (solid lines)
between Q1 and Q2. This curve may consist of one or two
loops. Next we calculate all intersection points (in our ex-
ample p1, . . . , p16) between s(t) and all edges of the loops
of f . This calculation has not only to provide the Cartesian
coordinates of each intersection point but also its parameter
values with respect to s(t) and with respect to the curves
r(t) of the intersected edges. These parameter values en-
able us to sort the intersection points along the curves they
belong to.

In the next step we identify the new loops of f ∩ Q2. We
start at an arbitrary intersection point p and follow the left-
most curve until we arrive at the next intersection point. We
continue in this fashion until we return to our starting point.
The decision which curve to follow at an intersection point
p can be taken by looking at the surface normal and at the
tangent vectors of the intersecting oriented curves. Simply
calculate the sign of det(n(p), d r

d t
(p), d s

d t
(p)). This proce-

dure produces an ordered sequence of edges of a new loop
alternating between the original boundary curves of f and
the newly created intersection curve. As Figure 3 illustrates
more than one loop may arise, so that f∩Q2 decomposes into
several connected components (the gray shaded regions).

Up to now we have ignored all the loops of f and the in-
tersection curve, which do not contain an intersection point.
We still have to determine the nesting of all these loops in
order to form the final new faces of f ∩ Q2. The question
whether a loop l1 lies within another loop l2 can be an-
swered by following a path w(t) on the surface Q1 from an
arbitrary point of l1 to the first point p where this path hits
l2. The simplest choice for w(t) is a conic. Again the sign
of det(n(p), d r

d t
(p), d w

d t
(p)) tells us, whether l1 lies inside or

outside of l2.
The operations for calculating f∩Q2 have to be performed

for every face of the body. As a result we obtain all new
faces except those faces which lie on the surface of Q2. The
boundary of these faces automatically ensues from sewing
up all edges with their opposite directed counterparts. The
connected components of the face set form the shells and the
nesting of these shells yields the lumps of the intersection
body. The nesting of the shells can be determined by ray-
shooting.

3.5 Verified arithmetic
During the whole process of intersecting quadric surfaces

we have to perform critical arithmetic operations over and
over again: We have to avoid divisions by zero, determine
the correct sign of expressions and reliably predict the ex-
act number of real roots of a univariate polynomial in a
given interval. If we simply used floating-point arithmetic,
we would be confronted with rounding and approximation
errors. That is the reason why we use interval arithmetic
(see [17]) as a technique to self-validate all numerical op-
erations. Each quantity such as the value of an expression
or the root of a polynomial is represented by an interval of

Figure 4: The convex hull of three ellipsoids.

floating-point numbers. This interval is guaranteed to con-
tain the true value of the quantity it represents.

In this way we can detect all (near-) degenerate geomet-
ric situations, which we can not handle by the approach
discussed in this section. Whenever ambiguous results oc-
cur, we break off the complete procedure and switch to the
algorithm described in the section 2.

4. APPLICATIONS AND FURTHER
RESEARCH

Efficient and robust algorithms for the calculation of the
convex hull of a set of points or a set of spheres are well
known ([1],[3]). Our algorithm to compute the cell in an
arrangement of quadrics can via duality be used to compute
the convex hull of a set of ellipsoids. For further information
about the dualization step see the appendix A.

Figure 4 illustrates the topological structure of the convex
hull. A point in the dual space dualizes to a plane in the pri-
mal space. A vertex dualizes to a plane that touches each of
the three involved ellipsoids in exactly one point. The three
points define a triangle and the area lying on the tangential
plane bounded by the triangle will be part of the convex
hull. Analogously, each point on an edge of the intersection
cell defines a line connecting the two involved ellipsoids. All
lines together form a developable surface. Thus the convex
hull consists of three different types of surfaces: parts of the
original quadric surfaces, triangles which arise from the dual
vertices, and developable surfaces which arise from the dual
edges.

The problem of computing the convex hull of quadric sur-
face patches as discussed in [12] can also be solved exactly.
In accordance with [12] the boundary of the patches has to
consist of segments of conic curves such that the dual set
only comprises parts of quadric surfaces and conic curves.

Our approach to compute the intersection or the convex
hull of quadrics provides the basic techniques for imple-
menting a robust constructive solid geometry (CSG) system,
which could not only handle polyhedral solids but also solids
with second order surfaces. In a CSG system complex ob-
jects can be produced from simple primitives by combining
multiple levels of CSG-operators. In addition to intersection
also union and difference come into question as operators.
In our case the primitive solids could be arbitrary quadrics
with rational coefficients.

5. ACKNOWLEDGMENTS
We would like to thank Raimund Seidel for many useful

discussions and his help in preparing this paper.

6. REFERENCES
[1] J.-D. Boissonnat, A. Cérézo, O. Devillers,

J. Duquesne, and M. Yvinec. An algorithm for
constructing the convex hull of a set of spheres in
dimension d. Comput. Geom. Theory Appl.,
6:123–130, 1996.

[2] W. Brown and J. F. Traub. On Euclid’s algorithm and
the theory of subresultants. Journal of the ACM,
18:505–514, 1971.

[3] http://www.cgal.org.

[4] E. Chionh, R. Goldman, and J. Miller. Using
multivariate resultants to find the intersection of three
quadric surfaces. Transactions on Graphics,
10:378–400, 1991.

[5] G. E. Collins. Quantifier elimination for real closed
fields by cylindrical algebraic decomposition. In Proc.

2nd GI Conf. on Automata Theory and Formal

Languages, volume 6, pages 134–183. Lecture Notes in
Computer Science, Springer, Berlin, 1975.

[6] G. E. Collins and R. Loos. Real zeros of polynomials.
In B. Buchberger, G. E. Collins, and R. Loos, editors,
Computer Algebra: Symbolic and Algebraic

Computation, pages 83–94. Springer-Verlag, New
York, NY, 1982.

[7] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties,

and Algorithms. Springer, New York, 1997.

[8] Farouki, Neff, and O’Connor. Automatic parsing of
degenerate quadric-surface intersections. ACM Trans.

Graph., 8:174–203, 1989.

[9] N. Geismann, M. Hemmer, and E. Schömer. The
convex hull of ellipsoids. SOCG video track, 2001.

[10] D. Halperin. Arrangements. In Handbook of Discrete

and Computational Geometry, pages 389–412, 1997.

[11] C. Hoffmann. Geometric and Solid Modeling.
Morgan-Kaufmann, San Mateo, CA, 1989.

[12] C.-K. Hung and D. Ierardi. Constructing convex hulls
of quadratic surface patches. In Proc. 7th Canad.

Conf. Comput. Geom., pages 255–260, 1995.

[13] J. Keyser, T. Culver, D. Manocha, and S. Krishnan.
MAPC: A library for efficient and exact manipulation
of algebraic points and curves. In Proc. 15th Annu.

ACM Sympos. Comput. Geom., pages 360–369, 1999.

[14] J. Levin. A parametric algorithm for drawing pictures
of solid objects composed of quadric surfaces.
Commun. ACM, 19(10):555–563, Oct. 1976.

[15] K. Mehlhorn and S. Näher. LEDA – A Platform for

Combinatorial and Geometric Computing. Cambridge
University Press, 1999.

[16] J. R. Miller. Geometric approaches to nonplanar
quadric surface intersection curves. ACM Trans.

Graph., 6:274–307, 1987.

[17] R. E. Moore. Interval Analysis. Prentice Hall,
Englewood Cliffs, NJ, 1966.

[18] A. Rege. A Toolkit for Algebra and Geometry. Univ. of
California at Berkely, Berkely, California, 1996. Ph.D.
dissertation.

[19] T. Sakkalis. The topological configuration of a real
algebraic curve. Bulletin of the Australian

Mathematical Society, 43:37–50, 1991.

APPENDIX

A. DUALIZATION OF QUADRICS

Lemma 1. Let Q be a quadric in homogeneous coordi-

nates:

x
T
Qx = 0 with Q = Q

T ∈ IR4×4
and x ∈ IR4

The set of points which are dual to the set of the tangen-

tial planes of Q lie on the quadric Q−1, i.e. they fulfill the

equation xT Q−1x = 0.

Proof The set of the tangential planes of Q is given by

{xT
0 Qx = 0 |xT

0 Qx0 = 0}.

The set of the dual points can thus be characterized as

{Qx0 |x
T
0 Qx0 = 0}.

All these points lie on the quadric Q−1 because

x
T
0 QQ

−1
Qx0 = x

T
0 Qx0 = 0.

2

Let Q be an ellipsoid with center c and the equation
(x − c)T M(x − c) = 1 where x, c ∈ IR3 and M = MT ∈
IR3×3. It is easy to verify that the corresponding homoge-
neous matrices Q and Q−1 are given by

Q =

[

M −Mc

−cT M cT Mc − 1

]

,Q
−1 =

[

M−1−ccT −c

−cT −1

]

.

The form of Q−1 depends on the sign of cT Mc − 1. We
discuss three different cases:

case 1: cT Mc − 1 6= 0

The translation y = x +
Mc

cT Mc − 1
transforms Q−1 to

the central form:

y
T (M−1− cc

T)y +
1

cT Mc − 1
= 0

case 1.1: cT Mc − 1 < 0
Q−1 is an ellipsoid, since M−1− ccT is positive definite.

We can show this by examining the inverse matrix

(M−1− cc
T)−1 = M −

MccT M

cT Mc − 1

For all x ∈ IR3 \ {0} it holds:

x
T (M −

MccT M

cT Mc − 1
)x = x

T
Mx−

(cT Mx)2

cT Mc − 1
> 0.

case 1.2: cT Mc − 1 > 0
Q−1 is a two-sheet hyperboloid, since

det(Q)−1 = det(Q−1) =
1

cT Mc − 1
det(M−1− cc

T) < 0.

As a consequence M−1−ccT has exactly one negative eigen-
value. (Three negative eigenvalues can not occur, because
that would be an imaginary surface.)

case 2: cT Mc − 1 = 0
Q−1 is an elliptic paraboloid, since M−1−ccT is singular

because

(M−1− cc
T)x = 0 for x = Mc.

Apart from the eigenvalue 0 there exist two positive eigen-
values, i.e. M−1− ccT is positive semidefinite. Since M is
positive definite, it suffices to show that M(M−1−ccT)M =
M − MccT M is positive semidefinite. It holds:

x
T (M −Mcc

T
M)x = c

T
Mc · xT

Mx− x
T
Mc · cT

Mx

= (c × x)T (Mc × Mx)

= det(M)(c × x)T
M

−1(c × x) ≥ 0

B. PROOF OF LEVIN’S THEOREM
Proof Let A and B ∈ IR4×4 denote the homogeneous,
symmetric matrices of the quadrics A and B. We look for
a matrix P(λ) = A + λB with det(P(λ)) = 0, where P(λ)
denotes the upper left 3 × 3 -submatrix of P(λ). Such a λ
exists, because det(P(λ)) is a polynomial of degree 3 in λ,
and thus has at least one real zero λ1.

Let P1 = A + λ1B. We perform a principal axes trans-
formation for P1:

P2 = diag(µ1, µ2, 0) = V
T

1 P1 V1

P2 = V
T
1 P1 V1 with V1 = diag(V1, 1)

The columns of V1 contain the eigenvectors for the eigen-
values µ1, µ2 and 0. The eigenvalues can be determined via
the characteristic polynomial χ

P1
(µ) = det(P1 − µI). For

3 × 3-matrices χ
P1

(µ) can be expressed as

−µ
3 + trace(P1)µ

2 − trace(adj(P1))µ + det(P1) (1)

Since det(P1) = 0, the eigenvalues µ1 and µ2 can be cal-
culated as the roots of a quadratic equation. Now we dis-
tinguish between two cases on the basis of the signs of the
eigenvalues:

case 1: µ1 · µ2 < 0
This is the simpler case. If there is no degeneration, we

have already found a hyperbolic paraboloid in the pencil
of quadrics. We only have to transform it into its normal
form. The necessary transformations will be given after the
discussion of the second case.

case 2: µ1 · µ2 > 0
In this case we generally have to deal with an elliptic para-

boloid. We further transform matrix P2 and combine it with
one of the input quadrics in order to find a suitable quadric
like in the first case.

If µ1 < 0 and µ2 < 0, we substitute P2 by −P2.
The transformation

P3 = V
T
2 P2 V2 with V2 = diag(

1
√

|µ1|
,

1
√

|µ2|
, 1, 1)

guarantees, that P3 = diag(1, 1, 0) holds.

Let Q = VT
2 VT

1 BV1V2. We transform P3 and Q with
the help of the orthonormal matrix

V3 = diag

(

1
√

Q2

13
+ Q2

23

[

Q23 Q13

−Q13 Q23

]

, 1, 1

)

This transformation leaves the upper left 3 × 3-matrix of
P4 = VT

3 P3 V3 unchanged, and the upper left 3×3-matrix
of R = VT

3 QV3 becomes:

R =





R11 R12 0
R12 R22 R23

0 R23 R33





Provided that R33 6= 0, we set S = 1

R33

R and choose

α such that det(S − αP4) = 0. α can be found as the
root of a quadratic equation. Let β = S22 − S2

23, γ =
√

(S11 − β)2 + 4S2

12
and α = 1

2
(S11 + β ± γ). We now show

that P5 = S − αP4 is a hyperbolic paraboloid unless there
is a degenerate situation:

Since det(P5) = 0 holds, 0 is an eigenvalue of P5. In order
to proof that there still exist a negative as well as a positive
eigenvalue, we show according to (1) that trace(adj(P5)) < 0
is true. Using the fact that det(P5) = 0, it is easy to verify
that

trace(adj(P5)) =
1

2
S

2

23(S
2

23 + S11 − S22) ∓ (1 +
1

2
S

2

23)γ.

Since (1+ 1

2
S2

23)γ
2− 1

4
S4

23(S
2

23 +S11 −S22)
2 = γ2(1+S2

23)+

S2

12S
4

23 ≥ 0, it is guaranteed that for α = 1

2
(S11 +β + γ) the

inequality trace(adj(P5)) ≤ 0 is fulfilled.
We have now reached the point, where P5 has the follow-

ing form:

P5 =









µ1 0 0 p1

0 µ2 0 p2

0 0 0 p3

p1 p2 p3 p0









,

where µ1 µ2 < 0.
We perform a translation given by the matrix

V5 =

[

I v

0 1

]

.

If we set

v1 = −
p1

µ1

, v2 = −
p2

µ2

, v3 = −
p1v1 + p2v2 + p0

2p3

,

this yields

P6 = V
T
5 P5 V5 = diag

([

µ1 0
0 µ2

]

,

[

0 t3
t3 0

])

We divide P6 by −t3:

P7 = −
1

t3
P6 = diag

([

ν1 0
0 ν2

]

,

[

0 −1
−1 0

])

After that we use another transformation V7

P8 = V
T
7 P7 V7 with V7 = diag(

1
√

|ν1|
,

1
√

ν2|
, 1, 1)

= diag

([

±1 0
0 ∓1

]

,

[

0 −1
−1 0

])

Finally we perform the transformation V8.

P9 = V
T
8 P8 V8 with V8 = diag(

[

1√
2

± 1√
2

∓ 1√
2

1√
2

]

, 1, 1)

= diag

([

0 1
1 0

]

,

[

0 −1
−1 0

])

I.e. P9 is a hyperbolic paraboloid with the equation x3 =
x1 x2.

A combination of all transformations yields the transfor-
mation matrix U. In the first case we set U = V1 V5 V7 V8

and in the second case U = V1 V2 V3 V5 V7 V8. We trans-
form the quadric B by means of U. Then we intersect
the resulting quadric C = UT BU with the family of lines
which lie on the hyperbolic paraboloid with the equation
x3 = x1 x2: Putting x = [x1, x2, x1 x2, 1]

T into xT Cx = 0
yields a multivariate polynomial in x1 and x2 which we solve
for x2:

x2(x1) =
a(x1) ±

√

c(x1)

b(x1)
,

where a(x1) and b(x1) are polynomials of degree 2 and c(x1)
is a polynomial of degree 4. This already proves that the
postulated parameterization exists.

If c(x1) does not have any real roots, the quadrics A and
B do not intersect. If c(x1) has two simple roots, the in-
tersection curve consists of one connected component and
if c(x1) has four simple roots, the intersection curve is de-
composed into two connected components. The existence of
multiple roots is regarded as a degenerate situation. 2

