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ABSTRACT

This paper presents the application of rigid body sim-
ulation for assembly tasks in a virtual environment and the
extension of this system to the real-time simulation of de-
formable cables. Presently our virtual reality tools evalu-
ate virtual prototypes based on CAD models of the design
department. We motivate the need for deformable objects,
especially cables, by practical examples and explain our
physically based simulation approach.

The physical behaviour of a cable is simulated as a
mass-spring model with generalized springs. The main
objective is a physically plausible real-time simulation for
cables of moderate complexity. In comparison to research
done in the field of cloth simulation for computer anima-
tion, cables show a very stiff bending behaviour. In or-
der to improve dynamic bending behaviour we use torsion
springs. Their restoring forces are proportional in angle
and not in elongation.

Special attention is given to the integration into the
virtual environment for assembly simulation. Collision de-
tection and response are necessary for the interaction with
rigid bodies and with input devices used by the engineer.

Keywords: virtual environments, assembly simu-
lation, physically based modeling, deformable objects, tor-
sion springs,

1 Introduction
The automotive industry is one of the leading indus-

tries concerning the application of virtual reality. Styling
and design reviews in the early stages of development are
two major applications of VR tools in daily use. These
applications take advantage of 3D visualization and im-
mersion which are given by virtual environments.

The changing development processes in the automo-
tive industry create a demand for new VR applications.
Physical Mock-Ups will be replaced in part by Digital
Mock-Ups in order to meet the demands of a higher qual-
ity and a reduction of costs and time for development. In
order to verify the digital design virtual prototyping and
physical rapid prototyping techniques complement each
another.

The task of assembly simulations is a much more de-
manding than the immersive visualization of a virtual pro-
totype. It involves complex interaction between man and
machine and requires a real-time simulation of object be-
haviour. The benefit of a virtual environment for assembly
simulation is given by the possibility of direct manipula-
tion of objects in an intuitive way.

This paper is organized as follows: A short overview
of the application field of virtual environments to assem-
bly simulations is given in section 2. In section 3, we give
a short summary of previous work. We motivate the ex-
tension to deformable bodies from practical examples in
section 4, and explain our approach of physically based
cable modeling in section 5. Section 6 discusses collision
detection for deformable bodies and describes an approach
based on distance calculation. Finally we give some con-
clusions and outline future work in section 7.

2 Virtual Assembly Simulations
The use of a virtual environment for the verification

of assembly tasks and fitting simulations can be found in
the literature since the mid 90’s. Several software systems
were developed with different approaches and main foci
depending on their application background.

Because the assembly and fitting simulation is a com-
putationally demanding task which involves several hard-
ware and software components, several large software sys-
tems have been developed, which try to fulfill the wide



range of requirements. As an example of such a system
”VADE” (Virtual Assembly Design Environment) from
the Washington State University can be mentioned [10].
It consists of several modules and is capable of supporting
a variety of VR devices. The connection of the CAD sys-
tem with the virtual environment is based on a parametric
description within the CAD system.

The integration into the process chain is only possi-
ble, if the development departments use parametric CAD
systems.

Gomes de Sá and Zachmann [4] present the integra-
tion of the ”Virtual Design 2” system into an existing in-
dustrial development process at BMW. Based on the pro-
cess chain they describe the requirements for such appli-
cations, the benefits as well as problems for the users.

The evaluation of virtual environments for these pur-
poses is still a topic of ongoing research and must be seen
as embedded in the Digital Mock-Up (DMU) strategies of
the automotive industry.

Our work is mainly influenced by research done in the
field of real-time collision detection and physically based
object behaviour. These real-time simulations are one of
the prerequisites for the simulation of assembly tasks. Our
main objective was the simulation of assembly tasks and
fitting tests in an interactive virtual environment to support
the user with an intuitive handling.

For the integration into the process chain the CAD
data must be transferred from the Product Data Manage-
ment (PDM) system and converted to suitable formats for
VR applications. Converters and tesselators automatically
prepare the VR data sets from current CAD models.

3 Previous Work
In the VR software platform ”DBView”, developed at

the Virtual Reality Competence Center (VRCC) of Daim-
lerChrysler Research, all algorithmic prerequisites for the
interactive simulation of assembly tasks with rigid bodies
exist. The software includes a real-time collision detec-
tion module [7] (which is a basic algorithmic requirement
for physically based simulation and intuitive interaction).
In addition, it contains modules for real-time interactive
contact simulation [2], real-time multibody dynamics [13]
and allows an intuitive grasping of virtual objects with one
or two datagloves [15]. The contact simulation system re-
alizes a physically plausible compliant motion of objects
if collisions occur. This allows a smooth gliding of inter-
actively moved objects along the surface of other objects
and parts. The dynamics simulation module determines
how objects in contact behave according to Newtonian dy-
namics with a special emphasis on friction effects. An in-
tuitive grasping of objects can be done with one or two

datagloves. The algorithmic approach provides interaction
methaphors which allows the grasping of virtual objects
with both hands or the precise manipulation between fin-
gers,

In contrast to the work of Fröhlich et al. [8], which
connected the users’s hand with a set of springs to the vir-
tual objects, we use a direct interaction metaphor.

Therefore our prior work focused on rigid bodies and
allows interactive assembly simulations in a virtual envi-
ronment in real-time (15-25 visualized frames per second).

4 Motivation for the Extension to Deformable
Cables
The system was intended to be used within the Daim-

lerChrysler business units, especially in the passenger car
and commercial vehicle design departments. During our
work with data sets of the design department we first en-
countered the difficulty of assembly situations involving
cables. In CAD systems cables are modeled as rigid bod-
ies, with their geometrical configuration, given by their fi-
nal spatial position at the end of the assembly task. This
leads to situations in which it is impossible to find a colli-
sion free assemby path within the virtual environment.

Up to now it was necessary for the engineer to mark
the flexible part of the geometry as ”collision insensitive”
in our simulation and to redo the assembly task. But this
allows only to check the rigid geometry. With the limita-
tion to the simulation of rigid bodies a correct verification
of objects including cables is not possible, because they do
not have a fixed shape (see figure 3).

Furthermore the simulation of deformable objects is
a prerequisite for the examination of cable installing it-
self within complex geometric environment (eg. inside the
motor compartment). Our motivation was therefore to im-
prove this situation by working towards the simulation of
deformable cables with a physically based model and by
giving them a plausible object behaviour for this kind of
applications.

5 Physically Based Modeling of Cables
Several different approaches for the simulation of

deformable bodies are used in engineering applications.
They vary greatly in exactness and computational cost.
Two of the most widely used are finite element methods
and multibody systems, but these methods often have a
different purpose. Because of the requirements of real-
time simulation (in terms of VR) and of the integration
into the assembly simulation of rigid bodies, our objec-
tives are low computational cost and a visually satisfying
object behaviour.



The modeling of deformable bodies in computer
graphics became popular in the mid-80’s. In the field of
computer animation particle systems have found a broad
range of applications. For animation purposes coupled
particle systems, often called mass-spring systems, are
widely used for cloth simulation. In this model the par-
ticles are mass points, which are connected by generalized
springs. The positions and velocities of the particles are
ruled by these springs which represent internal forces due
to material properties. Additionally, external forces deter-
mine the object behaviour with respect to eg. gravity.

From the point of VR applications one of the most
important contributions was from Barraff and Witkin [1].
Their mathematical formulation for mass-spring systems
substantively increased the numerical performance in re-
gard to run-time. The use of an implicit integration scheme
allowed much larger steps sizes and the iterative solver
exploited the sparse structure of the system of equations
and can also incorporate constraints in a very efficient
way. Desbrun [5] and later Kang [11] presented real-time
methods for moderately complex objects by using approx-
imated implicit methods. The disadvantage of these meth-
ods is the restriction to linear springs.

The use of torsion springs was proposed by Dai [3]
and implemented for a kinematic simulation of cables with
exact length preservation by Hergenröther [9].

Notation The mathematical description of these
mass-spring systems involves a mesh of n particles within
three-dimensional space. This means that a force acting
on each particle is a generalized force vector f 2 R3n . The
component acting on the ith particle is denoted by fi, and
consequently is fi 2 R

3 .
Similarly a matrix M acting on such a generalized

force vector is a element of R3n�3n and its component
Mi j 2 R

3�3 .

5.1 A Discrete Model for Continous Cables
Our first step in the mathematical modeling is the for-

mulation of a discrete model for the continous deformable
object. In terms of physics we have a discretisation in time
and in space. The physical simulation is based on a mass-
spring system, consisting of mass points connected by
generalized springs. The position of these mass points de-
fine the shape of the cable. They are the control points for
rigid segments which form the geometric representation.
The mass points are conected by stiff linear springs, which
preserve the length of the cable. Torsion springs situated
at the mass points describe the elastic bending behaviour.
Their restoring forces are proportional in angle and not in
elongation. Provot [12] proposed flexion springs, which

are linear springs connecting the ith mass point with the
(i+ 2)th mass point, but from our experiments a model
using torsion springs corresponds better to the behaviour
of cables. Figure (1) illustrates these two different spring
models. The drawback of the flexion springs is that for
small angles the length of this spring is almost 2l resulting
in a too small restoring force.
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Figure 1. Bending forces resulting from torsion springs (left) or

from linear springs of length 2l (right)

In mass-spring systems the motion of the mass points
is governed by Newton’s second law.

ẍ = M�1
�
�

∂E
∂x

+F
�

| {z }
f (x;ẋ)

(1)

In this differential equation the values of the vector
x represent the positions and the entries of the diagonal
matrix M the mass of the points along the chain forming
the cable. E is a scalar function describing the internal
energies and F represent the external forces. They form a
function of x and ẋ. By introducing an additional variable
v = ẋ to represent the velocity, we transform the second
order equation into a pair of coupled first order equations
leading to the following system of equations

d
dt

�
x
ẋ

�
=

d
dt

�
x
v

�
=

�
v

M�1 f (x;v)

�
: (2)

This equations describing a mass-spring system with
stiff linear and torsion springs form a stiff problem. For
the numerical solution of such an ODE we need an inte-
gration scheme which allows us to compute a fast solution
with a large timestep. The large size of the timestep is
not only essential for reducing computational costs, but
also because in a virtual environment the other compo-
nents (user interaction e.g. tracking, collision detection,
rendering) have a limited range of possible timestep sizes.

Even if the simulation runs as a separate process and
uses a very small timestep, this simulation would get new



data only after many timesteps, which results in increased
decoupling from the user interaction. The application of a
implicit integration method allows much larger timesteps
than an explicit Euler or Runge-Kutta method.

In order to cope with numerical problems arising from
the stiff linear and torsion springs we use a implicit Euler
scheme. Such a method leads to a nonlinear system of
equations for calculating the position and velocity changes
for the next timestep (with step size h)

�
∆x
∆v

�
= h

�
vt +∆v

M�1f(xt+h;vt+h)

�
: (3)

In order to simplify the solution of the system we lin-
earize f using a first-order Taylor series expansion

f(xt+h;vt+h) = f(xt ;vt)+
∂f
∂x

∆x+
∂f
∂v

∆v: (4)

The derivatives ∂f=∂x and ∂f=∂v are evaluated at state
(xt ;vt).

So we obtain a linear system of equations

�
M�h

∂f
∂v

�h2 ∂f
∂x

�
| {z }

A

∆v = h

�
f0+h

∂f
∂x

v0

�
| {z }

b

(5)

of the form A∆v = b, which we solve for ∆v using
the conjugate gradient (cg) method. Afterwards we simply
compute the first row of Eq.(3) ∆x = h(vt +∆v).

5.2 Forces and their Derivatives
As mentioned in the previous section we modeled our

cable as a chain of mass points connected by linear springs
for length preservation and torsion springs for bending
properties. This material behaviour is described by a scalar
energy function E(x). In order to have a simple expres-
sions to build up the equation system Eq.(5) we decom-
pose the energy function in the way that E(x) = ∑n

i=1 Ei(x)
with i as the index of the mass point. The force affecting
the ith mass point from this energy is fi(x) =�∂E=∂xi. In
order to be able to compute Eq.(5) we must calculate the
vector f and the matrices ∂f=∂x and ∂f=∂v.

Figure (2) shows some segments of the chain of mass
points. The formulation of the forces for the length preser-
vation and the bending properties is described in the fol-
lowing.
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Figure 2. Segments of the chain of mass points

5.2.1 Length Preservation The energy func-
tion for the linear spring connecting the ith and the (i�
1)th particle is

Ei(x) =
kL

2
(jxi�xi�1j� l)(jxi�xi�1j� l): (6)

where l is the rest length and kL the elastic modulus
of this spring.

The force acting on the ith particle is determined by
the incident springs. So the force as the first derivative of
the energy is

fi(x) =�
∂E
∂xi

=�

�
∂Ei

∂xi
+

∂Ei+1

∂xi

�

= kL

�
l

jxi�xi�1j
�1

�
(xi�xi�1)

�kL

�
l

jxi+1�xij
�1

�
(xi+1�xi): (7)

For the derivative ∂f=∂x we get a tridiagonal matrix
because fi depends only on (xi�1;xi;xi+1). This leads to
the formulation

∂fi(x)
∂xi

= kL

�
�I+

l
jxi �xi�1j

I�
l

jxi�xi�1j

(xi�xi�1)(xi�xi�1)
T

jxi�xi�1j2

�

+kL

�
�I+

l
jxi+1�xij

I�
l

jxi+1�xij

(xi+1�xi)(xi+1�xi)
T

jxi+1�xij2

�
(8)

and similar terms for ∂fi=∂xi�1 and ∂fi=∂xi+1.
The forces modeling the length preservation do not

depend on velocities and consequently the derivative
∂f=∂v is identical to zero.

In order to model the internal damping of the cable
we need energy dissipation. Baraff pointed out in his
work that damping terms cannot be derived from an en-
ergy expression, because this produced nonsensical results



[1]. The physical reason behind his argumentation is that
damping forces are nonconservative forces and therefore
cannot derived from a potential function (cf. eg. [14]).
A reasonable formulation of a damping force term for the
linear springs fD has to be introduced as the time derivative
of the linear spring force and not the energy. Eq. 9 gives a
suitable formulation.

fDi(x) =

kD

�
�(xi�xi�1)

(xi�xi�1)
T (vi�vi�1)

jxi�xi�1j2

�

+kD

�
(xi+1�xi)

(xi+1�xi)
T (vi+1�vi)

jxi+1�xij2

� (9)

5.2.2 Bending Properties In a similar way it is
also possible to formulate the energy and force terms for
the torsion springs, but the expressions are more compli-
cated in comparison to the linear springs. The energy of
the ith torsion spring with the elongation ϕi in terms of the
positions of the mass points is

Ei(x) =
kB

2
ϕi

2

=
kB

2

�
arctan

�
j(xi+1�xi)� (xi�xi�1)j

(xi+1�xi)T (xi�xi�1)

��2

(10)

and consequently the force acting on point i can be
expressed as

fi(x) =�
∂E
∂xi

=�

�
∂Ei�1

∂xi
+

∂Ei

∂xi
+

∂Ei+1

∂xi

�
(11)

Because of the arctan function and the cross product
the derivation of this force from the energy formulation is
much more complicated. The calculation of the derivatives
using mathematical standard software, which is capable of
symbolic calculus, leads to very complex terms because it
computes all terms with simple derivation rules and cannot
find an optimized form.

In order to simplify the expressions we define two
vectors a = (xi+1�xi) and b = (xi �xi�1) so that we can
shorthand write

ϕi = arctan

�
ja�bj

aT b

�
(12)

and express Eq.(11) as

fi(x) =�
∂E
∂xi

=�
∂Ei�1

∂ai�1
+

∂Ei

∂a
�

∂Ei

∂b
+

∂Ei+1

∂bi+1
(13)

Baraff mentioned in [1] that they used a approximated
derivative under the assumption that the length of the seg-
ments can be treated as constant due to the strong springs
which prevent stretching. But the derivations can also be
exactly computed with a moderate cost. The partial deriva-
tions of the energy expressions with respect to a and b are

∂Ei

∂a
= ϕi

∂ϕi

∂a
∂Ei

∂b
= ϕi

∂ϕi

∂b
(14)

and with the formulation of ϕi as in Eq.(12) the
derivations1 with respect to a and b are

∂ϕi

∂a
=

a� (a�b)
a2ja�bj

∂ϕi

∂b
=

b� (b�a)
b2ja�bj

(15)

and similar expressions can be found for the deriva-
tions of ϕi�1 and ϕi+1.

For the derivative ∂f=∂x we get also a banded matrix
because fi depends only on (xi�2; : : : ;xi+2).

In order to be able to compute the second derivative
of the energy expression also terms of the form ∂2ϕ=∂a2,
∂2ϕ=∂ab and ∂2ϕ=∂b2 must be calculated.

The derivation ∂2ϕ=∂a2 can be calculated as

∂2ϕi

∂a2 =
∂

∂a

�
a
a2 �

a�b
ja�bj

�

=
(aT b)(a�b)(a�b)T

a2ja�bj3

+
a2(abT +baT )�2aTb(aaT )

a4ja�bj
(16)

and in a similar way also the other partial deriva-
tives. With these expressions we can calculate all the terms
which are needed for the computation of ∂f=∂x.

5.3 Computation of the system of equations
Even if these expressions look rather complicated, one

has to keep in mind that the formulation of these forces
leads to a sparse linear system. Additionally the princi-
ple of superposition allows to compute each force sepa-
rately and add the components thereafter. The analysis of

1for the transformations of the equations we used the formulation of
the cross product a�b= a�b with a� an unsymmetric matrix and some
identities for vector and matrix products



the force equations (Eq.(6)-(16)) shows that they consist
of various subexpressions (eg. a�b = (xi+1�xi)� (xi�
xi�1)), which have to be calculated only once and can then
be stored in auxiliary variables. Because of the chain struc-
ture of the mass points these subexpressions arising from
fi and ∂fi=∂x can be partly reused for the calculation of
fi+1 and ∂fi+1=∂x

The problems of stiffness in cloth simulation mainly
arises from the stiff linear springs which prevent in-plane
stretching, but cables also have a very stiff bending be-
haviour. In order to overcome the problems of the strong
coupling of the particles the system of equations has to be
rebuilt after some cg iterations. That means that the matrix
A and the vector b is recomputed based on the new tem-
porary positions and velocities. Afterwards the iterative cg
solver is used to find the new solution for ∆v. The rebuild
of the system is necessary several times in each time step
and is a consequence of the high stiffness of the linear and
torsion springs. The advantage is the faster propagation of
forces along the particle chain.

In figure 4 we show the static end position of three
cables with different material parameters. They also dif-
fer in their dynamic bending behaviour. Figure 5 gives an
overview over the used parameters and performance.

6 Collision Detection for Cable

A lot of research has been done in the field of collision
detection. In order to reduce complexity and achieve real-
time performance for rigid objects hierarchical bounding
boxes can be used [7]. The precalculation of such hierar-
chies is not possible for a complete cable, because of the
possible large deformations. The best possible approxi-
mation is to calculate an oriented bounding box for each
segment.

In order to avoid too much tests with the dynamically
changing object we propose a different approach which
exploits the geometric property of cables. They are rota-
tionally symmetric along their axis. In order to avoid many
collision tests between the polygons of the visual represen-
tation and the rigid environment, we use a distance based
collision detection. Per segment we only have one dis-
tance calculation (vertex - environment) and (edge - en-
vironment) independent of the triangulation of the cylin-
der and sphere, which serves as the visual representation
of this segment. If the calculated distance is smaller than
the radius of the cable a collision occurs and the collision
response has to be calculated. For the fast distance calcu-
lations we used the method of Eberly [6], which is based
on the minimization of a quadratic function.

7 Conclusion and Future Work
We have presented a virtual environment system for

interactive assembly simulation. Our previous work fo-
cused on the simulation of rigid bodies including collision
detection, contact simulation and intuitive user interaction
with data gloves. The application of this system within
the business units motivated the extension of our system
towards the real-time simulation of deformable cables.

Our approach models the cable as a chain of rigid seg-
ments. The physical simulation is based on a mass-spring
system. The length preservation is modeled by stiff lin-
ear springs connecting the adjacent particles and torsion
springs, which model the dynamic bending behaviour. We
use a mathematical formulation, which allows the real-
time simulation of moderate complex cables.

Based on the work of Baraff we also use an implicit
method to calculate the next numerical timestep of the
ODE and compute the solution of the resulting linear sys-
tem of equations using an iterative solver (cg method).
In order to simulate the stiff bending behaviour of cables
we use torsion springs and show how to find appropriate
formulations in order to compute the restoring forces and
their derivatives in a real-time application. The implicit
integration scheme allows larger timesteps, but the numer-
ical stability can still not be guaranteed for all parameter
configurations.

Nevertheless the model has a lot of advantages: The
computational costs are suitable for real-time applications.
The interaction mechanism can be incorporated easily into
the model and it allows collision detection and response.
Further on it allows the modeling of different material
properties, which is important for our applications.

The main focus of further work will be the improve-
ment of the formulation in order to enhance realism of the
simulation without loosing real-time performance. The in-
tegration of the collision response into the equation sys-
tem has been sucessfully implemented for simple cases but
has to be extended for complex geometric configurations.
An important improvement will be inelastic deformations,
which are typical for cable. Next steps also include the full
integration into our ”DBView” framework and the verifi-
cation of these methods for the assembly tasks in the de-
sign departments.
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Figure 3. Cable modeled as a rigid geometry collides with the cross girder

Figure 4. Simulation of cables with different material parameters. The right end is fixed, the left end has been released under gravity.

#segments h kL
m

kD
m

kB
m #rebuilds simulation

12 0.01s 6 �103 6 3 �103 10 3ms
20 0.01s 104 12 1:25 �103 10 5.5ms
42 0.01s 2:1 �104 21 2:625 �102 10 17ms

Figure 5. Parameters for figure 4, rebuilds means the number of complete recalculation of the equation system within one timestep, performance

of simulation on a MIPS R10000/150MHz.


