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We address the complexity of computing the smallest-
radius infinite cylinder that encloses an input set of n points
in 3-space. We further report on experimental work involv-
ing an exact and a numerical strategy.

A major topic of geometric optimization is to approxi-
mate point sets by simple geometric figures. This includes
extensively studied planar problems such as smallest enclos-
ing circles, the minimum width annulus, and the minimum
width slab. In higher dimensions, there are few non-trivial
complexity results for geometric figures beyond hyperplanes
or spheres. We consider the following:

Smallest Cylinder Problem (P1): Let I be
a given set of n points in 3-space. Find a line `
which minimizes max{ d(`, c) : c ∈ I }.

Here, d(`, c) denotes the minimum Euclidean distance be-
tween c and a point of `. Cylinders constitute an important
primitive shape in computer-aided design and manufactur-
ing. For example in the area of dimensional tolerancing and
metrology (see [SV, Ya]), the task is, given a physical ob-
ject, to verify its conformance to tolerance specifications by
taking probes of its surface.

1 Summary of Theoretical Results

The heart of our approach is to consider restricted versions
of the problem, fixing one or more optimization parameters,
and using decision scheme for the restricted subproblem.
The details and other results can be found in [SSTY]. To
obtain efficient decision algorithms, it is often possible to
exploit a linearization technique. We define an

Abstract Decision Problem (D): Given a set
I ⊆ Rm of n points, decide if there exists a point
c ∈ R` such that for all p ∈ I , P (c, p) ≤ 0.

We say P (x,y) has an order k linearization if there exists
2k+1 polynomials, Xi = Xi(x) (i = 1, . . . , k) and Yi = Yi(y)

(for i = 0, . . . , k), such that P (x,y) = Y0 +
∑k

i=1
XiYi.

Theorem 1
(i) If P (x,y) has an order k linearization, the decision prob-

lem (D) can be solved in O(nbk/2c) in the algebraic model.
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(ii) In the bit model, if each input coordinate has L bits, the

problem (D) can be solved O(µ(L)nbk/2c).

In our application, our focus is the fixed-parameter prob-
lem to decide whether there exists an anchored cylinder of
given radius r that encloses all input points. We obtain
an order 9 linearization for this decision problem. Applying
theorem 1, we conclude that the fixed-parameter problem for
(P1) can be decided in time O(n4) in an algebraic model,
and in time O(µ(L)n4) in a bit model. We then obtain

Theorem 2 Problem (P1) can be solved in time:

(i) O(n4 logO(1) n) in an algebraic model; and
(ii) O(Lµ(L)n4) in a bit model.

Here, µ(L) = O(L logL log logL) denotes the complexity
of multiplying two L-bit integers. The algebraic and bit
complexity models are described in [SSTY]. We assume that
in the algebraic model, each input point c satisfies ||c|| =
O(1), and that in the bit model, the coordinates of each c
are given as homogeneous rational numbers of bit-size L.

The first result follows from an application of the para-
metric search paradigm (see eg. [Me]), and the use of a par-
allel convex hull algorithm [AGR]. For the second result,
we exploit ideas from the theory of exact computation, and
show in the bit model that the combinatorial solution of (P1)
i.e. a set of 4 or 5 points defining the smallest enclosing cylin-
der, can be obtained from an ε-approximate solution for r∗

if ε = 2−O(L). To compute this approximate solution, it suf-
fices to run the decision algorithm for the fixed-parameter
problem O(L) times, with radii of bit-size O(L) as input.

We also describe approximation algorithms for the small-
est cylinder problem. We obtain complexity trade-offs be-
tween n and ε:

Theorem 3 In an algebraic model of computing, an ε-approxi-
mate solution of (P1) can be found in times (resp.):

O(nε−2 log ε−1), O(n3ε−1 log ε−1), O(n4 log ε−1).

These algorithms are based on discretizing various sets of
input parameters. For the first bound, the direction of the
cylinder axis discretized. We give bounds on the amount
of change of the radius of the smallest cylinder for small
changes in the orientation of its axis, from which the result
follow. The second result requires yet another application
of the linearization technique. We find a decision problem
with an “intermediate” number of free parameters. The
third result is an extension of the previous theorem.

Finally, in an attempt at understanding the combinato-
rial complexity of the problem, we show that for n given
input points, there can be Ω(n) globally smallest and Ω(n2)
locally smallest enclosing cylinders.

2 Experimental Results

In this section we describe a simple optimization method and
evaluate this method for accuracy by comparing its results
against “exact” results that we obtained with maple.



Exact solution: We first treat our solution in maple and
its algebraic formulation.

A cylinder C in 3-space is specified by 5 real parame-
ters, its axis line ` and its radius r. We first specify the set
C(c1, . . . , c4) of cylinders that touch 4 given points c1, . . . , c4.
We can assume c1 = (0, 0, 0). Let u ∈ R3 be any direction
vector of `. Let E be the plane passing through the origin
and orthogonal to u, and let c∗1, . . . , c

∗
4 be the orthogonal

projection of the input points c1, . . . , c4 onto E. Then the
cylinder C passes through c1, . . . , c4 if and only if c∗1, . . . , c

∗
4

are cocircular.
A suitable parametrization for the direction vector u is

found using barycentric coordinates. Assume u is not paral-
lel to the plane containing c2, c3, c4. Let u = xc2 +yc3 +zc4,
with z = 1− x− y.

Now, let R1(x, y, z) (resp. R2(x, y, z)) be the squared
radius of the circumcircle of c∗1, c

∗
2, c
∗
3 (resp. c∗1, c

∗
3, c
∗
4) in E.

Then C(c1, . . . , c4) can be interpreted as a 2-dimensional
surface in 3-space, defined by R1(x, y, z) = R2(x, y, z). This
condition is equivalent to P (x, y, z) = 0, with

P (x, y, z) = ∆1,2,4(xz2 + x2z) + ∆1,3,4(yz2 + y2z)

+ ∆1,2,3(xy2 + x2y) + (∆1,2,4 + ∆1,3,4 + ∆1,2,3

−∆2,3,4)(xyz), where ∆i,j,k = ci(cj × ck).

In order to compute the cylinders with fixed radius r in the
set C(c1, . . . , c4), the additional condition R1(x, y, z) = r
has to be satisfied. This leads to a polynomial equation
Q(x, y) = 0, with total degree 6.

The set Cf (c1, . . . , c4, r) of all cylinders with radius r
that pass through c1, . . . , c4 is given by the set of solutions
of the system {Q(x, y) = P (x, y) = 0}, and can be ob-
tained algebraically by computing the roots of the resultants
Fx = Res(P,Q, y) and Fy = Res(P,Q, x), each of degree 12.
Hence, under certain assumptions, each cylinder is specified
uniquely by algebraic numbers of degree at most 12.

Numerical solution: Here we exploit the fact that each
axis direction uniquely determines a smallest enclosing cylin-
der. By this reduction, the optimization problem can be
viewed as a search for the minimum on a 2-dimensional sur-
face in 3-space. Each point of this surface can be obtained as
the result of a convex optimization problem. Thus, we seek
the minimum of a composed function f ◦ g. Accordingly, we
choose an optimization technique which only requires func-
tion evaluations but not computation of derivatives. We use
the standard downhill simplex algorithm [PTVF] which tries
to follow the direction of steepest descent. It is applied in
two layers, to compute the minimum of f and (recursively)
that of g.

For a given start axis, the optimization method converges
to some local minimum. To locate a global minimum, one
may choose a 2-dimensional grid of start values. But a better
choice may be to choose the set of directions of edges in the
convex hull of the input points [SSTY].

In the sequel, we shall report on some experimental re-
sults with this special set of start values. We first computed
smallest enclosing cylinders for randomly generated tetra-
hedra. In a sequence of 100 tests, at least one of the 6 con-
sidered start values (the edge directions of the tetrahedron)
led to the optimum. In two additional test sequences, we
tested 50 sets of 5 random points, and 10 sets of 8 random
points (in convex position.) Similar results were observed.

The most complex examples which we tried consisted of
12 points. The maple implementation ran several days on

these sets to find the optimum. The numerical optimization
converged within seconds for each starting value. To stimu-
late further research, we include the data as benchmarks:

Example: The 12 input points are arranged near the 12
vertices of an icosahedron with center at the origin:

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

x −12−12 9 10 23 10 −10−24 12 12 −10−8

y −19 1 −13 12 −1−21 21 1 19−1−12 12

z −6 −20−18−17−2 5 −6 2 6 20 17 18

The optimal solution has been computed by maple as
the cylinder through the 5 points c1, c3, c7, c9, c11, with ra-
dius ≈ 21.0309. The downhill simplex algorithm obtained
this solution for the starting values (c3, c1), (c3, c2), (c4, c2),
(c5, c1), (c8, c5) and (c9, c8). See [SSTY] for additional exam-
ples. To conclude this section, we observe that the proposed
downhill algorithm behaves amazingly well, and did not fail
for the examples we tried.

3 Final Remarks

As the field of geometric optimization matures, it treats
problems of increasingly non-trivial algebraic complexity.
The traditional neglect of bit complexity is no longer jus-
tified. The smallest cylinder problem is one of these prob-
lems. By combining the general linearization technique with
parametric search, we developed efficient algorithms in both
models. These results seem mainly of theoretical interest.

Our ε-approximation schemes have possibly greater prac-
tical applicability. But even here, our numerical experiments
suggest that these may not be competitive with some heuris-
tic numerical approaches. A possible reason for the effec-
tiveness of our heuristics may be that the number of local
minima is – either generally or in a randomized setting –
much smaller than the trivial bound of O(n5). Indeed, our
lower bound of Ω(n2) leaves a wide gap for further research.
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