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Abstract

State-of-the-art linear programming (LP) solvers give solu-
tions without any warranty. Solutions are not guaranteed to
be optimal or even close to optimal. Of course, it is generally
believed that the solvers produce optimal or at least close to
optimal solutions.

We have implemented a system LPex which allows us
to check this belief. More precisely, given an LP and a basis
B, it determines whether the basis is primal feasible and/or
dual feasible. It can also find the optimum starting from an
arbitrary basis (or from scratch). It usesexactarithmetic to
guarantee correctness of the results. The system is efficient
enough to be applied to medium- to large-scale LPs. We
present results from the netlib benchmark suite.

1 Introduction

Linear programming

max cT x subject to Ax ≤ b, x ≥ 0

is one of the most important algorithmic paradigms. Many
problems can be formulated as linear programs and efficient
solvers are available. Linear programs arising in practice
can be quite large with ten-thousands to hundred-thousands
of variables and/or constraints. Of course, in these large
programs the constraint matrix will be sparse. We usen,
m, andnz , to denote the number of variables, constraints,
and non-zeroes in the constraint matrix, respectively.

Existing LP-solvers do not claim to solve LPs to opti-
mality. In fact, they come with hardly any guarantee. Feasi-
ble problems may be classified as infeasible and vice versa,
a solution returned is not guaranteed to be feasible, and the
objective value returned comes with no approximation guar-
antee. Some solvers guarantee that they will give an answer.
A notable exception is the work by Gärtner [G̈ar98]. He
developed an exact LP solver (= a solver which always re-
turns the mathematically correct result), which works well
for small linear programs withmin(n, m) < 1000 as they
occur, for example, in computational geometry. His ap-
proach does not work for larger LPs arising in typical op-
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erations research applications like flight scheduling etc., as it
explicitly inverts the basis matrix. It is well known that even
if the basis matrix is sparse, its inverse is typically not sparse,
hence making the explicit inverse computation hopeless for
matrices of size1000× 1000 or more.

2 Why Reliability?

It seems natural to require that widely used software is
reliable, i.e., that its answers come with some guarantee.
Non-reliable software is hard to use, at least for non-experts.
We give just two examples.

Some of us competed in an integer linear programming
contest. We used a heuristic to compute feasible solutions
and we used linear programming to compute upper bounds.
We had found a feasible solution of value 12 and the LP
(solved with CPLEX [CPL]) gave us an upper bound of
12.99999999. We erroneously concluded our solution to
be optimal. LP-experts told us later that one should never
exploit that 12.99999999 is smaller than 13. It would have
been safe to exploit that 12.9990 is smaller than 13. How do
they know, given that the solvers come with no guarantee?

The output of LP solvers are also used to prove theoreti-
cal results in computer science. For example, in [LW99], the
authors set up a LP and used CPLEX to calculate the compet-
itive ratios of their online algorithm. What do the computed
values mean?

3 Goal, Approach and Results

Our goal is to develop techniques which allow us to solve
medium- to large-scale LPs to optimality. Our approach is
verify and repair. We exploit the fact that LP-solvers

• return a basis (= a combinatorial object) and not just an
objective value and a solution vector and that

• hopefully the basis returned is either optimal or at least
close to optimal.

We have implementedLPex. LPex comprises

• exact methods to determine whether a given basis is
primal or dual feasible and

• an exact LP-solver which can either start at a given basis
(primal or dual feasible or arbitrary) or can start from
scratch.



CPLEX solution Exact Verification
Problem RelObjErr T V Res T
25fv47 (822× 1571, 11k) 7.27e-15 2.47 0 opt 365.9
80bau3b (2263× 9799,29k) 1.42e-15 2.97 0 opt 10.68
bandm (306×472,2k) 1.43e-15 0.07 0 opt 17.72
bnl1 (644× 1175,6k) 8.05e-16 0.92 0 opt 3.57
cycle (1904× 2857,21k) 0.00e+00 0.46 0 opt 2.62
d6cube (416× 6184,43k) 9.69e-14 29.57 0 opt 51.56
degen2 (445× 534,4k) 0.00e+00 0.36 0 opt 0.96
degen3 (1504× 1818,26k) 6.91e-16 8.08 0 opt 8.79
etamacro (401× 688,2k) 1.50e-16 0.13 10 feas 1.11
fffff800 (525× 854,6k) 0.00e+00 0.09 0 opt 4.41
fit2d (26× 10500,138k) 4.25e-16 6.03 0 opt 64.02
fit2p (3001× 13525,60k) 8.50e-16 38.56 0 opt 16.03
greenbea (2393× 5405,31k) 2.05e-16 4.52 0 opt 257.23
greenbeb (2393× 5405,31k) 0.00e+00 4.35 0 opt 750.55
perold (626× 1376,6k) 5.49e-14 2.35 0 opt 1959.45
pilot.ja (941× 1988,14k) 5.92e-12 8.82 0 opt 2697.46
pilot.we (723× 2789,9k) 2.93e-11 3.8 0 opt 1654.64
scsd6 (148× 1350,5k) 0.00e+00 0.1 13 feas 0.52
scsd8 (398× 2750,11k) 7.54e-16 0.48 0 opt 1.52

Table 1: Verification of CPLEX solutions for problems in the
Netlib library. The first column gives the name of the instance, and
the number of constraints, variables,and non-zeroes. The columns
labeled T show the time (in seconds) for solving the LP with
CPLEX and the time for checking the basis return with LPex. In all
but two cases the basis returned was optimal. In the remaining two
cases the basis was at least feasible. Column V indicates the number
of violated dual constraints (= number of variables with negative
reduced cost). RelObjErr is the relative error in the objective value
at the basis returned by CPLEX, e.g., for problem pilot.we CPLEX
found the optimal basis and returned an objective value with relative
error 2.93e-11.

CPLEX Solution Exact Verif. Exact Correction
Problem RelObjErr T[sec] dCon RelObjValCor T [sec]
etamacro 1.50e-16 0.18 10 5.90e-09 2.43
scsd6 2.81e-16 0.14 13 2.38e-11 5.93

Table 2: LPex’s repair of “optimal” CPLEX bases. The column
RelObjValCor shows the relative difference in objective value
between the optimal solution and the solution returned by CPLEX.

We use the first kind of methods toverify solutions returned
by existing LP-solvers, see Table 1, and we use the exact LP-
solver to search for optimal solutions starting from the basis
returned by existing solvers, see Table 2. One can also use
LPex to solve linear programs from scratch, see Figure 3.

4 Methods

LPex comprises the following modules. All modules are
based on exact arithmetic (integer or rational or modular).

A module to discover block structure in matri-
ces [RT78]. It first computes a permutation of the columns
such that all diagonal elements become non-zero (a perfect
matching) and then computes the strongly connected com-
ponents of the directed graph defined by the matrix. The
components form the blocks and the matrix becomes block-
triagonal.

A module to compute LU-factorizations of sparse ma-
trices with integer and rational entries. The module imple-

Problem LP Solver Objective Function Value Time [sec]
fit1d0 LPex -9.1463780924209277e+03 325.77
(1.026× 24, CPLEX -9.1463780924209241e+03 0.28
13.404 nz) SoPlex -9.1463780924209132e+03 2.36

PCx -9.14637659e+03 1.19

Table 3: Timings and solution accuracy for different LP solvers.
The first incorrect figure in the objective value is shown in bold.

ments Bareis’s method and uses exact integer and rational
arithmetic.

A module to solve sparse linear systems over the ratio-
nals using Wiedemann’s method [Wie86] over finite fields
and Chinese remaindering. Wiedemann’s method paral-
lelizes with almost linear speed-up. We have achieved a
speed-up of almost 40 on a PC-cluster with 40 processors.

A module to determine whether a basis of a linear
program is primal (dual) feasible. This module uses the
preceding modules as work horses.

Three modules for solving linear programs starting from
a given basis. The modules implement the primal simplex,
the dual simplex, and the criss-cross method, respectively.

A module for solving linear programs from scratch.
A server module that allows one to verify LP-solutions

over the web. (http://www.mpi-sb.mpg.de/˜funke ).

5 Conclusions

We have shown that the verify-and-repair strategy is able
to solve medium to large LPs to optimality. The approach
exploits the fact that existing inexact LP-solvers usually give
a solution which is close to optimal. Our current approach
fails, if this is not the case. We expect that our LPex-server
will allow us to collect instances which cause difficulties
with existing inexact solvers and/or with exact verification.

The source code of the LP solver will be available soon
on http://www.mpi-sb.mpg.de/˜funke .
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