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Abstract

In an industry project with a German car manufacturer we are faced
with the challenge of placing a maximum number of uniform rigid
rectangular boxes in the interior of a car trunk. The problem is of
practical importance due to a European industry norm which re-
quires car manufacturers to state the trunk volume according to this
measure.

No really satisfactory automated solution for this problem has been
known in the past. In spite of its NP hardness, combinatorial opti-
mization techniques, which consider only grid-aligned placements,
produce solutions which are very close to the one achievable by a
human expert in several hours of tedious work. The remaining gap
is mostly due to the constraints imposed by the chosen grid.

In this paper we present a new approach which combines the grid-
based combinatorial method withSimulated Annealingon a con-
tinuous model. This allows us to explore arbitrary orientations and
placements of boxes, hence closing the gap even further, and – in
some cases – even surpass the manual expert solution.

The implemented software system allows our industrial partner to
incorporate the trunk volume in a very early stage of the car de-
sign process without relying on a repeated and cumbersome manual
evaluation of the volume.

CR Categories: J.6 [Computer-aided Engineering]: Computer-
aided Design; G.1.6 [Numerical Analysis]: Optimization—
Simulated Annealing I.6.8 [Simulation and Modeling]: Types of
Simulation—Monte Carlo; General Terms: Algorithms, Design,
Measurement

Keywords: Trunk Packing, Car Design, Simulated Annealing,
Combinatorial Optimization, Computational Geometry

1 Introduction

Geometric packing problems are of great interest to the communi-
ties of Computational Geometry (see for example [Baur and Fekete
2001; Chan 2003]) and Combinatorial Optimization (see for exam-
ple [Erdos and Graham 1975; Nelissen 1993; Dyckhoff 1990; Iko-
nen et al. 1997]) due to their great importance for industrial appli-
cations. The packing problem considered in this paper arose from

c©ACM, 2005. This is the authors version of the work. It is
posted here by permission of ACM for your personal use. Not forre-
distribution. The definitive version was published inProceedings of
the 2005 ACM Symposium on Solid and Physical Modeling (SPM 2005)
http://doi.acm.org/10.1145/1060244.1060266.

a joint project with a major German car manufacturer who is inter-
ested in measuring the volume of a trunk according to the German
standard DIN 70020. The reason for the existence of this standard is
that the continuous volume of a trunk does not reflect its actual stor-
age capacity, since the baggage to be stored is usually discrete. DIN
70020 asks for the number of rigid 200mm×100mm×50mm= 1
liter boxes, that can be packed into the trunk.

Figure 1: Physical measurement according to DIN 70020

So far this task of determining the volume of a trunk required cum-
bersome manual work by an experienced engineer who packs the
trunk by hand as seen in Fig. 1. Since design decisions also depend
on their effect to the volume of the trunk, the engineers estimate
the volume by manually placing boxes upon visual judgment with
a CAD system into a virtual model of the trunk.

An industry-strength automated solution to the problem has to meet
the following requirements:

• Boxes are not allowed to overlap with each other.

• Boxes must not pierce the boundary of the trunk by more than
a predefined threshold (which models its deformability).

• The system has to deal with any output of the CAD system:
input models as exported from the CAD system are just a set
of triangles; they might exhibit holes, dangling triangles, and
typically do not form a manifold. There is no notion ofinside
or outside the trunkin this data.

• The number of packed boxes should never fall short of the
expert’s solution by more than 1% or 10 liters.

• The solution for a problem instance should be computed
within a time-frame of about one day.

Previous Work

Automated solutions known in the past have never been able to get
close to the quality of a human expert. Ding and Cagan [2003]



published an approach that is suited for the Society of Automotive
Engineers (SAE) standard used in the USA. This standard differs
significantly from the European norm. It defines a luggage set con-
sisting of objects varying from 6 to 67 liters. Therefore, our soft-
ware has to handle far more objects than in the SAE case.

NP-Hardness of our packing problem was established in a recent
result ([Eisenbrand et al. 2003]), but still, in the same paper a first
almost industry-strength solution was presented that using a dis-
cretization model and techniques from combinatorial optimization
produced solutions very close to the ones achievable by a human
expert. It only rarely fell short of the prescribed bounds for the so-
lution quality, which was due to the fact that this algorithm only
allowed axis-aligned and discrete placements of the boxes in a grid.
For these “bad” problem instances – which for example arise in
trunks with side-compartments holding tightly a few boxes (see
Fig. 2)–, there was also no hope to obtain a better solution using
this approach, as the discretization would have had to adapt locally
to the geometry of the trunk1.

Figure 2: Arbitrary placement necessary in side-compartments next
to the wheelhouse

On the theory side, results in this area have been rather discourag-
ing. [Fowler et al. 1981] have shown that already the 2-dimensional
problem of packing axis-parallel unit squares into a polygon with
holes is NP-complete, even though approximation schemes are
available [Hochbaum and Maass 1985]. For polygons without
holes, it is conjectured ([Baur and Fekete 2001]) that the problem
is polynomially solvable. The more general problem of packing
(a×b) axis-aligned rectangles inside a polygon, is not even known
to be in NP, partly because the representation of an optimum solu-
tion might be arbitrarily complex (see [Nelissen 1993] for a elabora-
tion on the topic). The ’Open Problem Project’ website ([Demaine
et al. 2005a; Demaine et al. 2005b], problems 55, 56) keeps track
of the current status of these problems.

Our Contribution

In this paper we overcome the weakness of the previous algorithm
and present an industry-strength solution to the trunk packing prob-
lem which almost always comes very close to the manual solution
and in some cases even surpasses it. This breakthrough is achieved
by allowingarbitrary orientation and placements of the boxes, not
restricting to axis-aligned placements on a grid as in the algorithm
from [Eisenbrand et al. 2003].

Allowing such a continuous model leads to a very high-dimensional
global optimization problem for which standard methods likeSim-
ulated Annealing[Kirkpatrick et al. 1983] are typically used. Un-
fortunately, applying these techniques in a straightforward manner
yields solutions far worse than the discretization algorithm. Only
by combining both techniques we were able to obtain the industry-
strength system.

1These pathological instances were discovered when evaluating the sys-
tem from [Eisenbrand et al. 2003] in the industrial production environment.

This paper elaborates on the details of the synthesis of both meth-
ods. Roughly speaking, we were able to eliminate the heating pro-
cess typical for a simulated annealing procedure by using a solution
from the discretization algorithm as a starting configuration. Fur-
thermore we devised special procedures for creation of new boxes,
a relaxation by a Monte Carlo simulation, and pruning of undesired
boxes. Due to physical analogies, we call our methodSpecialized
Grand Canonical Simulated Annealing.

The resulting software system meets all requirements of our indus-
trial partner and is currently being installed for use in the actual
design process of new cars.

2 Modeling the Problem

We are provided with the digital data of the car trunk by a set of tri-
angles exported from a free-form CAD system. Since the original
model in the CAD system often consists of many parts which are
not necessarily tightly joined, the resulting set of output triangles
neither bound a closed volume nor do they form a manifold. This
’low quality’ of the input data requires additional care in the pro-
cessing of our algorithms. In the following section we will present
two ways to model the trunk packing problem such that optimiza-
tion techniques can be successfully applied.

2.1 Discretizing Space and Box Orientations – a Com-
binatorial Approach

The approach used in [Eisenbrand et al. 2003] proposes a dis-
cretization of space and box orientations by constructing a three-
dimensional cubic grid which approximates the interior of the
trunk. Boxes can only be placed anchored at a grid cube and in
alignment with the grid axes, so the placement of a box is deter-
mined by six parameters: the anchor cube with coordinates(x,y,z),
and the orientation(w,h,d) which describe the extension of the box
in width, height and depth (measured in unit cubes). The spacing
w̃ of the cubic grid is chosen such thatk · w̃ = 50mm for some inte-
gerk, and hence the orientation(w,h,d) can be any permutation of
the set{1k,2k,4k}. As the following stages are very sensitive to a
“good” initial placement and orientation of the cubic grid, the latter
is chosen such that the number of cubes contained in the interior of
the original trunk volume is maximized. See Fig. 3 for an example.

Figure 3: Cubic grid approximating the interior of a trunk



The slightly modified goal is now to place as many boxes in the
cubic grid such that each box consists only of cubes approximat-
ing the interior of the trunk, and no two boxes share a cube. This
problem can be formalized using the following construction: Let
G(V,E) be the graph with node setV and edge setE. There is a
nodevx,y,z,w,h,d ∈V iff the box anchored at(x,y,z) and orientation
(w,h,d) consists only of cubes in the interior of the trunk. There
is an edgee= (v,w) ∈ E iff the two corresponding box placements
of v and w intersect, i.e. share a common cube.G is called the
conflict graph. Packing the largest number of boxes in the cubic
grid is then equivalent to determining themaximum independentor
maximum stableset in the conflict graphG.

In [Eisenbrand et al. 2003], several techniques from integer linear
programming and combinatorial optimization were applied to solve
this stable set problem. This approach produced packings which
most of the time were sufficiently close to the prescribed qual-
ity bound of our industrial partner. Though, when evaluating this
system in the industrial production environment, some instances
showed up, where the results were not satisfactory.

The inherent problem of this approach is that it chooses right at the
beginning a discretization of space and orientations which might
not accommodate to the local geometry of the trunk. While some
choice of the grid axes might be suitable for most regions of the
trunk (e.g. typically it is reasonable to have two grid axes parallel
to the bottom of the trunk), there are areas where a different orien-
tation is necessary if no space should be wasted. This happens in
particular along curved parts of a trunk, see for example in Fig. 4,
where the restriction to one cubical grid system wastes a lot of vol-
ume along the curved lid (left picture) compared to a solution with
arbitrary rotations (right picture).

Figure 4: Curved lid

Similar difficulties arise in trunks with side compartments which
tightly hold a few boxes. If the grid is not aligned with these places,
volume is wasted, see also Fig. 2.

2.2 Arbitrary Placement of Boxes – a Simulated Anneal-
ing Approach

To overcome the problems with these pathological cases, we have
to extend our model to account for arbitrary positions and orienta-
tions of the boxes. In such a model the placement of a box can be
characterized by a 6-tuple(x,y,z,θ ,ϕ ,ψ) ∈ R

6 (not Z
6 as in the

discrete model). We are interested in a collection ofn such 6-tuples
such that their corresponding box placements do not overlap and
are completely contained in the interior of the trunk. The valuen
should be as large as possible such that a valid placement still exists.

Let us first focus on the case wheren is fixed, and we are only look-
ing for a valid placement ofn boxes. This 6n-dimensional problem
is far too complicated to be solved using techniques from convex
optimization, hence generic optimization techniques likeSimulated
Annealing (SA)are the method of choice. This technique can be

implemented by designing a suitablepotentialor energy function
U : R

6n → R
+
0 from possible configurations, i.e. placements of the

n boxes, to the real numbers. Valid configurations should result in
a low potential or energy value whereas invalid configurations due
to overlap or non-containment in the trunk should be assigned high
potential values. The goal is to find a global minimum (also called
ground state) of this potential functionU . The approach of SA is
to define transitions from one configuration to another and then ba-
sically start a random walk on the implicitly defined (potentially
infinite) graph. At the beginning, at “high temperature”, transitions
might happen even to configurations with a higher energy value,
but with decreasing temperature, configurations of lower energy are
preferred. In our solution we enhance the basic SA approach with
a method for growing and shrinking the size of a configuration (i.e.
the valuen).

Both, a suitable definition of a potential function for our problem
as well as some extensions to the basic SA process will be the topic
of the rest of this paper. The latter extensions were crucial for ob-
taining solutions superior to the discretization approach.

3 Simulated Annealing – Potential Function
and Basics

In this section we will derive a potential function for the trunk pack-
ing problem, give a brief overview of the employed simulated an-
nealing process and provide some details about an efficient evalua-
tion procedure for the potential function.

3.1 The Potential Function

It is natural to split the potential into two parts. On one hand we
have the penetration of the exterior that we measure by the so called
wall potential UW. On the other hand we have a contribution from
pairwise interaction of the boxes. The interaction term consists of
theintersection volume UV and theinterpenetration depth UI of two
boxes. We define our potential as a convex combination of these
three parts. Letx = (x1, . . . ,xn) be the coordinates of a configura-
tion wherexi is the set of the coordinates for boxi. Then, we have
for the potential

U(x) = λW

n

∑
i=1

UW(xi)+λV

n

∑
i=1

i−1

∑
j=1

UV(xi ,x j )+λI

n

∑
i=1

i−1

∑
j=1

UI (xi ,x j ),

whereλW,λV ,λI ≥ 0 are the respective weights for the three contri-
butions. The conditionλW +λV +λI = 1 for the convexity ensures
that we do not effectively change the temperature of the system by
reweighting the contributions during the algorithm.

In the next paragraph we develop the contribution of the pairwise
box interaction to the potential. For the sake of simplicity, we re-
strict ourselves to the two-dimensional case. The extension to three
dimensions should be straight forward.

Interaction Given two boxes by the open setsBi ,B j defined by
their coordinatesxi ,x j for position and orientation, we define the
intersection volume UV as

UV(xi ,x j ) =
∫

Bi∩B j

dV.

Using only the intersection volumeUV and neglecting the interpen-
etration depthUI in the potential would be sufficient in theory. But



the overlap is not qualified very intuitively in some exceptional sit-
uations. Therefore we do not only consider the intersection volume,
but also the penetration depth of two boxes.

b

ε ϕ

Figure 5: Motivation for penetration depth

Consider two rectangles that touch at an edge with lengthb. If
we now push the rectangles into one another byε orthogonally
to that edge, we get an overlapUV = b · ε as depicted in Fig. 5.
Now assume that the two rectangles touch by an edge and a ver-
tex. The overlap that results from a penetration ofε is given by
UV = ε2

sin2ϕ . Sinceε ≪ b the overlap resulting from the same pen-
etration is much smaller in the second case opposing our intuition.
Therefore, we define an additional measure that is more adequate
in such situations.
Definition 1. Given a metric space(X, |·|), the penetration depth
of two open sets A,B⊂ X is defined as

min{|t| : A∩ (t +B) = /0, t ∈ X}.

Informally speaking, the penetration depth is the distance that one
object needs to be translated in order to dissolve the intersection.
We set theinterpenetration depth UI (xi ,x j ) of two boxes to their
penetration depth and get a further contribution to the potential in
addition to the intersection volumeUV . We cannot simply replace
UV by UI because the latter has also its drawbacks. Consider the
left situation depicted in Fig. 5. The penetration depth is the small
vertical distanceε. If the rectangles are blocked in that direction,
i.e. that vertical moves are not permitted by the boundary or other
rectangles, then the only way to reduce the overlap is by moving
horizontally. But for a great deal of horizontal moves the potential
looks the same with respect to the penetration depth, namelyε and
thus involving a lot of iterations to get out.

Wall Potential In two-dimensional packing problems one often
has a polygon that defines the container. There it is possible to
take its complement and treat it like an obstacle. In that case the
penetration depth of the boxes with the boundary is well defined.

But this does not hold in our particular case. The data of the trunk is
given as a triangular mesh with a penetration thresholdpT for each
triangle. We may not assume any further properties on the mesh,
e.g. that it is a manifold, watertight or that the normals are oriented
consistently.

Though, we can use the principle of the penetration depth similar to
the two dimensional case, but we must adjust it to our setting. The
penetration depth for each box is defined per triangle instead of the
whole body. Thereby, it is also possible to treat certain regions

differently, e.g. the bottom of a trunk would hardly give way in
contrast to the sides where a few millimeters are always acceptable.

This introduces some problems with respect to the total potential.
We cannot just sum up the values for each triangle since then the
value would increase if the boundary is triangulated finer. There-
fore, we use the maximum of all triangles. It is also possible to use
the mean of all positive contributions.

The penetration depth for a triangle with respect to a given box is
also defined as the minimum distance to pull it apart from that box.

Thereby, the wall-potential is positive only for those boxes touching
the boundary. But this is definitely not what we want for boxes
located completely outside.

pR

p

pT

UW

outsideinside boundary

Figure 6: Wall potential of a box moving through the boundary

It is even more counter-intuitive if we think of a box moving from
the inside to the outside like illustrated in Fig. 6. Its potential in-
creases to a maximum attained when the center crosses the bound-
ary and then decreases symmetrically to zero again until it does not
touch the trunk anymore.

Therefore, we define therestricted penetration depth pR that only
considers translations that would move the box back inside the
trunk. Hence, we have to define what is inside and outside with
respect to the trunk in a way we can use it for computation. But
as pointed out earlier, there is an ambiguity in the representation of
the trunk since we cannot expect the model to be watertight.

Thus, the restricted penetrationpR is infeasible to compute. But
since it coincides with the penetration depthp in certain regions,
we just use the latter and ensure that we report “infinity” in case of
p < pR.

We define thewall potential UW in terms of a predicate that tells
us whether a box should be treated as outside the trunk and use the
maximal penetration depth otherwise, i.e.

UW(xi) =

{
∞ if outside(xi)

max{p(xi ,τ) : τ ∈ Triangles} otherwise
,

wherep(xi ,τ) is the minimum distance that the triangleτ has to be
translated such that it does not intersect the box. We must design
theoutside predicate very carefully such that it is robust but nev-
ertheless efficient to evaluate. This issue is addressed in Sect. 4.3

Observe that the contribution of a particular box to the potential
has a short range, i.e. it is completely determined by objects in
the neighborhood. We can benefit from this when evaluating the
potential.



3.2 Monte Carlo algorithm

In 1953, Metropolis et al. introduced the Monte Carlo importance-
sampling algorithm [Metropolis et al. 1953]. It’s a method that is
used in statistical physics to predict or check macroscopic proper-
ties of complex, i.e. many-body, systems that result from an as-
sumed potential.

In nature, realizations with different energies of such a statistical
ensemble do not appear with the same probability. The configura-
tions that lead to a lower potential energy are much more likely to
occur. In our case we consider the Boltzmann distribution that sug-
gest a probability for a configuration with potential energyU that is
proportional toe−βU whereβ is the inverse temperature. We treat
β simply as a parameter and only refer to its physical meaning to
get an intuition.

Since it is infeasible to enumerate all configurations, we try to limit
the evaluations of the potential to important configurations. Given a
starting configuration, we want to “walk” through the configuration
space guided by our potential. Therefore, we propose trial moves
that are accepted depending on the change in the potential. If the
proposed configuration has a lower energy we accept it with prob-
ability 1. Otherwise, we accept it with a probabilityp = e−β ·∆U

where∆U is positive. This scheme is depicted in Fig. 7.

evaluate
PotentialU1

- trial move - evaluate
PotentialU2

-else

�
�

�
�

�
�3

p = e−β ·∆U

accept

-
else

reject

?

∆U = U2−U1 > 0

oracle

Figure 7: Metropolis Monte Carlo Scheme

It is absolutely necessary to take steps that preliminary lead to a
higher energy in order to escape from local minima. This behavior
is controlled by the parameterβ . The higher its value is the more
unlikely is the worsening in terms of the potential energy.

Since the boxes in the middle are much less flexible than the boxes
at the boundary, each box has its own range from that we choose
our trial moves. We dynamically adapt these ranges by increasing
it if a move is accepted and decreasing it otherwise. Thereby, we
achieve that the acceptance settles down at 50 %.

Since the potential seen by a box does not look like the same in
every direction, we do not adjust the ranges for all coordinates in
the same way. We rather distribute the amount of the change to the
coordinates with respect to the suggested trial move.

We do not move all boxes simultaneously but one randomly picked
in each iteration.

3.3 Evaluating the Potential Function efficiently

This is the most time-consuming task in our algorithm. Profiling ex-
periments have shown that more than 90 percent of the CPU-time is
spent in the routines for the computation of the intersection volume
and the penetration depth. Again, we consider the two dimensional
case to illustrate the idea.

First, we describe a method that decides whether two rectangles
overlap. Afterwards we slightly modify that procedure by adding
little costs so that it also tells us the penetration depth. At the end
of this section, we illustrate how to compute the overlapping area.

It can be easily shown that the definition of the penetration depth is
equivalent to

min{|~t| :~t ∈ A⊕ (−B)},
i.e. in the complement of the Minkowski sum of both sets. Actually,
we do not compute any Minkowski sums here but use this technique
to prove the correctness of our approach.

By the definition of the penetration-depth of two rectanglesRi and
Rj , the minimum is attained at the borderB of the setRi ⊕ (−Rj)
which is determined by at most eight constraints that are parallel to
the sides of the two rectangles as seen in Fig. 8.

$R_i$

$R_j$
$\vec{t}$

$R_I \oplus (−R_j)$

Ri

Rj

~t

B

Figure 8: Determining the penetration depth

Since we consider the penetration depth with respect to the Eu-
clidean distance, it coincides with the radius of the maximal circle
centered at the origin that fits intoB.

By elementary geometry the vector pointing from the origin to the
boundary point is perpendicular to the corresponding face. Hence,
the direction of a translation that determines the penetration depth
is a normal of one of the faces that defineB.

By the separating axis theorem for convex polyhedra [Gottschalk
et al. 1996], these normals are either the ones of the two polyhedra
or are parallel to the cross product of an edge of the first polyhe-
dron and an edge of the second one. Since we consider rectangles
in 2D those normals are exactly the directions of the edges of the
rectangles.

Ri

Rj

Figure 9: Separating axis

We consider the projections of the objects on one of those directions
now. Hence, we have two intervals each corresponding to one of the
polyhedra. The separating axis theorem tells us further that the two
polyhedra are disjoint iff for at least one of those directions the two
intervals are disjoint.

Thus, we have a test that tells us two rectangles apart. In the worst
case it requires to test four directions since at least half of the eight



edges are parallel. As soon as we get two disjoint intervals we are
done and report that there is no overlap or the penetration depth is
zero respectively.

Furthermore, we can modify this test slightly in order to get a
method that computes the penetration depth directly at not much
more cost. Assume we test in directionk = 1, . . . ,4 and observe an
overlap oftk of the intervals that result from the projection.

Without loss of generality, we may assume thattk is positive since
otherwise we swap the roles of the rectangles. We construct a trans-
lation~tk with |~tk| = tk pointing in the direction of the projection.

~t

Rj

Ri

Figure 10: Penetration depth by projection

If we translate the corresponding rectangle by~tk the two rectangles
become disjoint because then we can place a separating hyperplane
with normal~tk between them. Recall that the value for the penetra-
tion depth is attained by a vector that points into one of the tested
direction. Thus, we simply report the minimum absolute value of
all thosetk.

Intersection volume of two boxes Since boxes are convex poly-
hedra their intersection can be simply computed by solving a halfs-
pace intersection problem. In general the intersection body consists
of trimmed facets originating from both boxes. In order to find
these trimmed facets, we triangulate the boundary of every box and
clip its triangles by the three pairs of parallel planes defining the
other box. Clipping a triangle by a plane may produce a quadrangle
which we decompose into two triangles for further clipping. This
basic geometric operation can be implemented very easily and re-
sults in a highly specialized and effective routine for determining
a setT of oriented triangles which form the boundary of the in-
tersection body. Connectivity information among these triangles is
not required for computing the desired volume: Let∆ = (~a∆,~b∆,~c∆)
denote an oriented triangle ofT then the volumeV is given by

V =
1
6 ∑

∆∈T

∣∣∣∣
1 1 1 1
~o ~a∆ ~b∆ ~c∆

∣∣∣∣ ,

where~o is an arbitrary fixed reference point.

Because of the short range of interaction, only boxes in the direct
neighborhood of a moving box constitute to its intersection volume
and penetration depth. That is why we use a uniform grid as a space
partitioning scheme to locate all potentially interfering boxes and
penetrated boundary triangles. The relatively expensive computa-
tion of the intersection volume for two boxes is only executed if the
fast disjointness test (based on the separating axes theorem) fails.
In this way we succeed in performing thousands of trial moves per
second in the Monte Carlo simulation.

Figure 11: Intersection figure by iterative clipping

4 Simulated Annealing – The Efficient Imple-
mentation

This section is dedicated to our extensions and modifications of the
simulated annealing approach. At the beginning, we take a com-
binatorial solution from the discrete model to eliminate the heating
process, i.e. we avoid to equilibrate the system at a very high tem-
perature leading to strongly disordered configurations. This issue is
described in Sect. 4.5 in more detail.

In our algorithm, we iteratively apply a sequence consisting of

• a special creation procedure for new boxes,

• a relaxation period by a Monte Carlo simulation, and

• a randomly triggered destruction of the “worst” box.

Before we explain the special creation procedure and the destruc-
tion of boxes in Sect. 4.4, we give some implementation details
that are necessary for an efficient simulation. During the relaxation
period, we select with probability of12 between translational and
rotational moves.

4.1 Translational Trial Moves

Let ∆x,∆y,∆z be three parameters defining the range

R= (−∆x,∆x)× (−∆y,∆y)× (−∆z,∆z)

from which the displacements~t 6= 0 for the trial moves are picked
uniformly at random. We do nothing in the stationary case because
it gets trivially accepted and does not give any useful information.
The potential change∆U is given by

∆U = U(~r +~t)−U(~r),

where~r is the old position and~t ∈ R the displacement of the box.
Now we consider the two cases “Accepted” and “Rejected” sepa-
rately.

Accepted In the case of an accepted trial move, we update the
position of the box and increase the parameters∆x,∆y and∆z by
multiplying by a factor of 1+ |tx|/|~t|, 1+ |ty|/|~t| and 1+ |tz|/|~t|
respectively.

Rejected If the trial move is rejected, we discard the trial move
and decrease the parameters∆x,∆y and∆z by division by a factor
of 1+ |tx|/|~t|, 1+ |ty|/|~t| and 1+ |tz|/|~t| respectively.



4.2 Rotational Trial Moves

We choose quaternions as representation for orientations and ro-
tations instead of the Eulerian anglesθ ,ϕ ,ψ because they easily
allow choosing rotations uniformly at random. For this purpose,
we consider the interpretation

q = (cosϑ ,~u·sinϑ)

which is a rotation by an angle 2ϑ about an axis represented by the
unit vector~u.

We pick a point uniformly distributed in the three dimensional unit
ball by choosing three independent uniformly distributed random
numbersp1, p2, p3 ∈ [0,1) and rejecting every triple withp2 :=
p2

1 + p2
2 + p2

3 ≥ 1. Then we generate a quaternion

δq =
1√

1+ p2
(1, p1, p2, p3)

which defines a rotation about a uniformly distributed axis.
Whereas,ϑ ∈ [0, π

4 ) covers rotations between zero and 2·45= 90
degrees. By scaling the vector~p we can control the magnitude of
the rotation, too.

Given a trial rotationδq∈ R
4, the potential change∆U is given by

∆U = U(q·δq)−U(q),

whereq∈ R
4 is the old orientation. Similar to the case of transla-

tional moves we maintain parameters∆1,∆2,∆3 to scale the com-
ponents of~p. Thereby, we effectively choose the rotational axis out
of an ellipsoid instead of a ball.

4.3 Prevention of Boxes from Escaping

As we have seen in Sect. 2.2, the penetration depthp does not suf-
fice to model the wall potential. We are interested in the restricted
penetration depthpR, but cannot compute this value due to the de-
ficiencies of the representation of the trunk. Actually, it suffices to
distinguish the casesp = pR ≤ 1

2 lmin andp < 1
2 lmin < pR in Fig. 6

wherelmin is the shortest side length of a box. In the following we
describe an approach to overcome this problem.

The goal is to develop a predicate calledoutside(~c), that reflects
the position of a box with center~c with respect to the trunk. The
predicate should returnfalse for boxes completely contained in
the trunk or for boxes with small restricted penetration depth. If the
restricted penetration depth exceeds a certain threshold, the predi-
cate should returntrue. This predicate is used to distinguish both
cases in the definition of the wall potentialUW.

We use a three-dimensional grid that segments the bounding box of
the trunk into cells. The purpose of the grid is to approximate the
space with respect to the trunk. Each grid cell belongs to exactly
one of three sets, namelyinterior, boundaryandexterior cells. The
spacingd of the grid is discussed later.

The set of boundary cells can be easily determined by computing
the intersections between grid cells and the triangular mesh of the
trunk. Next we want to identify the interior and exterior cells. We
compute connected components of grid cells not yet identified as
boundary cells. For this computation, cells are viewed as nodes of
a graph and cells next to each other are handled as adjacent nodes.

In order to ensure that regions in the interior and exterior of the
trunk do not end up in the same component, we demand that the
holes in the triangular mesh do not exceed a rectangle of sized×d.

All cells of the connected component(s) that contain(s) the outmost
layer of the grid cells clearly belong to the outside (or boundary)
and are marked as such.

Since our model is not a manifold we might still have two or more
components not yet assigned to one of the tree sets. Therefore we
require the user to specify one point in the interior of the trunk. The
cells in the corresponding component are marked as inside, all other
remaining components (if any) are marked as outside.

Given this data structure, we implement the predicateoutside(~c)
as follows. We returntrue if the center~c is not contained in the
bounding box. Otherwise, we look up the grid cell corresponding to
the query point~c and returntrue iff the cell is marked as boundary
or outside.

What remains to be discussed is the choice of the spacing parame-
terd and its influence on the predicate with respect to the restricted
penetration depth of a box. This relation is established by the fol-
lowing proposition.
Proposition 1. Given a grid with spacing d> 0 and a box with
center~c and minimum side length lmin. If outside(~c) returns
true, we have for the the restricted penetration depth pR

pR ≥ 1
2

lmin−d
√

3.

Proof. Consider the case that the cell corresponding to the center~c
is marked as boundary (see Fig. 12). The distance between~c and
the boundary is at most the diagonal of the cell, which isd

√
3. Thus

the restricted penetration depth is at least1
2 lmin−d

√
3.

lmin/2

d

outside

inside~c

≤ d
√

3

pR

boundary

Figure 12: Box center lies in boundary cell

Now consider the case that the cell of the center~c is marked as
outside (see Fig. 13). The restricted penetration depthpR is greater
or equal than the distance of the center~c to the boundary of the box,
hencepR ≥ 1

2 lmin.

The case that the center~c is not contained in the bounding box
can be handled as the second case for a grid augmented with one
additional outmost layer of cubes marked as outside.

The contraposition yields that our predicate reportsfalse for
pR < 1

2 lmin− d
√

3. Additionally, the predicate returnstrue for
pR > 1

2 lmin (since the center of such a box lies in a cell marked as
boundary or outside). Hence the spacing parameterd adjusts the
interval of “uncertainty” in which the result of the predicate is not



d

outside

pR

lmin/2

inside

boundary

~c

Figure 13: Box center lies in outside cell

solely related to the relative position of the box and the trunk, but
also to the alignment and orientation of the grid cells. The smaller
the parameterd, the smaller this interval.

On the other hand, one has to take into account the complexity of
the grid which scales withd−3. Another reason that prevents arbi-
trary small values ofd is the requirement that the triangular mesh
may not contain holes larger than a rectangle of sized×d.

4.4 Creation and Destruction of Boxes

As of yet, we have only described the simulation of ensembles with
a constant number of boxes. We have not yet explained how to
solve the maximization problem. The missing thing is the creation
of boxes and the destruction of prematurely created ones. From
a physical point of view, the simulation of a grand canonical en-
semble, i.e. an ensemble with creation and destruction of particles,
would fix this issue.

In many physical systems, we have particles entering and leaving
the region of interest depending on external conditions. The depen-
dency is expressed in the so called chemical potential, that briefly
speaking describes the energy that is necessary to add a random par-
ticle to the system or the change in the energy if a random particle
leaves. Therefore, the higher the chemical potential is, the smaller
is the probability of accepting the creation of particle at a random
position. The interested reader may have a look at Chapter 5.6 of
[Frenkel et al. 2001] for the physical background. Intuitively, the
chemical potential increases with the density of the particles in the
system.

However, it would be physically nearly impossible that the simu-
lation of such a grand canonical ensemble comes up with a valid
optimal solution. Since we deal with close packings, i.e. packings
with a very high density, the chemical potential for such a setting
would be very large, and hence the probability to create a new box
would be vanishing low, or on the other hand, the destruction of
boxes would occur too often.

Nevertheless, we can modify the creation procedure so that it finds
promising positions and orientations for new boxes and inserts them
there. An example for such a promising position can be seen in
Fig. 14. Since we may allow temporarily greater penetrations of
the trunk than the threshold in the Simulated Annealing approach,
positions for new boxes may exist due to missing cubes in the dis-
cretization which is constrained by theses thresholds. Furthermore,

promising positions may originate during the simulation, because a
nearby box has been destructed or rearranged.

Figure 14: Promising position

Creation In each iteration step we pick a box uniformly at ran-
dom and investigate its surrounding for promising positions of new
boxes. More precisely, we construct six candidate boxes and evalu-
ate their contribution to the potential function.

Each candidate for a new box is obtained by mirroring the selected
box at one of the six planes defining its boundary. Candidates out-
side the trunk as decided by our predicateoutside are rejected.
We also reject candidates that exceed thresholds for intersection
volume, interpenetration depth and penetration depth. Remaining
candidates (if any) are accepted as new boxes.

Next we describe an additional step modifying our approach above.
Consider a candidate that has been obtained by mirroring the se-
lected box at a plane that contains one of its faces of size 200mm
×100mm. Imagine an obstacle that interferes with the candidate
just slightly below our threshold. Consequently, the candidate
would be created. But if the subsequent relaxation step fails to im-
prove the situation, the just created box is likely to be destroyed
again. The heuristics would cycle between creation and destruction
of a box at that position.

Therefore we rotate the candidate and the original box by 90 de-
grees such that they cover the same space together, but changed
their orientation. By triggering the rotation randomly, we increased
the chance that a box may escape out of this situation during the
relaxation. A similar rotation is performed for candidates that orig-
inate from mirroring the selected box at the planes that contain the
faces of size 200mm×50mm. No such rotation is possible for the
remaining case with respect to the face of size 100mm× 50mm.
Candidates of this case are seldom accepted anyhow.

Destruction In each iteration step we consider the worst box, i.e.
the box that contributes most to the potential. We simply remove
the box with a probability proportional to its contribution to the
potential.

4.5 Eliminating the Heating Process

The standard simulated annealing approach requires that the system
is brought into equilibrium with a sufficiently hight temperature at
the beginning. Thereby, one can guarantee the convergence of the
method assuming a decreasing temperature which is logarithmic in
time [Nolte and Schrader 1996].



Since this implies an exponential running time, one has to use faster
schedules, e.g. a geometric one. But thereby, we experienced lots
of canting of the boxes like depicted in Fig. 15.

Figure 15: Canting of boxes

Therefore, we came up with the idea to use a combinatorial solution
as starting configuration in connection with our creation procedure.
In the following, we give a model of the configuration space that
explains the success of our method.

Lets assume that we only have uniform objects to pack like in our
real world problem. Therefore, the potential does not change by
swapping the identity of two boxes. Hence, it is sufficient to con-
sider only one representative configurationx = (s1, . . . ,sn) for all
its n! permutations wheren is the number of boxes andsi the set of
parameters that describe one box.

If we consider the statessi ,sj of two boxes in a common subspace,
then their “distance” cannot be arbitrarily close in a valid packing.
Therefore, we may assume that each state occupies a certain volume
of the configuration space. Since we are interested in a maximal
packing, i.e. a packing with a high density of states, an optimal
solution would be a close packing.

optimal solution
starting config

occupied space

Figure 16: Model of states in the configuration space

Our heuristics consists of choosing a starting configuration in a
way that yields a closest packing because thereby we can map each
state of the starting configuration to one state of an optimal solution
such that each distance is bounded. Therefore, an appropriate start-
ing configuration would be a combinatorial solution to the discrete
model with the additional constraint that it is dense in its interior.

Since the starting configuration is “near” an optimal solution but
does not match exactly, we have an additional requirement that the
combinatorial solution should be “flexible” enough, i.e. rather ho-
mogeneous in the orientation of the boxes.

Note that we still follow a cooling schedule in the course of our al-
gorithm. But by using the combinatorial solution, we are allowed to
start at a lower temperature that does not lead to a randomization of
the whole starting configuration and the related canting problems.

5 Project Overview and Evaluation

The complete project has been implemented in C++ and is portable
across today’s major system platforms. Several external libraries
have been used supporting the implementation of the user inter-
face, the visualization part as well as providing some low-level al-
gorithms and datastructures. Since our system is employed in an
industrial production environment, ease-of-use has been a major re-
quirement of our industrial partner.

5.1 Evaluation

Here we briefly report on the results we achieved with our approach
of theSpecialized Grand Canonical Simulated Annealingheuristic.

The plain results are summarized in Tab. 1 where we oppose the val-
ues achieved by a human expert, our best combinatoric solutions,
and the novel approach which is abbreviated by SGCSA. Just to get
an impression, we also added an approximate value for the continu-
ous volume in the last column. This value is the average of an inner
and outer approximation by a cubic grid with a spacing of 6.25 mm
or 12.5 mm and has been rounded to a precision of 5 liters.

A, B, C, and D denote different trunk types, ’C w/ extras’ the same
trunk as C but with a reduced volume due to control units for addi-
tional equipment like air-conditioning.

expert combinatoric SGCSA continuous
A 62 l 61 l 64 l ≈95 l
B 80 l 80 l 81 l ≈120 l
C 513 l 507 l 510 l ≈595 l
C w/ extras 480 l 475 l 479 l ≈555 l
D 499 l 491 l 493 l ≈595 l

Table 1: Some test cases

Recall that the quality restrictions of our industrial partner require
us to achieve least 99% of their best manual packing and not more
than 10 liters less. One can see in Tab. 1 that for modelsA andB,
our implementation even outperforms the expert’s solution. All so-
lutions were computed within a time-frame of one day allowed by
our industrial partner; since no user interaction is required after ini-
tializing the optimization process, this fits very well into the design
process.

6 Conclusion

We have presented an industrial-strength system which enables car
manufacturers to estimate reliably the volume of car trunks even
at an early stage of the design process. Compared to the previ-
ous system presented in [Eisenbrand et al. 2003], the main novelty
is the possibility to place boxes in arbitrary orientations and posi-
tions. The lack of the latter has shown to be a weakness of the old
system when it was evaluated in the actual production environment.
The new system has been certified using a large number of different
trunk types and proven to be of industrial strength. It is currently
being installed for use in the actual design process of the car manu-
facturer.
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