
Conservative Swept Volume Boundary Approximation

A. von Dziegielewski
Johannes

Gutenberg-Universität Mainz
Staudinger Weg 9
Mainz, Germany

dziegiel@uni-mainz.de

R. Erbes
Johannes

Gutenberg-Universität Mainz
Staudinger Weg 9
Mainz, Germany

erbes@uni-mainz.de

E. Schömer
Johannes

Gutenberg-Universität Mainz
Staudinger Weg 9
Mainz, Germany

schoemer@uni-mainz.de

ABSTRACT
We present a novel technique for approximating the bound-
ary of a swept volume. The generator given by an input
triangle mesh is rendered under all rigid transformations
of a discrete trajectory. We use a special shader program
that creates offset geometry of each triangle on the fly, thus
guaranteeing a conservative rasterization and correct depth
values. Utilizing rasterization mechanisms and the depth
buffer we then get a conservative voxelization of the swept
volume (SV) and can extract a triangle mesh from its sur-
face. This mesh is simplified maintaining conservativeness
as well as an error bound measured in terms of the one-sided
Hausdorff distance. For this we introduce a new technique
for tolerance volume computation. The tolerance volume is
implicitly given through six 2D-textures residing in texture
memory and is evaluated in a special shader program only
when needed.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling

General Terms
Algorithms, Design

1. INTRODUCTION
The swept volume (SV) is the entity of all points touched by
a solid (the generator) under the transformations of either
a continuous or discrete trajectory. It plays an important
role in NC machining verification, robot analysis and graph-
ical modeling. Car manufacturers are often interested in
swept volumes, e.g. for distance computations and clear-
ance checks between vibrating engine parts, maintainability
analysis or motion path planning. Due to increasing model
complexity and high demands concerning error tolerance,
algorithms, in the fields of computer aided design (CAD)
and digital mock up (DMU) have to process masses of data.
Since the input models often lack topological qualities, a

practical algorithm has to be stable and preferably imposes
no restrictions on the input models. For safety reasons it
is furthermore important, that an algorithm never under-
estimates the actual SV, i.e. the approximation has to be
conservative.

2. PREVIOUS WORK
Mathematical formulations describing the swept volume in-
clude Jacobian rank deficiency methods (singularity theory)
[3, 2], sweep differential equations [5, 9] and envelope theory
[19, 25], for a survey see [1]. Due to the high complexity of
our input data and the often topologically malformed input
meshes, these approaches are not easily applicable.
The authors in [20, 8] classify points belonging to the swept
volume boundary by testing intersections of a point swept
along the inverted trajectory with the generator in its ini-
tial position, but they impose restrictions on the trajectory.
Numerical approximation of swept volume boundaries uti-
lizing implicit modeling was introduced in [21]. The mini-
mal distance to the swept generator is stored using a signed
distance field, from which an approximation to the SV can
be extracted as an isosurface. In [16, 11] this implicit ap-
proach is extended to computing a directed distance field rel-
ative to the tessellated ruled and developable surfaces arising
from sweeping polyhedral surface primitives on a paramet-
ric trajectory, using the GPU. The authors compute this
directed distance field utilizing the GPU and extract the
SV via the extended marching cubes algorithm [17]. In a
recent work [27], the authors propose a less memory con-
suming adaptive signed distance field. They can guarantee
that the output mesh has the same topology as the exact SV
and can give geometric bounds in terms of the (two-sided)
Hausdorff-distance. However, since our output meshes serve
for clearance and distance checks, the one-sided Hausdorff-
distance is the appropriate (less restrictive) choice. Another
approach for reducing memory consumption is to store only
2D images of the sweep and reconstruct an approximation of
the SV from them. These image based SV-approximations,
that often utilize the depth buffer, were first introduced in
[23]. They were used for displaying purposes [14, 13, 24] as
well as for 3D mesh extraction [4]. In [4] the authors merge
depth buffer images from arbitrarily positioned cameras to
generate a point cloud of the swept volume boundary from
which a mesh can be extracted.
Our method can be seen as an extension of the latter work,
yielding an easy to implement practical method for conser-
vative error bounded SV approximation that poses no re-
strictions on the input triangle meshes and the trajectories



and is absolutely stable. We believe that it is one of a few
practical algorithm that is able to handle mass input data.

3. PROBLEM DEFINITION, OVERVIEW
A sequence of rigid body transformations (Ri)i∈I is called a
trajectory, with I being some index set. Let G ⊂ R3 be a
compact set. We define the swept volume SV (G, (Ri)i∈I)
of the generator G to be the entity of all points in R3 that
are touched by G during the sweep:

SV (G, (Ri)i∈I) =
{
ã ∈ R3

∣∣∣∃i ∈ I, ∃a ∈ G, ã = Ri(a)
}

=
⋃
i∈I

Ri(G).

Although usually in literature a trajectory is defined to rep-
resent a continuous motion, the reason for our discrete defi-
nition is that most trajectories we use are actually real world
measured data from a car manufacturer. One can think of a
continuous motion, densely sampled at uniform time steps.

The overall idea of our method is as follows: For every
transformation of the trajectory we render the input gener-
ator triangle mesh to six depth buffers with a special shader
program applied that achieves a conservative rasterization,
without clearing the depth buffers. From these six depth
buffer images we can extract a voxelization that overesti-
mates the actual SV. We can give bounds on this overesti-
mation in convex regions of the SV and in all concavities
seen from at least one of the six directions. The triangle
mesh extracted from the voxelization boundary is highly
over-tessellated. We therefore define a conservative toler-
ance volume that the mesh must stay inside during a follow-
ing simplification algorithm.
Given a set A ⊂ R3 and δ > 0 we define an offset Oδ(A)
of A to be the Minkowski sum of A and the solid ball Bδ(0)
centered at the origin,

Oδ(A) = A⊕ Bδ(0) =
{
x
∣∣∃a ∈ A : ‖x− a‖ ≤ δ

}
and an offset surface of A to be its boundary Sδ(A) =
∂Oδ(A). We call δ offset radius. Given A ⊂ [0, 1]3, closed,
a grid resolution n ∈ N and a uniform axis-oriented grid

Gn =
{

1
2n
, 3

2n
, . . . , 2n−1

2n

}3
, we call a voxel-set VI on Gn (the

midpoint of a voxel Vgi coincides with gi ∈ Gn) a voxeliza-
tion of A if for all a ∈ A ∩ Gn there exists an index i ∈ I
such that a ∈ Vgi . We say a voxelization VI is minimal if
there does not exist a voxelization of A, that is a proper
subset of VI . We further call a voxelization VI conserva-
tive if for all a ∈ A there exists an index i ∈ I such that
a ∈ Vgi . Finally, a conservative voxelization VI is said to be
minimal-conservative if no voxels can be removed from
VI without violating the conservative-condition. It is easy
to see that given a closed set A ⊂ [0, 1]3, a uniform axis-
oriented grid Gn and an offset radius δ ∈ R, greater than

half the length of a voxel-diagonal δ >
√

3
2n

, the minimal
voxelization VI of Oδ(A) is a conservative voxelization of
A. However, in general VI ist not the minimal-conservative
voxelization of A, for a counterexample see [12]. Given a
set A we want to define a voxelized volume around A that
neither deviates too far from, nor intersects it. This will be
a tolerance volume that our output mesh must stay inside
throughout the following simplification process.

Let A ⊂ [0, 1]3 be a closed set and let δ > ε > 0. We

define a conservative tolerance volume of A to be the
set Oε(Sδ(A)). One can show that the volume satisfies the
demands stated above:

Theorem 1. Let A ⊂ [0, 1]3 be a closed set and M ⊂
Oε(Sδ(A)), with δ > ε > 0. The following assertions hold:

1. (Conservativeness) The conservative tolerance volume
does not intersects the set itself,

M∩A = ∅.

2. No point in the conservative tolerance volume deviates
from the set more than ε+ δ,

h(M,A) ≤ ε+ δ.

The proof is omitted for the sake of brevity. It further holds:

Corollary 2. Given a closed set A ⊂ [0, 1]3, a uniform

axis-oriented grid Gn and δ > ε >
√

3
2n

. Further let VI be the
minimal voxelization of Oδ(A) Then it holds that

∂VI ⊂ Oε(Sδ(A)).

Corollary 2 justifies the use of the tessellated voxelization-
surface as a starting mesh for further simplification steps.
As long as we make sure, that during the simplification we
stay inside the conservative tolerance volume, Theorem 1
guarantees conservativeness and the desired error bound on
the output mesh. We want to emphasize that in the follow-

A

Oε(Sδ(A))∂VI Sδ(A)

Figure 1: Compact set A with an offset surface
Sδ(A), the voxelization of the offset surface ∂VI and
a conservative tolerance volume Oε(Sδ(A)).

ing, A must not be mistaken for the actual SV. It is rather
a superset of the SV that misses concavities not seen from
any of the six depth buffer directions.

4. CONSERVATIVE SV-BOUNDARY VOX-
ELIZATION

Karabassi et al. [15] describe an efficient depth buffer based
voxelization algorithm that relies on the rasterization mech-
anism of graphics hardware. The main idea behind their
approach is to generate a depth buffer image of the object
for each of the six normal directions of the cube’s faces and
then extract those voxels that are inside the bounds given
through the six images.
Assuming the object to be voxelized fits into the unit cube
[0, 1]3, we render the object with orthographic projection
from each of the three principal axes twice, with an n × n-
viewport set up to match the faces of the cube. The depth



D+
x

D−x

D+
y

D−y

D+
z

D−z

Figure 2: Three pairs of sweep depth buffers images.

buffer images
{
D+
x , D

−
x , D

+
y , D

−
y , D

+
z , D

−
z

}
now hold in-

formation on the regularly sampled directed distance values
from each unit cube-surface to the object’s surface in the re-
spective direction. A grid point g(i,j,k) ∈ Gn lies within the
(solid) voxelization if the following three conditions hold:

D−x (k, j) ≤ (g(i,j,k))x ≤ D+
x (k, j)

D−y (i, k) ≤ (g(i,j,k))y ≤ D+
y (i, k)

D−z (i, j) ≤ (g(i,j,k))z ≤ D+
z (i, j).

(?)

A voxelization VI of the object on the uniform axis-oriented
grid Gn with n3 grid points can now be extracted [15]. The
extension of the voxelization algorithm for the computation
of swept volumes is straightforward. The key is to render
the object to all six depth buffers for each transformation
without clearing the depth buffers (Figure 2). The voxels
extracted according to (?) from these sweep depth buffer
images form a voxelization of a superset of the volume swept
by the generator: ⋃

i∈I

Ri(G).

The method has two major drawbacks:
First, only convex parts of the SV and concavities seen from
at least one direction are voxelized correctly. Attempts to
overcome this problem have been made [4, 18]. They are pri-
marily based on the use of more depth buffer images from
other, arbitrary viewing directions and adding more depth
buffer images for each direction to allow for a higher depth
complexity. Unfortunately it causes the algorithmic com-
plexity to become proportional to the depth complexity of
the object rendering this approach impractical for our ap-
plications with highly complex meshes. Since our primary
application of the method lies in the computation of swept
volumes of vibrating engine parts for later clearance checks,
we do not consider this to be crucial and leave it to the user
to ensure that the critical parts are visible to at least one of
the depth buffer directions.
The second drawback is that like many voxelization algo-
rithms utilizing graphics hardware, this algorithm heavily
relies on the rasterization mechanism which is not conserva-
tive [10], hence we cannot expect the resulting voxelization
to be conservative. According to the OpenGL specifications
[22] a pixel is rasterized if its midpoint is occluded by the
geometry, therefore the resulting voxelization is a minimal
voxelization of a superset of the rendered model, that misses
all concavities not visible to at least one depth buffer image.

From Section 3 we know that a conservative voxelization of
a set A is given by the minimal voxelization of the offset
Oδ(A). So if we render not the object itself to the depth
buffers, but an adequate offset, we can ensure to have a con-
servative voxelization.
An attempt to overcome the problem of nonconservative ras-
terization that is similar to our approach can be found in
[10]. The authors use a combination of a geometry and
a fragment shader to achieve conservativeness, but their
method only applies rather coarse depth values, and their
computation highly overestimates depth values for triangles
with normals perpendicular to the viewing plane. Further
their method cannot render arbitrary offsets. In the follow-
ing we present a new rendering technique, that overcomes
this inaccurate depth value estimation and therefore we can
give proper bounds on the deviation from each produced
fragment to the original geometry.
Given a, b, c ∈ R3 we denote T(a,b,c) to be the triangle with
its vertices a, b, c and edges eab, ebc, eac. For an edge eab
and δ > 0 we define the solid cylinder Cδ(eab) with axis
eab and radius δ to be the set

Cδ(eab) =
{
x ∈ R3

∣∣∣ ∥∥(x− a)× b−a
‖b−a‖

∥∥2 ≤ δ2)

∧ 0 ≤ (x−a)·(b−a)
‖b−a‖2 ≤ 1

}
.

For a given triangle T(a,b,c) with normal n = (b−a)×(c−a)
‖(b−a)×(c−a)‖

we define an offset-prism of T(a,b,c) to be the convex hull of
the two shifted triangles T(a+δn,b+δn,c+δn) and T(a−δn,b−δn,c−δn):

Pδ(T(a,b,c)) = CH
{

a+ δn, b+ δn, c+ δn,

a− δn, b− δn, c− δn
}
.

The offset to a triangle T(a,b,c) equals the union of three
spheres, three cylinders and a prism:

Oδ(T(a,b,c)) = Pδ(T(a,b,c)) ∪ Cδ(eab) ∪ Cδ(ebc)
∪Cδ(eac) ∪ Bδ(a) ∪ Bδ(b) ∪ Bδ(c).

The straightforward method to compute and tessellate this
geometry for every triangle, is not practical in the case of a
high triangle count. We therefore present a new approach to
efficiently compute and render the exact offset geometry up
to pixel resolution. The original mesh can easily be compiled
in a display list and resides in graphics memory. A combi-
nation of a geometry shader and fragment shader computes
the depth-values of fragments of the offset boundary on the
fly, hence no extra storage is needed.
We process every triangle with the following pipeline: First
the vertex shader passes on the vertices of the triangle to
the geometry shader stage without changing anything. The
geometry shader creates a patch for each edge of the trian-
gle in the xy-plane and also emits the two triangles of the
offset prism in 3D. The patches of the edges however still
have a depth value according to z = 0, hence we calculate
the correct depth value for each patch-fragment with a ray
casting method. We now give a detailed description of the
shaders:
The geometry shader is able to create new primitives (in our
case triangles) that are passed on to the rasterization stage
just as primitives directly rendered by OpenGL. In the gen-
eral case we emit eight triangles per input triangle: two
for each edge-patch and two triangles for the offset prism.
For each edge eab of the triangle we compute a rectangular



Figure 3: For each edge of the triangle projected to
the xy-plane, a patch is constructed in the geome-
try shader stage and the appropriate depth values
are computed in the fragment shader (blue, red).
Together with the shifted triangle (green), the final
offset surface is rendered, and dispensable fragments
(black) are clipped.

patch that is a bounding box of the orthogonal projection of
the δ-balls Bδ(a), Bδ(b) and the δ-cylinder Cδ(eab) onto the
viewing plane. The geometry shader computes and emits
the triangles of the tessellated patch. The triangles of the δ-
offset prism can be computed by shifting the vertices a, b, c
by δ once in normal direction and once in the opposite di-
rection. The rectangular faces of the prism are not needed,
since they are completely occluded by the cylinders.
The fragment shader has to discard fragments that are out-
side the offset and apply correct depth values to all oth-
ers. In the case of a fragment belonging to a triangle of
the prism, the z coordinate of the built-in fragment coor-
dinates is correctly interpolated by hardware and can be
mapped directly to the output depth value just like in the
fixed function pipeline. For the computation of the correct
depth value for a patch-fragment f we define the line ẽab as
the edge eab extended to infinity and the endless cylinder
Cδ(ẽab) = Oδ(ẽab), given in implicit form:

Cδ(ẽab) =
{
p ∈ R

∣∣∣ ∥∥(p− a)× (b− a)
∥∥2 ≤ δ2‖b− a‖2

}
.

The intersection of the ray

r(λ) =

 fx
fy
0

+ λ

 0
0
−1

 , λ > 0

with ∂Cδ(ẽab) yields the quadratic equation∥∥∥(f − a− λez)× (b− a)
∥∥∥2

= δ2‖b− a‖2

that we can solve for λ.
So far we have only considered an endless cylinder with axis
eab. To get the correct offset Sδ(eab), we need to clip the
cylinder at a and b and intersect r(λ) with the balls Bδ(a) or
Bδ(b) respectively. If the ray neither intersects the (clipped)
cylinder, nor the balls, we discard the fragment. This only
happens in the corners of the patch, as shown in Figure 3.
Using this shader programm we are able to render offset
surfaces for highly complex meshes at interactive rates on
consumer graphics cards (GeForce GTX 280). A compa-
rable non-GPU-approach, to calculate and tessellate offset
spheres, cylinders and prisms at a preprocessing stage for
later rendering, is not only significantly slower and less ac-
curate (due to tessellation errors) but would produce an ex-
orbitant number of triangles and therefore exceed the ren-
dering capacity of even modern graphics hardware.

For a conservative swept volume voxelization using the afore-
mentioned algorithm, we need to compute and render the
offset

Oδ(SV (G, (Ri)i∈I)),

which is problematic, since

SV (G, (Ri)i∈I)

is implicitly described, hence not given through a triangle
mesh. The solution lies in the definition of the offset and
the distributivity of the Minkowski sum:

Oδ(SV (G, (Ri)i∈I)) =
⋃
i∈I

(
Oδ(Ri(G))

)
.

We see that it makes no difference if we voxelize the off-
set of a swept generator or voxelize the swept offset of the
generator.

5. MESH EXTRACTION AND SIMPLIFICA-
TION

We can easily extract a triangle mesh from the surface of a
voxelization, as computed in the last section, since it consists
of rectangular voxel-faces. But it is highly over-tessellated
for fine voxelizations and therefore impractical for later us-
age, hence a rigorous triangle decimation is inevitable. We
present in this section a simplification method that retains a
one-sided Hausdorff distance error bound and fits perfectly
into our framework, as it uses the six depth buffer images to
compute the tolerance volume.
The mesh extracted from the voxelization does not self in-
tersect, has correctly oriented triangles and has neither holes
nor T-junctions. However, in general it is not 2-manifold,
since it lacks two topological properties: A vertex can be
adjacent to more than one triangle-fan and an edge can be
adjacent to more than two triangles. Since in practice these
degeneracies have shown to occur rarely, we call the result-
ing mesh mostly manifold according to [7].
As we are primarily interested in constructing a mesh for fur-
ther clearance or distance checks we do not require the mesh
to have any topological qualities other than being water-
tight.
We need a mesh-simplification method that is able to cope
with the two degeneracies mentioned above and does not rip
holes in the mostly manifold mesh. According to [7] the edge
collapse operator fits adequately. During an edge collapse
two adjacent vertices are merged and the two (or more in
the case of degeneracies) triangles bounded by the edge are
deleted. However, due to the locality of the operation, main-
taining a global error bound during multiple edge collapses
is challenging.

We follow an approach similar to [26, 6]. The authors pro-
pose to generate a tolerance volume around the input mesh
in a preprocessing step that does not deviate from the sur-
face more than ε. They check after each candidate sim-
plification step, if the affected triangles are still inside the
volume, i.e. if the candidate edge collapse is valid. If not,
the simplification step is reversed.
This ensures, that the directed Hausdorff distance from all
triangles produced during the simplification process to the
initial mesh is bounded by ε.
In [6] the check is done utilizing the GPU: The tolerance



volume is implicitly given by a precomputed distance field,
that resides in GPU memory in form of a 3D texture. All
triangles affected by a candidate simplification step are ren-
dered and a special fragment shader maps the correspond-
ing distance value to each fragment, i.e. the distance field is
evaluated on the triangles. Only the fragments outside the
distance bound ε are written to the framebuffer and detected
using occlusion queries. A simplification step is valid, if no
fragment passes the occlusion test.
A problem arises in the case of sharp features (smaller than

the sampling density �
√

3
2n

) that can be missed, since the
error is only measured in terms of the directed Hausdorff
distance. However, this is not a problem in our case as we

are only voxelizing offset surfaces (with δ >
√

3
2n

), that have
no sharp features by definition.
Still, this approach has two drawbacks: Both, computational
time and storage for the distance field, grow as n3 with n
being the grid resolution.
We can circumvent these two drawbacks, since the inside-
outside condition (?) partitions [0, 1]3 into the interior of
the approximate SV and the exterior. To decide if an inner
(outer) point p lies inside the conservative tolerance volume,
we check whether the ball Bε(p) contains at least one point
from the outer (inner).
This check is done in the fragment shader by testing uni-
formly distributed sample points in Bε(p). This way it can
happen that a fragment is falsely classified to be outside
the tolerance volume, but we will never falsely consider a
fragment to be inside the tolerance volume. Therefore we
can assure that the simplified mesh stays within the toler-
ance volume. The six depth buffer images from Section 4
are copied to GPU texture memory and accessed by each
fragment independently via OpenGL texture sampling.
Unfortunately, sampling of textures introduces inaccuracies,
since we have only the correct depth values for the texel-
midpoints. An inner (outer) sample point can be falsely
classified to be outside (inside), because the midpoint of its
containing voxel (given through the 6 texels) is flagged out-
side. Therefore the maximum error introduced by texture-

sampling is σ1 =
√

3
2n

, with n being the grid resolution.
To guarantee a uniform rasterization of the triangles for the
fragment generation, each triangle is mapped to the stan-
dard triangle scaled with the length of the longest edge of
the triangle. The texture coordinates are set accordingly to
the actual positions of the triangle’s vertices in [0, 1]3 and
passed on to the shaders. The sampling of the scaled stan-
dard triangle introduces further inaccuracies: the maximum
spatial deviation from a point on the a triangle to its nearest

sample-point is at most
√

2
2n

. Altogether the overall maxi-

mum sampling error turns out to be σ = σ1 +σ2 =
√

2+
√

3
2n

.

6. ERROR ANALYSIS
Due to the additional sampling error σ, we choose an offset
radius δ used for the conservative voxelization of the swept
volume, and a tolerance ε, such that

δ > ε+ σ and ε >

√
3

2n
.

with n being the resolution of the voxelization grid and δ
being the offset radius.
Following Corollary 2 we chose the starting mesh to be the
tessellated boundary of the voxelizationMS = ∂VI that lies

inside the conservative tolerance volume MS ⊂ Oε(Sδ(A)).
It holds the conditions from Theorem 1, i.e. the starting
meshMS does not intersect the swept volumeMS ∩A = ∅
and no point of MS deviates from the swept volume more
than ε+ δ

h(MS ,A) ≤ ε+ δ.

We then apply the simplification method onM described in
Section 5. We call (Mj) the sequence of meshes emerging
in the course of the simplification procedure. Since we took
care of the additional maximum inaccuracy σ when choosing
the offset radius, the mesh simplification algorithm main-
tains conservativeness for all Mj . We see this by replacing
ε with ε + σ in Theorem 1. Unfortunately this also means
that we have

h(Mj ,A) ≤ ε+ δ + σ, for all j.

Hence, when setting the parameters ε and δ appropriately,
our method guarantees the resulting mesh to be a conserva-
tive approximation of the swept volume boundary, that does
not deviate more than ε + δ + σ from the swept volume at
all convex areas and visible concavities.
In practical applications we choose tight bounds, i.e. ε =

√
3

2n

and δ = 2
√

3+
√

2
2n

. We therefore get a global error

εglobal =
2
√

3 +
√

2

n
.

Setting εglobal as an a priori error bound yields a sufficient
grid resolution of

n =
2
√

3 +
√

2

εglobal
.

7. PRACTICAL RESULTS
We demonstrate the capabilities of the method with real
world scenarios. We used a 3.0 GHz CPU with 4 GB of
RAM and a GeForce GTX 280 with 1 GB.
In the first scenario, the movement of a steering gear relative
to a neighboring engine part unit was recorded during a test-
drive, in the second the vibration of an engine part (oil pan)
was recorded and the third is an engine assembly path that
was planned with DMU. The results are shown in Figure 5.
The trajectories consist of NT transformations and models
are given as triangle meshes consisting of Tmodel triangles.
For the voxelization we used different grid resolutions n.
The overall time for our method ttotal is the sum of the
time needed for voxelizing the swept volume tvox and for
the subsequent simplification process tsimp. The starting
mesh consisted of Tstart triangles and the final output mesh
(as shown in Figure 4) of Tfinal triangles. The global error
εgobal has to be interpreted as a fraction of the SV’s bounding
cube edge length.

8. CONCLUSIONS
We have presented a novel technique for approximating the
boundary of a swept volume. The algorithm is stable and
can handle any kinds of malformed input triangle meshes.
We have presented a new rendering technique for conserva-
tive rasterization with correct depth values and a mesh sim-
plification method utilizing a low memory consuming tech-
nique.



Figure 4: Swept volume approximations of steering gear unit and assembly path (n = 1500).

model trajectory swept volume boundary computation
name Tmodel NT n tvox(min) tsimp(min) ttotal(min) Tstart Tfinal εgobal

Steering gear 261,807 27,442 1,500 231 37 268 3,478,888 29,916 0.00325
1,000 168 4 172 1,533,728 10,336 0.00488
500 167 0.5 168 378,044 3,780 0.00976

Oil pan 102,513 9,112 1,200 29 49 78 9,053,512 26,390 0.00407
800 27 19 46 5,074,452 19,966 0.00610

Engine assembly 328,417 194 1,500 2 66 68 3,941,092 104,880 0.00325

Figure 5: Results for real world scenarios used for testing our method.

As we took special care of the demands from a car manu-
facturer, we believe that our method has the potential to be
integrated into existing CAD programs.

9. REFERENCES
[1] K. Abdel-Malek, D. Blackmore, and K. Joy. Swept volumes:

Foundations, perspectives, and applications. International
Journal of Shape Modeling, 23(5):1–25, 2004.

[2] K. Abdel-Malek and H.-J. Yeh. Geometric representation of the
swept volume using jacobian rank-deficiency conditions.
Computer-Aided Design, 29(6):457–468, 1997.

[3] K. Abdel-Malek and H.-J. Yeh. On the determination of
starting points for parametric surface intersections.
Computer-Aided Design, 29(1):21–35, 1997.

[4] J. Ahn and S. J. Hong. Approximating 3d general sweep
boundary using depth-buffer. In ICCSA (3), pages 508–517,
2003.

[5] D. Blackmore and M. C. Leu. Analysis of swept volume via lie
groups and differential equations. Int. J. Rob. Res.,
11(6):516–537, 1992.

[6] M. Botsch, D. Bommes, C. Vogel, and L. Kobbelt. GPU-based
tolerance volumes for mesh processing. In Pacific Conference
on Computer Graphics and Applications, pages 237–243, 2004.

[7] J. D. Cohen. Concepts and algorithms for polygonal
simplification. SIGGRAPH 99 Course Tutorial, Interactive
Walkthroughs of Large Geometric Datasets, 20:C1–C34, 1999.

[8] H. Erdim and H. T. Ilieş. Classifying points for sweeping solids.
Comput. Aided Des., 40(9):987–998, 2008.

[9] W. Guoping, S. Jiaguang, and H. Xuanji. The sweep-envelope
differential equation algorithm for general deformed swept
volumes. Computer Aided Geometric Design, 17(5):399 – 418,
2000.

[10] J. Hasselgren, T. Akenine-Möller, and L. Ohlsson. GPU Gems
2, chapter Conservative Rasterization, pages 677–690.
Addison-Wesley Professional, 2005.

[11] J. C. Himmelstein, E. Ferre, and J.-P. Laumond. Swept volume
approximation of polygon soups. In ICRA, pages 4854–4860,
2007.

[12] J. Huang, R. Yagel, V. Filippov, and Y. Kurzion. An accurate
method for voxelizing polygon meshes. In VVS ’98:
Proceedings of the 1998 IEEE symposium on Volume
visualization, pages 119–126, New York, NY, USA, 1998. ACM.

[13] Y. Huang and J. H. Oliver. NC milling error assessment and
tool path correction. In SIGGRAPH ’94: Proceedings of the
21st annual conference on Computer graphics and interactive
techniques, pages 287–294, New York, NY, USA, 1994. ACM.

[14] K. Hui. Solid sweeping in image space application in NC
simulation. The Visual Computer, 10(6):306–316, 1994.

[15] E.-A. Karabassi, G. Papaioannou, and T. Theoharis. A fast
depth-buffer-based voxelization algorithm. J. Graph. Tools,
4(4):5–10, 1999.

[16] Y. J. Kim, G. Varadhan, M. C. Lin, and D. Manocha. Fast
swept volume approximation of complex polyhedral models. In
SM ’03: Proceedings of the eighth ACM symposium on Solid
modeling and applications, pages 11–22, New York, NY, USA,
2003. ACM.

[17] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel.
Feature sensitive surface extraction from volume data. In
SIGGRAPH ’01: Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, pages
57–66, New York, NY, USA, 2001. ACM.

[18] G. Passalis, I. Kakadiaris, and T. Theoharis. Efficient hardware
voxelization. Computer Graphics International Conference,
0:374–377, 2004.

[19] M. Peternell, H. Pottmann, T. Steiner, and H. Zhao. Swept
volumes. Computer-Aided Design Appl., 2:599–608, 2005.

[20] J. Rossignac, J. J. Kim, S. C. Song, K. C. Suh, and C. B.
Joung. Boundary of the volume swept by a free-form solid in
screw motion. Comput. Aided Des., 39(9):745–755, 2007.

[21] W. J. Schroeder, W. E. Lorensen, and S. Linthicum. Implicit
modeling of swept surfaces and volumes. In VIS ’94:
Proceedings of the conference on Visualization ’94, pages
40–45, Los Alamitos, CA, USA, 1994. IEEE Computer Society
Press.

[22] M. Segal and K. Akeley. The OpenGL Graphics System: A
Specification (Version 2.1), chapter 3: Rasterization, page 122
ff. 2006.

[23] T. Van Hook. Real-time shaded nc milling display. SIGGRAPH
Comput. Graph., 20(4):15–20, 1986.

[24] A. S. Winter and M. Chen. Image-swept volumes. Comput.
Graph. Forum, 21(3), 2002.

[25] Z. Xu, Z. Chen, X. Ye, and S. Zhang. Approximate the swept
volume of revolutions along curved trajectories. In SPM ’07:
Proceedings of the 2007 ACM symposium on Solid and
physical modeling, pages 309–314, New York, NY, USA, 2007.
ACM.

[26] S. Zelinka and M. Garland. Permission grids: Practical,
error-bounded simplification. ACM Transactions on Graphics,
21:2002, 2002.

[27] X. Zhang, Y. J. Kim, and D. Manocha. Reliable sweeps. In
SPM ’09: 2009 SIAM/ACM Joint Conference on Geometric
and Physical Modeling, pages 373–378, New York, NY, USA,
2009. ACM.


