
Optimal Parallel Recognition of Bracket Languages on

Hypercubes

Gisela Pitsch Elmar Schömer
Lehrstuhl Prof. G. Hotz

Fachbereich 14 – Informatik
Universität des Saarlandes

D-6600 Saarbrücken, West Germany

Abstract

Bracket languages play an important role in the syntax
analysis of programming languages. We investigate the
parallel recognition and analysis of these languages as
a first step towards a parallel working compiler. The
main result consists in the design of an appropriate al-
gorithm, which can be executed on hypercubes as well
as on related bounded degree networks. In the aver-
age case we can achieve an optimal speed-up, meaning
that q processors together can analyse bracket words
of length N in time O(N/q), if we restrict ourselves to
employing no more than

√
N processors.

1 Introduction

The basis for most programming languages are Context–
Free languages. It is well known that CFL’s can be
recognized in polylogarithmic time using a polynomial
number of processors [Rei], but these results are far
from being optimal with respect to the speed-up.
Bracket languages as an important subclass of CFL’s
are also studied in the literature. So far the unique par-
allel algorithms for the recognition of bracket languages
have been developed by Bar-On/Vishkin [BaVi], Ryt-
ter/Diks [RyDi] and Rytter/Giancarlo [RyGi]. They
use PRAM’s as their model of parallel computation.
In contrast to them our algorithms are well suited
for an implementation on a hypercube and its derived
fixed degree networks such as the Cube–Connected–
Cycles [PreVu] or the Perfect–Shuffle computer [St].
Our first algorithm uses a parallel sorting subroutine,
whereas the second one is based on the paradigm of
“divide & conquer”. In the worst case their computa-
tion times only differ by logarithmic factors from the
optimum. But the most remarkable thing about these
efficient algorithms is that they exhibit an optimal be-
haviour in the average case: The theory of Random
Walks enables us to give a good characterization of the
structure of bracket words in the average case. By that
means the design of the algorithms was guided. It goes
without saying that parallelism can only be exploited
up to a certain degree. The analysis of an input of

length N can be accomplished in average time O(N/q),
but no more than q =

√
N processors are permitted.

2 Basics

Our model of parallel computation is the hypercube.
Although it is less powerful than the PRAM models it
does not lack a certain universal character. Through-
out the discussion, we let Cn denote the n–dimensional
hypercube with q = 2n processors, represented by the
set of all binary numbers in {0, 1}n. The n2n−1 com-
munication lines of Cn connect processors with identity
numbers differing in precisely one bit. The dimension
of a line is the bit position (0 to n − 1) in which the
incident processors differ.
In the plane this interconnection pattern looks as fol-
lows:

0. Dim.

1. Dim.

2. Dim.

0 1 2 3 4 5 6 7
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

Ci denotes an i-dimensional subcube of the log q-
cube (0 ≤ i ≤ log q) consisting of 2i processors,
whose id’s are successively enumerated from j · 2i to(
(j + 1) · 2i − 1

)
for any j, 0 ≤ j < 2log q−i. Each

such Ci can be divided into two subcubes of dimen-
sion (i − 1). Let Ci := L(i−1)R(i−1). L(i−1) covers
those processors of Ci, where the bit (i − 1) equals 0
(in the plane these ones represent the left half of all
processors), whereas R(i−1) stands for the other (right)
processors.
X represents a finite set of opening brackets and X the

corresponding set of closing brackets with X ∩X = ∅.

1

A pair (x, x) ∈ X ×X is corresponding, if the brackets
are of the same kind. This can be represented as a
relation τ ⊆ X ×X with |τ (x)| = 1 for all x ∈ X.

We investigate words w ∈
(
X ∪X

)∗
. If two brackets

forming a pair are directly neighboured, they may be
cancelled. This corresponds to the calculation of the
residual classes of

(
X ∪X

)∗
modulo τ . A sequence of

brackets w is correctly nested, if and only if w/τ = ε.
We call the set of all w ∈

(
X ∪X

)∗
satisfying this

condition D (according to the Dycklanguage [HoEs]).
In order to represent the input sequence of brackets
w ∈

(
X ∪X

)∗
, we use the function depth. It associates

with each bracket wj (0 < j ≤ |w|) the depth of the
nesting at position j of the input. Drawing the image
of this function yields a kind of mountain as in figure 1.
Let w[p] be the sequence of brackets the processor with
id p contains. Then w(Ci) := w[j · 2i] · w[j · 2i + 1] ·
. . . · w[(j + 1) · 2i − 1] for any j, 0 ≤ j < 2log q−i.
Consequently, |w(Ci)| denotes the length of the portion
governed by all processors of Ci together.

Our aim is now to determine whether a given w ∈(
X ∪X

)∗
represents a word of the Dycklanguage D.

3 First Algorithm

The customary sequential method for the recognition
of the Dycklanguage uses a stack. During the analysis
of the word from left to right an opening bracket is
put onto this stack and a closing one is tested whether
it matches the bracket on top of the stack. In this
case a cancellation takes place. Otherwise the input
is rejected. The depth of the stack corresponds to our
function depth. The depth of a Dyckword starts and
ends at level 0 and in between it must not sink below
this value.
The other well known method is the recognition by
a Two–Way–One–Counter Automaton [HoMe]. It pro-
vides us with the key idea for a parallel approach to the
problem: The corresponding counterpart to an open-
ing bracket is the first bracket at the same depth–level,
which succeeds this bracket.
We can get all the brackets at the same level of nesting
within the input by drawing a parallel to the abscissa
at this distance. The intersection points between the
function and this parallel are related to these brackets.
Figure 1 shows the graph of the depth–function for a
correctly nested word and all matching pairs at level 2.
Our aim is to permute the brackets of the input, so that
corresponding brackets will be neighbouring inside the
same processor. Then a final local test will suffice to
solve the problem.
The solution is now evident: we sort the brackets wj
(0 < j ≤ |w|) according to the key (depth(w, j), j).
The resulting situation is as we wanted it to be if each
processor obtains an even number of brackets.

Let the brackets of the input w ∈
(
X ∪X

)∗
, |w| = N ,

all be uniformly distributed over the q ∈ N processors
available. Then we get the following:

ALGORITHM1:

(1) calculate depth(w, j) for all 0 < j ≤ |w|
(2) sort the brackets wj according to the key

(depth(w, j), j), 0 < j ≤ |w|, in increasing order

(3) run over the bracket sequence local in a proces-
sor while comparing brackets immediately neigh-
boured

(4) tell everyone the result of all the comparisons

We now look at the single steps in detail.

Realisation

Let L be the maximal length of a word per processor.

Step(1) is based on the procedure Parallel Pre-
fix [FiLa] and local calculations. One has to calculate

all initial sums Sj =
∑j

i=1
si 1 ≤ j ≤ |w|, where

si = +1 for an opening bracket and −1 for a closing
one. All this takes a time of O(log q + L).

Step(2) uses the procedure Columnsort by Leigh-
ton [Lei]. It was chosen because it renders it possible
to sort in optimal time, if only a small number of pro-
cessors is given. Its implementation on the log q-cube
is straightforward because it only needs two different
actions:

(a) sorting of an array internal to each processor,
which costs O(L · logL) operations, and

(b) exchange of information via the network; there are
just two fixed permutations necessary correspond-
ing to a shift and a transposition of a matrix; they
all need no more than O(L · log q) time.

In order to guarantee correctness, we are only allowed
to put q ≤

√
L/2 + 1 processors into action [Lei].

Step(3) does not need more explanations. Its compu-
tation time is O(L).
The result of all the comparisons is contained in a
boolean variable which is true if and only if the cor-
respondences are all right or not.

Step(4) can be realized by using Parallel Prefix,
where each initial sum corresponds to the boolean and
of the results from step (3). This procedure costs
O(log q) time.

Time complexity in the worst case

The time needed by ALGORITHM1 depends on the
maximal length of a word per processor. Since L ≤
dN/qe, the total running time of ALGORITHM1 comes

to O(N/q · log q) by using q ≤ 3
√
N/2 processors on a

synchronous log q-cube.

The restrictive processor bound resulting from Column-
sort can be further extended by using the more so-
phisticated sorting procedure Cubesort [CySa] so that
parallelism can be better exploited. We get the follow-
ing

2

�
�
�
�

��
��

��@
@@

@
@@

@
@@

〈 [(} }) 〈 {))](] { {) (〉 (} [〉

5

i

depth(w, i)

-

6

6 66 666

Figure 1: Brackets at the same level of nesting

Theorem 1 The Dycklanguage D can be recognized in
O(N/q · log q) time by using q < N1−ε, 0 < ε < 1,
processors connected as a log q-cube. N = |w| denotes
the length of the input w ∈

(
X ∪X

)∗
.

4 Second Algorithm

Another way of deciding the word problem for the Dy-
cklanguage consists in the calculation of the reduced
word. Later on it will become apparent that this
method will be of a more general use than the method
of the first algorithm.

�
��A
A
AA�
�
�
�A
A
AA�
��AA�
�
��A
A
A�
��AA
A
A
A�
�
�AA�
�
�
�
�A
AA��

· · ·
Ci

Figure 2: General structure of the algorithm’s in-
put

A
AA�
�
�
�
��

· · ·
Ci

Figure 3: Reduced word

The brackets of the input are distributed uniformly
over the processing elements available because their ca-
pacities should all be used. An input w ∈

(
X ∪X

)∗
to the algorithm can now be illustrated as in fig-
ure 2. Therefrom it has to calculate the reduced word
w′ ∈ X∗X∗ as shown in figure 3. This means: it has

to remove all the peaks contained in the mountain.
Hereby each peak corresponds to a certain number of
opening brackets and their closing counterparts. The
correctness of the procedure is derived from:

Lemma 1 [HoEs]
Let u ∈ D. It holds:

v1uv2 ∈ D ⇐⇒ v1v2 ∈ D

Every peak removed corresponds to such an u.

The idea of the algorithm is based on the paradigm of
“divide & conquer”. In order to understand its appli-
cation, let us look again at the function depth:

�
��A
A
AA�
�
�
�A
A
AA�
��AA�
�
��A
A
A�
��AA
A
A
A�
�
�AA�
�
�
�
�A
AA��

· · ·
L(i−1)

· · ·
R(i−1)

Figure 4: Situation given

Figure 4 shows a situation in a subcube Ci, where a se-
quence of brackets has been divided into two portions
of equal length. The problem is solved for both in par-
allel by recursively removing the peaks local to the
respective portion (see figure 5). There are 2i proces-
sors. Half of them are working together on one portion
by calculating the reduced word of their portion sepa-
rately.
The remaining brackets have to be distributed again on
the processors available. The fact that each one now
gets a smaller number of brackets is represented by a
smoother slope in figure 6. In addition the slope has to
be the same on both sides of the separation in order to
allow a correct cancellation. This means that proces-
sors at the same distance from the separation line on
both sides have to own the same number of brackets.
Let γCi denote this number for the considered subcube
Ci. The portion where the most brackets remain after
a cancellation determines this number.

3

AA��
��

�� AA
A
AA��

�
��

��

· · ·
L(i−1)

· · ·
R(i−1)

Figure 5: Removing the peaks

γCi :=
⌈

1

2i−1
·max

{
|w(L(i−1))|, |w(R(i−1))|

}⌉
In general the first processors of Li−1 or the last pro-
cessors of Ri−1 will not get the full quantity. But we
should not get confused with these subtleties here. A
detailed description can be found in [Pi].

ll,
,
,
,,l

l
l
ll,

,
,
,
,
,

· · · · · ·

desired connections connections given

Figure 6: Situation after a distribution

Now we want to cancel again. In doing so we have to
take the structure of the network into consideration,
because the test as to whether two brackets form a pair
or not can only be executed via these connections. We
would like to have them between processors situated
at the same distance from the separation line on both
sides. But there are only connections in the (i− 1)-th
dimension leading from a processor p ∈ L(i−1) to the
processor with the id (p+ 2(i−1)) ∈ R(i−1).
The solution consists in a reversion of one of the two
portions. Now the cancellation is easy via the existing
connections, as we can see in figure 7.

,,

l
l
l
ll

l
l
l
ll,

,
,
,
,
,

· · · · · ·

Figure 7: Obvious cancellation

The reversion itself can directly be realized on the hy-
percube by using its recursive definition:

Definition 1 Let w ∈
(
X ∪X

)∗
. The reversion wR

of w is formally defined by

wR :=

{
w if |w| = 1
vRuR w = uv; u, v 6= ε

Figure 8 shows the information stream on the network.
It is obvious that the time needed is proportional to the
number of dimensions the brackets have to go through
times the maximal number of brackets per processor
during the step, because they all have to go through
the connection successively.

0 1 2 3 4 5 6 7

4 5 6 7 0 1 2 3

6 7 4 5 2 3 0 1

7 6 5 4 3 2 1 0

HHHHHHHH

HHHHHHHH

HHHHHHHH

HHHHHHHH��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��

��
��

��
��HHHH

HHHH ��
��

��
��HHHH

HHHH

��HH ��HH ��HH ��HH 0.dimension

1.dimension

2.dimension

Figure 8: Reversion

Subsequent to the cancellation we have to restore the
order of the brackets. This can be done by one more
reversion since this is an operation inverse to itself. For
the result see figure 9.

ll
ll,

,
,
,
,
,

· · ·
L(i−1)

· · ·
R(i−1)

Figure 9: Result of the i-th recursion

With one more distribution we get the situation de-
manded at the beginning. The distribution itself is
achieved by the following procedure:

(a) calculate the id of the processor each bracket has
to reach

(b) route the brackets to these processors via the in-
terconnection network

By summing up all observations made so far we get
the following recursive procedure which calculates the
reduced word corresponding to the input of a subcube.
The symbol “‖” between two operations will signal that
these two actions are done in parallel.

4

ALGORITHM2

procedure reduce w(Ci)
begin

if i = 0
then

(1) use the sequential algorithm
else

/∗ let Ci := L(i−1)R(i−1) ∗/
(2) reduce w(L(i−1)) ‖ reduce w(R(i−1))

/∗ result: w(L(i−1)), w(R(i−1)) ∈ X∗X∗ ∗/
(3) calculate |w(L(i−1))| ‖ calculate |w(R(i−1))|
(4) determine

γCi :=
⌈

1
2i−1 ·max

{
|w(L(i−1))|, |w(R(i−1))|

}⌉
(5) distribute w(L(i−1)) ‖ distribute w(R(i−1))

so that ∀p ∈ L(i−1), R(i−1) |w[p]| = γCi

(6) reverse w(L(i−1))
(7) cancel corresponding brackets via the connec-

tions of dimension (i− 1) between

L(i−1) and R(i−1)

(8) reverse w(L(i−1))
fi;

end;

The whole algorithm for a log q-cube is started by “re-
duce w(Clog q)”.

Realisation

We now have a closer look at each single step of the
algorithm.

Let li be the maximal amount of brackets a processor
contains during the i-th step of the recursion and T (i)
be the time needed by a call reduce w(Ci). It consists
of the following components:

Step(1) obviously needs O(l0) = O(N/q) operations.

Step(2) is a recursive call of the procedure. That’s
why it takes time T (i− 1).

Step(3) uses Parallel Prefix to determine the
number of the brackets which are still remaining in-
side the 2i−1 processors working together. Therefore
the total time needed here is O(i).

Step(4) calculates the number of brackets each pro-
cessor has to get as was described before. It costs con-
stant time.

Step(5):

(a) By knowing the results of step (3) and (4) the
calculation of the destination processor for each
bracket can be done by local operations in O(li)
time.

(b) In the case N = q, the routing corresponds to a
concentration process of the brackets. That is why
all the communication requests are of a special
kind. If each bracket is moving to its destination
along the shortest path, it is possible to show that
there are no traffic jams. This was done by [NaSa]
using O(i) operations on an i-dimensional cube.

We generalize their procedure for smaller q ∈ N
and achieve a running time of O(i · li) at the
i-th step of the recursion. Supplementary it is
necessary to show there that during the routing
the maximal number of brackets per processor
increases at most by a constant factor. This is
proved in [Pi].

Steps(6) and (8) are evident according to the expla-
nation before. They both cost O(i · li).
Step(7) consists of an examination of every single
bracket contained in a processor, what can be done
by O(li) operations.

By summing up the running-time over all levels of re-
cursion we obtain

Ttotal(N, q) = O

(
N

q

)
+

log q−1∑
i=1

O(i · li)

Time-Complexity in the worst case

At the beginning each processor gets at most dN/qe
brackets. Even if there is not any cancellation possible
up to the last recursion, the bound for li remains ≤
dN/qe for all 0 ≤ i < log q. The use of this estimation
results in the total time needed by our algorithm of

Ttotal(N, q) = O

(
N

q
· log2 q

)
At first glance this algorithm seems to be computa-
tionally inferior to the first one. An average case study
however will disprove this conjecture. But let us first
look at the first algorithm in order to demonstrate how
the analysis works.

5 The average case

The speed-up of q
log q

in the first algorithm can be im-
proved by a factor of log q, if all the processors carry
out a simple preprocessing:
They first eliminate those sequences illegally nested by
the calculation of the function depth. Afterwards each
one determines the reduced form of its input separately.
All this costs only O(log q+ N

q
) additional operations.

It will be shown in the sequel that this simple strategy
shortens the length N of the original input to q ·

√
N in

the average case. Due to this drastic reduction we can
now afford to apply an expensive sorting procedure.
If we use for example Bitonic Sort we can achieve
O(
√
N log2 q) sorting time. If we examine these costs

together with the preprocessing, we see that we can
accelerate our algorithm by the optimal factor. But

we must restrict ourselves to employing at most
√
N

log2 N

processors.
Now we investigate why the local cancellation may
cause such a significant reduction of the input length.
Notice that inputs illegally nested needn’t be consid-
ered anymore because they were eliminated before.

5

Let us have a closer look at the structure of the re-
maining words. Therefore, we use the function depth
for a given w as in figure 10.
The y-coordinate of the highest peak of the image cor-
responds to the maximal depth Dmax of the input w.
We can draw a parallel to the x-axis at distance Dmax.
Every part of the function image is now lying in be-
tween the x-axis and this parallel.
It follows that the reduced words emerging from the
preprocessing have a length at most 2 ·Dmax indepen-
dent of their previous lengths because all reduced words
are elements of X

∗
X∗.

As far as the maximal depth of a Dyckword is con-
cerned, we know the following fact from the theory of
Random Walks:

Theorem 2 [Ke]
Assuming that all Dyckwords w ∈

(
X ∪X

)∗
, |w| = N ,

are equally likely the average maximal depth of such
a w is asymptotically given by

De(N) =
√
πN/2− 1

2
+O

(
ln (N)/N

1
2−δ
)

for all δ > 0.

The function given here corresponds to the expected
value of the term

max
0<j≤N

{depth(w, j)}

As it can easily be seen, this theorem is also true for
any sequence of brackets where the nesting given by
the function depth corresponds to that of a Dyckword.
This means that the expected value of Dmax is De(N).
Using the above reflections we can state as already
mentioned that the length of the input reduces to q·

√
N

in the average case.

Let us go on to the second algorithm. The reduction
of the input at the beginning plays an important part
there as well. But in addition the remaining brackets
are distributed uniformly after each cancellation.
There are 2i processors working together during the
recursion (i− 1). And at the end of the recursion the
brackets left (≤ 2 · Dmax) are distributed uniformly.
The maximal amount of brackets each processor gov-
erns remains unchanged starting from this point un-
til the end of the next recursion. Knowing all this
we can conclude that during the i-th recursion for all
0 ≤ i < log q it holds:

li ≤
⌈

2 ·Dmax
2i

⌉
Analogous with the above procedure we can identify
Dmax and De(N).
Substituting li through

⌈
2 ·De(N)/2i

⌉
in Ttotal(N, q)

results in

Ttotal(N, q) ≤ O(
N

q
+ log2 q +

√
N)

This means that by using q ≤
√
N processors we can

achieve an optimal speed-up.

The smoother the slope of the function depth is, the
faster the number of brackets per processor will be re-
duced and the earlier it will be possible to finish a step
of the recursion. One possibility consists of running
the network asynchronously. But it is also possible to
determine global synchronisation points by calculating
the maximal depth of the input first.

As result we get:

Theorem 3 Let w ∈
(
X ∪X

)∗
, |w| = N , and let q ≤√

N processors be given. The question as to whether
w represents a Dyckword can be decided in an average
computation time of O(N/q), when the processors are
connected as a log q-cube.

There is still another fact known about the maximal
depth of a w ∈ D:

Theorem 4 [Ke]

The variance of the maximal depth of a Dyckword with
length N defined as a random variable is

σ2(N) = (π/3− 1)πN/2 + 1
12

+ 5
18
π2 − 11

12
π

+O
(

ln (N)/N
1
2−δ
)

for all δ > 0.

This can be used to calculate Prob(|Dmax−De(N)| ≥
2 ·De(N)) for any given w ∈ D, |w| = N . This value is
≤ 0.06. The result is that the algorithms are optimal
in at least 94% of all possible cases because a deviation
of three times the expected value would not affect the
average running time.

Their efficiency becomes even clearer, if we consider
the fact that most of the nestings actually used are not
very deep, e.g. in programming languages.

Conclusions

The first algorithm is conceptually simpler and in the
worst case it only needs time O(N

q
· log q) on a log q-

cube, whereas the other one needs O(N
q
· log2 q) there.

But in order to obtain an optimal speed-up in the av-
erage case ALGORITHM2 can use more processors.

In addition the second algorithm determines the re-
duced form of inputs w ∈

(
X ∪X

)∗
, where w 6∈ D,

and it can be generalized to solve the word problem
for free groups. The necessary modifications confine
to the cancellation process. In [Pi] it is shown that
the worst case complexity is not affected. (In a free
group we are allowed to cancel xx and xx. This corre-
sponds to the calculation of the residual classes relative
to (τ ∪ τ−1).) After all, there is no problem to han-
dle a modified cancellation relation with τ ⊆ X × X
arbitrarily chosen.

6

�
�
�
�
�
� �
�
�
��

�
�
�
�
�
�
�
�
�

�� �
�
�
�
�
�
��

�
�
�

�
�
�
�
�
�

�
�
�
��

�� ��

CC

C
C
C
C
C
C
CC

C
C
C
C
C
C CC

C
C
C
C
C
C
C
C
C
CC

C
C
C

C
C
C
C
C
C

C
C
C
CC CC CC
C

depth(i)

0 N i

Dmax

-

6

Figure 10: Maximal depth of a Dyckword

Acknowledgements

The authors gratefully acknowledge Prof. Dr. Günter
Hotz for his comments and suggestions concerning this
research. They also thank Prof. Dr. Bernd Becker,
Thomas Burch, Andreas Nikolaus, Uwe Sparmann and
Wolfgang Vogelgesang for a lot of helpful discussions.

References

[BaVi] I. Bar-On, U. Vishkin: Optimal Parallel Gen-
eration of a Computation Tree Form. ACM,
Trans. Prog. Lang. and Syst. Vol. 7, No. 2,
April 1985, pp. 348-357

[CySa] R. Cypher, J.L.C. Sanz: Cubesort: An Op-
timal Sorting Algorithm for Feasible Parallel
Computers. LNCS 319, pp. 456-464

[FiLa] M.J. Fischer, R.E. Ladner: Parallel Prefix
Computation. J. Ass. Comp. Mach., Vol.
27, 1980, pp. 839-849

[HoEs] G. Hotz, K. Estenfeld: Formale Sprachen.
Bibliographisches Institut (1981)

[HoMe] G. Hotz, J. Messerschmidt: Dycksprachen
sind in Bandkomplexität logn analysierbar.
Techn. Rep. A75/1, Universität des Saar-
landes, 1975

[Ke] R. Kemp: Fundamentals of the Average Case
Analysis of Particular Algorithms. Wiley-
Teubner (1984)

[Lei] T. Leighton: Tight Bounds on the Complex-
ity of Parallel Sorting. IEEE Trans. on com-
puters, Vol. C34, 4, April 1985, pp. 344-354

[NaSa] D. Nassimi, S. Sahni: Data Broadcasting in
SIMD Computers. IEEE Trans. on comput-
ers, Vol. C30, 2, Feb. 1981, pp. 101-107

[Pi] G. Pitsch: Effiziente parallele Verfahren zur
Entscheidung des Wortproblems bei Dyck-
sprachen. Master’s Thesis, Universität des
Saarlandes, Saarbrücken, 1989

[PreVu] F. Preparata, J. Vuillemin: The Cube-
Connected Cycles: A versatile network for
parallel computation. 20th FOCS (1979), pp.
140-147

[Rei] J. Reif: Parallel time O(log n) acceptance of
deterministic cfl’s. 23rd FOCS (1982)

[RyDi] W. Rytter, K. Diks: On optimal parallel com-
putations for sequences of brackets. Work-
shop “Sequences”, Positano, June 1988

[RyGi] W. Rytter, R. Giancarlo: Optimal parallel
parsing of bracket languages. Theoretical
Computer Science 53 (1987), pp. 295-306

[St] H. S. Stone: Parallel processing with the per-
fect shuffle. IEEE Trans. on computers, Vol.
C20, 2, February 1971, pp. 153-161

7

