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ABSTRACT
The Bentley-Ottmann sweep-line method can be used to
compute the arrangement of planar curves provided a num-
ber of geometric primitives operating on the curves are avail-
able. We discuss the mathematics of the primitives for pla-
nar algebraic curves of degree three or less and derive effi-
cient realizations. As a result, we obtain a complete, exact,
and efficient algorithm for computing arrangements of cubic
curves. Conics and cubic splines are special cases of cubic
curves.

The algorithm is complete in that it handles all possible
degeneracies including singularities. It is exact in that it
provides the mathematically correct result. It is efficient in
that it can handle hundreds of curves with a quarter million
of segments in the final arrangement.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—geometric algorithms ; G.1.5 [Numerical
Analysis]: Roots of Nonlinear Equations—methods for poly-
nomials; D.m [Software]: Miscellaneous—robust geometric
computation
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1. INTRODUCTION
The Bentley-Ottmann sweep-line method [3] can be used to
compute the arrangement of planar curves. One only has to
provide a number of geometric primitives (break the curve
into x-monotone pieces, given two curves compute their in-
tersections, compare two intersections or endpoints lexico-
graphically, etc.). The “only” is the crux of the matter. In
principle, the problem is simple, since the first-order theory
of real closed fields is decidable by Cylindrical Algebraic De-
composition [9]. An efficient realization is another matter.

We discuss the mathematics of the primitives for cubic
curves, i.e. planar algebraic curves of degree three (or less)
and derive efficient realizations. Conics and cubic splines are
special cases of cubic curves. We obtain a complete (it han-
dles all possible degeneracies), exact (it provides the math-
ematically correct result), and efficient (it can handle hun-
dreds of curves with a quarter million of resulting segments)
sweep-line algorithm for computing planar arrangements of
cubic curves.



Complete, exact, and efficient implementations for the lin-
ear case exist, e.g., in LEDA [24, ch. 10.7], and in the planar
map [17] and Nef-polyhedron [28] classes of CGAL. How-
ever, existing implementations for curved objects are either
incomplete, inexact, or not aimed at efficiency except for
some recent work on circle and conic arcs (see below). For
cubic curves we are not aware of any complete, exact, and
efficient implementation.

With only minor modifications our geometric primitives
can also be used to realize the randomized incremental ap-
proach. Our implementation can be easily extended to com-
pute arrangements of cubic segments and to perform regu-
larized boolean operations on polygons bounded by them.

2. PREVIOUS WORK
Our work is influenced by the work of three different com-
munities: Computer Aided Design (CAD), computational
geometry, and computer algebra. The problem of comput-
ing intersections of curves and more generally surfaces has a
long history in CAD. The CAD community concentrated on
approximate solutions by numerical methods. Exact solu-
tions were never an issue, for example, it was never the goal
to distinguish between a tangential intersection and two in-
tersections lying very close together. Complete and exact
implementations have been addressed only recently. MAPC
[23] is a library for exact computation and manipulation of
algebraic curves. It offers arrangements of planar curves but
does not handle all degenerate situations.

Arrangements, mostly of linear objects, are also a major
focus in computational geometry; see the survey articles of
Halperin [?] and Agarwal/Sharir [2]. Many exact methods
for curved objects, e.g. [1], have been formulated for the
Real RAM model of computation [26], which allows unit-
time operations on arbitrary algebraic numbers and conceals
the high cost of exact arithmetic with algebraic numbers.

A more realistic view was taken by Sakkalis [27] and Hong
[22]. Both analyze the topology of a single real algebraic
curve. They do not consider the interaction between pairs
of curves and the full algebraic machinery they develop is not
necessary for cubic curves. Aspects of the crucial problem to
capture behavior at irrational points by rational arithmetic
were treated by Canny [8] (Gap Theorem) and Pedersen [25]
(multivariate Sturm sequences). The running time of both
methods is quite high.

Predicates for arrangements of circular arcs that reduce all
computations to sign determination of polynomial expres-
sions in the input data are treated by Devillers et al. [13].
Recent work by Emiris and Tsigardias [16] discusses some
predicates on conics in this style; see also [15] in this vol-
ume. However, these approaches do not extend easily to
more complicated curves.

Exact, efficient, and complete algorithms for planar ar-
rangements have been published by Wein [30] and Berberich
et al. [4] for conic segments, and by Wolpert [31] (see also
[19]) for special quartic curves as part of a surface inter-
section algorithm. A generalization of Jacobi curves (used
below for locating tangential intersections) is described by
Wolpert [32].

3. OUR RESULTS
What are the difficulties in going from straight lines and
straight line segments to conics and further on to cubic

curves? The main distinction is the field of coordinates.
For straight line segments with rational endpoints all ver-
tices have rational coordinates. In the case of higher degree
curves, the coordinates are, in general, irrational algebraic
numbers.

The field of real root expressions (FRE) is the closure of
the integers under the operations +, −, ∗, /, and k

√
for

arbitrary but fixed k; it is a subfield of the real algebraic
numbers. Reasonably efficient methods [11, 6] are available
to compute in FRE and to compare expressions in FRE.
Since the k

√
operation is restricted to real roots, general

polynomial equations of degree ≥ 3 are not solvable in FRE.
The sweep-line algorithm works on x-monotone segments.

Lines and line segments are x-monotone, conics need to be
split at points of vertical tangent, and cubic curves need to
be split at points of vertical tangent and at singularities.
These terms are defined formally in Section 4. Computing
and analyzing singularities is a challenging problem that first
becomes relevant for algebraic curves of degree three. The
coordinates of the split points are rational numbers in the
case of line segments, are in FRE for conics, and are outside
FRE for cubics. Thus comparisons between endpoints are
more complex.

The x-monotone segments have parameterizations y(x),
according to the Implicit Function Theorem. In the case
of line segments, y is a linear function of x, and for conics,
y(x) can be expressed using one square root. This allows for
a simple comparison of the y-coordinates of different arcs
within FRE. The x-monotone segments of cubics have no
parameterization as functions of x within FRE and hence
much of the machinery developed for conics does not carry
over. Section 5 on choosing a generic coordinate system
prepares the stage for performing the analysis of one cubic
curve, which is the subject of Section 6.

We turn to pairs of curves. Two lines intersect in a single
point with rational coordinates. Two conics intersect in up
to four points. In the case of a tangential intersection, the x-
coordinate of the intersection belongs to FRE and can even
be written as an expression involving a single root. In other
words, only the coordinates of transversal intersections are
outside FRE. No such simplification holds for cubic curves
and hence we need to work a lot harder. We deal with the
analysis of a pair of curves in Section 7.

In Section 8 we put everything together and discuss high-
level issues of the Bentley-Ottmann sweep as applied to cu-
bic curves.

We conclude with a discussion of running time from a
theoretical (Section 9) and especially an experimental (Sec-
tion 10) point of view. There is a full implementation of our
algorithm. For a detailed treatment, see [14].

In our exposition, we focus on curves of degree exactly 3.
The extension to lines and conics is straightforward.

4. TERMINOLOGY
Let f ∈ Q[x, y] and Zero(f) := {(α, β) ∈ R2 | f(α, β) =
0}. The set of points Zero(f) is called the algebraic curve
defined by f . If the context is unambiguous, we will often
identify the defining polynomial of an algebraic curve with
its zero set. A cubic curve (or cubic for short) is a curve of
degree 3 (or less). An algebraic curve can always be defined
by a square free polynomial f ∈ Q[x, y], meaning that no
non-constant square divides f . A polynomial f = fn(x) ·
yn + fn−1(x) · yn−1 + · · ·+ f0(x) ∈ Q[x, y] is called y-regular



if fn(x) is a non-zero constant. This is a sufficient criterion
for the absence of vertical asymptotes.

The gradient vector of an algebraic curve f is defined to
be ∇f := (fx, fy), where subscripts denote partial deriva-
tives. A point (α, β) of f is called singular if (∇f)(α, β) =
(fx(α, β), fy(α, β)) = (0, 0), otherwise it is non-singular. At
singular points, several arcs of one curve intersect. Beware
that some or all of them may be complex and puncture the
real plane only at this point.

We call a non-singular point (α, β) ∈ R2 of f vertical
if fy(α, β) = 0. Vertical points have a vertical tangent.
A non-singular point (α, β) ∈ R2 of f is named a flex if
the curvature of f becomes zero in (α, β): 0 = (fxxf2

y −
2fxfyfxy +fyyf2

x)(α, β). A vertical point that is not a flex is
called extreme, since its x-coordinate is minimal or maximal
among the neighboring points on the curve.

Two curves f and g are coprime if they do not have a
common non-constant factor. W.l.o.g., we assume that this
is the case for every pair of curves f and g we consider.
Coprimality can be tested and established by a bivariate
gcd computation.

A point (α, β) is called an intersection point of f and g if it
lies on f as well as on g. It is called a tangential intersection
point of f and g if additionally the two gradient vectors are
linearly dependent: (fxgy − fygx)(α, β) = 0. Otherwise one
speaks of a transversal intersection point. Two intersection
points (α1, β1) 6= (α2, β2) are covertical if α1 = α2.

5. COORDINATE SYSTEM CONDITIONS
Some of the properties discussed above are inherent in the
geometry of a curve and remain invariant under changes of
coordinate systems (e.g. a point being a flex or a singularity),
whereas others (such as verticality of a tangent) come from
a specific choice of coordinates.

To simplify the analysis of curves and curve pairs, we
impose conditions on the coordinate system that exclude
certain degenerate choices. We check that the conditions
are satisfied, and if not, we change coordinates suitably
by shearing. Almost all choices of a coordinate system (a
generic coordinate system) will do, as discussed in the Ap-
pendix. The algorithm remains complete, since there is no
restriction of the geometric situations it can handle.

The conditions imposed on each curve f are these:

• The curve f is y-regular.

• There are no vertical flexes on f .

• All tangents at singularities are non-vertical.

The following conditions are imposed on every curve pair
{f, g} which is analyzed:

• No two (complex) intersection points of f and g are
covertical.

• No two real intersections or real extreme and singular
points of f and g are covertical.

• No intersection point is extreme on either curve.

• The curve fxgy − fygx is y-regular, and none of its
extreme and singular points is covertical or equal to a
non-singular intersection of f and g with multiplicity 2.

• If f is a product of three lines such that two of them
are complex and intersect in a non-singular point of
g, then the intersection of fy and g in this point is
transversal.

The meaning of the last two conditions will become clear in
Section 7.

Note that the position conditions come from the analy-
sis of curves, not from the carefully formulated version of
the sweep-line algorithm we use [24, ch. 10.7]. Covertical in-
tersection points are no problem for our method as long as
they do not involve the same two curves. As far as the con-
ditions relate to pairs of curves, they only affect pairs that
interact geometrically and those needed while searching the
Y-structure of the sweep algorithm.

W.l.o.g., we also require the curve’s defining polynomial to
be square free. If not, assuming f to be y-regular, we obtain
the square free part of f as f/ gcd(f, fy). Remember that
we also demanded coprimality for all pairs of input curves.

6. ANALYZING ONE CURVE
To perform the analysis of one curve f , we demand the un-
derlying coordinate system to be generic with respect to f
as described in Section 5.

With the goal of sweeping in mind, we wish to investi-
gate the behavior of a single cubic curve f at any given
x-coordinate x0, meaning the number and relative position
of its arcs along the line x = x0. Algebraically this means
that we are interested in the number and order of the real
roots of f(x0, y) ∈ R[y]. Using the Implicit Function The-
orem, one obtains that the arcs of f evolve smoothly as
we vary x0, except for the intersection points of f and fy.
Their x-coordinates are called the critical points of f . Since
f and fy are coprime algebraic curves, they intersect in a
finite number of points (at most 6=deg(f)(deg(f) − 1) by
Bézout’s Theorem). In summary we obtain:

Lemma 1. Consider the behavior of a y-regular curve f ∈
Q[x, y] as x varies over R. There is a finite number of crit-
ical points and of open intervals with constant behavior be-
tween them. Critical points can be found by intersecting f
and fy.

In the absence of vertical flexes the critical points of f
are the x-coordinates of extreme (Figure 1 (i)) and singular
(Figure 1 (ii)) points. Collectively, we call them one-curve
event points.

Figure 1

(i)

(ii)

For degree reasons, a cubic curve f can never have two
covertical one-curve event points:

Lemma 2. Let f be a y-regular cubic curve. No two in-
tersections of f and fy are covertical.

Proof. Any intersection point (α, β) is a double root of
f(α, y) ∈ R[y] which has degree < 4.

To obtain the x-coordinates of the intersection points of
f and fy we eliminate the variable y using a well-known al-
gebraic tool: the resultant. Given two curves f, g ∈ Q[x, y],



the resultant res(f, g, y) ∈ Q[x] of f and g with respect to
variable y has the following characteristic property [12, §3.5]:

Proposition 3. Let f, g ∈ Q[x, y] be y-regular curves. A
number α ∈ C is a root of r := res(f, g, y) if and only if
there exists β ∈ C such that f(α, β) = g(α, β) = 0.

Corollary 4. If f and g have no covertical intersections
in C2, then the correspondence between intersection points
and roots of r is bijective, every real root of r corresponds
to a real intersection point, and the multiplicity of a root is
the multiplicity of the corresponding intersection.

Corollary 5. The critical points of a y-regular cubic
curve f are precisely the real roots of res(f, fy, y).

We factor this resultant by multiplicities, i.e. res(f, fy, y) =Qk
i=1 ri

i such that the ri ∈ Q[x] are square free and pairwise
coprime [18, ch. 8]. The roots of r1 are the x-coordinates of
extreme points, the roots of ri for i > 1 those of singular
points. By definition, every root α of a univariate polyno-
mial p(x) ∈ Q[x] is an algebraic number. For deg(p) ≥ 3
there is no general way to express α within FRE. But we
can determine an isolating interval for each real root α of p
using Uspensky’s method [10]. This yields rational bounds
a < α < b such that α is the unique real root of p in [a, b],
and we use (p, [a, b]) to represent α. Two numbers of this
form are compared along the following lines: Equality can
be decided using the gcd of the defining polynomials. Un-
equal numbers can be compared by refining their intervals
to disjointness.

Given another polynomial q ∈ Q[x], similar techniques
allow us to refine the isolating interval of (p, [a, b]) such that
it does not contain any root of q different from α.

To analyze the behavior of f at critical points, we need
to extend every x-coordinate back to the event point by
determining which arcs of f are involved. Let us begin with
extreme points.

Theorem 6. Consider a locally x-minimal extreme point
(α, β) of a y-regular cubic curve f with positive leading co-
efficient f3. Let a < α be a rational number such that no
zero of res(f, fy, y) or res(fy, fyy, y) lies in [a, α). Let c ∈ Q
be the solution of the linear equation fyy(a, y) = 0. Then
(α, β) lies below/above the uninvolved arc of f if f(a, c) is
negative/positive, respectively.

The case of a locally x-maximal point is symmetric.

Proof. The univariate polynomial f(α, y) ∈ R[y] has its
root β in common with its first derivative fy(α, y), but not
with its second derivative fyy(α, y) (because the curvature
at (α, β) is non-zero). It follows that the roots of f(α, y)
are β (twofold) and a third root β′ ∈ R (simple). It follows
further that fy(α, y) has precisely two distinct simple real
roots. One of them is β, and the other one, say γ, lies
between β and β′ by the Mean Value Theorem.

By choice of a, there is no change in behavior of f and
fy between a and α. Therefore, both roots of the quadratic
polynomial fy(a, y) ∈ Q[y] and thus also their midpoint c
all lie below or above the unique zero of f(a, y) ∈ Q[y], and
this reflects the relative position of arcs at x = α.

The x-coordinate α of an extreme point is represented by
(r1, [a, b]). To apply the proposition, it may be necessary to
refine the interval [a, b].

Now we turn to singularities. As before, we have to de-
termine the arcs involved in each singularity, and we want
to determine the type of the singularity (see below). The x-
coordinates of the singularities are the roots of the resultant
factors ri for i > 1. The number of singular points bounds
the degree of the polynomial defining their x-coordinate; in
particular, a unique singularity is rational. The textbook
classification of cubic curves [20] tells us that more than one
singularity can arise only if f is a product of several com-
ponents (non-constant factors) whose intersections then are
the singularities of f .

Proposition 7. Let f ∈ Q[x, y] be a square free cubic
curve with exactly s singular points in C2. Then 0 ≤ s ≤ 3.
If s = 1, then the unique singularity of f is rational.
If s = 2, then f is a product f = gh of a line g and a conic
h intersecting in two distinct points.
If s = 3, then f = g1g2g3 is the product of three lines inter-
secting in three distinct points.

Given the x-coordinate α of a singularity (α, β), its y-
coordinate β and the y-coordinate β′ of the uninvolved arc
(if any) can be obtained by factoring f(α, y) by multiplici-
ties. If β′ exists, we have to compare it to β to determine
the involved arcs.

For rational singularities, arithmetic with α is no problem,
and we can determine the type of singularity by inspecting
the quadratic part ay2 + bxy + cx2 of the translated poly-
nomial f(x + α, y + β). See Figure 2 for various types of
rational singularities: A rational singularity can either be a)
an acnode, or b) a crunode, or c) a cusp, or d) a tacnode,
or e) a real triple point, or f) a complex triple point.

Figure 2

a) b) c)

d) e) f)

If a singularity is not known to be rational (s > 1), it is
an acnode or crunode, which are easily distinguished, but
to compare β and β′ we resort to exact arithmetic over the
extension field Q(α). For s = 2, this requires to adjoin one
square root, and the comparison of β and β′ amounts to a
comparison within FRE. If s = 3, we are in the very special
case of three lines forming a triangle (which may have zero
or two complex vertices). Conceptually, we have to compute
and compare in Q(α) ' Q[x]/(r2), and this is in general out-
side FRE. However, the necessary computation reduces to
four bivariate polynomial divisions and one extended uni-
variate polynomial gcd computation over the rationals.

Having performed the analysis of one curve, we know
the number of points on it over any given x. We know
where extreme points and singularities lie, which arcs they



involve, and (knowing the types of singularities) how arcs
run through them.

7. ANALYZING TWO CURVES
We now turn to the behavior of a pair {f, g} of coprime
curves, subject to the conditions of Section 5. For all x0 ∈ R,
we want to compute a slice of the pair, that is the sequence
of intersections of f and g along the line x = x0. Slices
will form the basis of implementing the predicates needed
by the sweep algorithm. Again, we have open intervals on
the x-axis of constant behavior, and critical points on the
x-axis where the sequence changes. The points in the plane
that cause such a critical point are called (two-curve) event
points.

Lemma 8. Two curves f and g have finitely many two-
curve event points. These are the one-curve event points
and intersections of f and g.

Proof. Zero(f) ∪ Zero(g) = Zero(fg) and (fg)y =
fyg + fgy. Thus the set of two-curve event points is given
by fg ∩ (fg)y = (f ∩ fy) ∪ (g ∩ gy) ∪ (f ∩ g).

For x = x0 from an interval between two adjacent critical
points, the slice is determined by substituting a rational x
into f and g, solving for y by root isolation, and sorting
the results. We also need to slice at critical points. Using
the analysis of a single curve, one can extend slicing to x-
coordinates at which just a one-curve event happens. The
rest of this section describes how to slice at intersections.

We use a resultant res(f, g, y) to project the intersection
points onto their x-coordinates. Under the noncoverticality
condition of Section 5, the multiplicity of a root α is the
multiplicity of the corresponding intersection (α, β). Out-
side one-curve events, this reflects the degree up to which
the Taylor expansions of the implicit functions of f and g
around (α, β) agree.

We need to find out the respective arcs of f and g inter-
secting at a given zero α of res(f, g, y). First consider the
case that no singularity is involved in the intersection. That
means exactly one arc of f intersects one arc of g. If the
intersection multiplicity is odd the intersecting arcs can be
determined the following way (see also Figure 3 (i)) [32]:

(i) Figure 3 (ii)

a b a bα

h

α

Theorem 9. Let f, g be two cubic curves in a generic co-
ordinate system and let (α, β) ∈ R2 be an intersection point
of odd multiplicity. Let a < α < b be two rational numbers
such that [a, b] contains no root of res(f, fy, y), res(g, gy, y)
and no root of res(f, g, y) other than α. Then the intersect-
ing arcs are precisely those whose order is transposed on the
two vertical lines x = a and x = b.

Proof. The odd intersection multiplicity entails the trans-
position of arcs locally around x = α, and the conditions on
a, b guarantee that no other event occurs over [a, b].

This technique can be seen as a simplified variant of box
hit counting [23] [31].

If the intersection multiplicity is 2, there is no trans-
position of the arcs, so this technique fails. But we can
consider an auxiliary curve of degree 4, the Jacobi curve
h = fxgy − fygx of f and g. Wolpert [31] [32] shows:

Theorem 10. If two algebraic curves f and g have an
intersection point of multiplicity 2, then h intersects f and
g transversally in this point.

This reduces the analysis of non-singular intersections of
multiplicity 2 to the previous method for transversal inter-
sections (see Figure 3 (ii)) and motivates our condition from
Section 5 on the absence of one-curve events of h which are
covertical to twofold intersections.

For intersection points with even multiplicities > 2 we can
employ exact arithmetic:

Proposition 11. Critical points of two cubic curves f
and g corresponding to intersections of even multiplicity > 2
involve at most one square root.

Proof. We have deg(res(f, g, y)) = deg(f)·deg(g) ≤ 9 so
that factoring res(f, g, y) by multiplicities produces a factor
of degree at most 2 for multiplicity 4 or of degree at most 1
for multiplicities 6 and 8.

Now consider the case that f intersects g at an x-coordi-
nate x = α at which f has also a singularity but g does not.
Under the conditions from Section 5, the intersection has to
occur in the singularity of f , and it remains to detect the
involved arc of g.

a b

x=a: 

x=b:

Figure 4

Proposition 12. Given two cubic curves f , g in a gene-
ric coordinate system such that the point (α, β) is singular on
f and non-singular on g, we can detect the arc of g involved
in this intersection by inspecting one pair (f(x0, y), g(x0, y))
or (fy(x0, y), g(x0, y)) of univariate polynomials for no more
than two rational values of x0.

Proof. Recall our classification of singularities from Sec-
tion 6. If α is known rational, we simply rely on exact arith-
metic at x0 = α. Otherwise we know from the analysis of
one curve whether we have a crunode or acnode. In case of
a crunode, we will have a transposition due to the fact that
g cannot be tangential to both arcs of f , see Figure 4. In
case of an acnode, we additionally consider the curve fy. We
know which arc of fy contains the singularity. This reduces
the problem to intersecting two arcs, one of g and one of
fy, and the conditions on the coordinate system guarantee
transversality.



The final case of an intersection at an x-coordinate α
where both curves are singular can only occur for rational
α, due to the genericity and coprimality conditions.

Proposition 13. Let f , g be two coprime cubic curves in
a generic coordinate system. Let (α, β) be a singular point
of both f and g. Then α is known to be rational.

Proof. By genericity, there are no extreme points equal
or covertical to intersections. Thus any root of the poly-
nomial d := gcd(res(f, fy, y), res(g, gy, y), res(f, g, y)) corre-
sponds to an intersection point which is singular on both f
and g. If the square free part of d had degree > 1, then f
and g would have a common component by Proposition 7,
viz. the line joining the two common singular points, con-
tradicting coprimality.

8. PREDICATES
We show how to perform a Bentley-Ottmann-like sweep [3]
of cubic curves, in the complete formulation from LEDA [24,
ch. 10.7], based on the analysis of one and two curves. As in-
put, we accept a set of cubic curves. As output, our method
computes a planar map labelled with points (including aux-
iliary points like extreme points) and input curves, repre-
senting the arrangement.

In a preprocessing step, every input curve f is broken into
sweepable segments such that each segment s has no one-
curve events in its interior and such that all points in the
interior of s have the same arc number i, meaning that β is
the i-th real root of f(α, y) for every (α, β) ∈ int(s).

A segment is represented by its endpoints, its supporting
curve, and its respective arc numbers in the interior and at
the endpoints. A point is represented by an x-coordinate, a
supporting curve and an arc number.

Here is a summary of the sweep-line algorithm, indicating
the realization of the necessary predicates:

• Extract next event from the X-structure and advance
the sweep line to it. Find segments involved in the
event by locating the event in the Y-structure, exploit-
ing its order.
Necessary predicate: Is a point p above, on, or below
a given segment s? Decide this using the slice of the
two supporting curves at the x-coordinate of p.

• Reorder the k intersecting segments according to in-
tersection multiplicity in time O(k), see [4].
Necessary predicate: intersection multiplicity. This is
the multiplicity of the corresponding root of res(f, g, y).

• Add starting segments to the Y-structure, obeying its
ordering.
Necessary predicate: comparison of segments right of a
common point. Inspect the slice of the two supporting
curves over the interval right of the intersection.

• Add intersections of newly adjacent segments to X-
structure, obeying its ordering.
Necessary construction: intersection of two segments;
by analyzing the supporting curves.
Necessary predicate: (x, y)-lexicographic comparison
of points. If comparing x-coordinates does not break
the tie, slice the two supporting curves at their com-
mon x-coordinate to compare the supporting arcs.

This use of predicates and the treatment of x-coordinates as
objects in their own right reduces all geometric analyses to
at most two curves at a time.

Running the algorithm and evaluating the predicates may
necessitate to shear the whole scene (see Appendix). Once
the algorithm terminates, the edges of the planar map are
labelled with the original segments. This is no problem.
However, the vertices are labelled with an implicit repre-
sentation of points which is meaningless after shearing back
because the notion of an i-th point on a curve at a given x is
destroyed by shearing. Hence there is a post-processing step
in which the point coordinates are computed and sheared
back numerically within a user-defined error bound. As this
happens only afterwards, the topology of the arrangement
is always correct.

9. RUNTIME ANALYSIS
The runtime of the sweep in the Real RAM model remains
the known O((n + s) log(n + m) + m) [24, ch. 10.7], where
n is the number of curves, s the number of nodes, and m
the number of edges in the resulting planar map. Here it
is essential that we reorder all segments at an intersection
point in linear time.

We consider the effect of shearing on the runtime. In the
Appendix we show that we have only a constant number of
forbidden directions for each analyzed pair of curves. We
conclude that a random choice among quadratically many
directions will lead to an expected constant number of shears.
Since bit-complexity is of interest, we actually bias the choice
towards directions of small bit size representations.

Besides the Real RAM model, the bit-complexity is of
obvious importance here. However, a complete worst-case
analysis is impractical, see the number of case distinctions,
and furthermore, we expect no promising result from the
known separations bounds that we would need to apply for
the (cascaded) root isolations [7].

Instead, we emphasize that our approach is not tied to
the worst case. Our methods benefit whenever a particular
instance does not require the isolating intervals to approach
the separation bounds limit but can stop earlier. Not only
does the iteration stop earlier, e.g., in the Uspensky method,
but also the bit complexity of the interval boundaries be-
comes smaller and subsequent steps are faster. Even more
important, we do not use the separation bound approach
to detect equality between our algebraic numbers. This is
in contrast, e.g., to the LEDA real implementation, where
the equality test is the most costly decision. Instead we
detect equality of two algebraic numbers by finding a com-
mon factor of their defining polynomials with a root in the
appropriate interval. This is much faster than refining the
intervals to their separation bounds.

On top of this, we use modular arithmetic to quickly filter
out gcd computations in cases of coprime defining polyno-
mials. (We check whether their Bézout matrix has a van-
ishing determinant modulo a fixed-size prime.) The same
modular filter helps to speed up factorization by multiplic-
ities, because squarefreeness of a univariate polynomial p is
equivalent to coprimality of p and p′.

In summary, we argue that the worst-case analysis of
the bit complexity would be non-representative for our ap-
proach. Instead, we illustrate its effectiveness with the ex-
periments in the next section.

An alternative is the randomized incremental construction
because of its better asymptotic runtime. We can realize the
necessary predicates with our approach. Since we do not
simply determine signs of polynomial expressions, it is not



clear whether the lower degree of predicates for the linear
case carries over to our setting.

10. EXPERIMENTS
We offer three series of benchmarks. Firstly, there is a series
of random sets of n cubic curves. Each curve f is defined
by interpolation through 9 points chosen uniformly at ran-
dom from a set of 9n random points on the {−128, . . . , 127}2
integer grid. Every interpolation point results in a homoge-
neous linear condition on the 10 unknown coefficients of f ,
so that generically 9 conditions determine the equation of
a curve uniquely, up to a constant factor. For each input
size n, we have generated an odd number of candidate input
data sets and picked the one with median average running
time for inclusion in our benchmark.

Secondly, there is a series of degenerate instances. It is
obtained in a similar fashion, except that
1) There are only 54 interpolation points.
2) At the first interpolation point of each curve, we demand
with probability 0.2 that not only f but also fx and fy

vanish, making this point a rational singularity (yielding 2
additional linear conditions).
3) For each interpolation point p, we pick random values for
slope mp and curvature κp. Whenever a curve f is inter-
polated through p, we make its slope equal to mp (yielding
one additional linear condition) and, with probability

√
0.5,

we also make its curvature equal to κp (yielding a further
condition).

The result is an arrangement of curves with 1) vertices of
high degree, 2) curves with singularities, 3) two- and three-
fold intersections.

Thirdly, there is a series with coefficient growth: We take
the n = 60 instances from the preceding random and de-
generate series, scale each interpolation point p by a factor
s = 100, 10 000, or 1 000 000, and then perturb it to sp + ε
with offset vector ε chosen randomly from {−10, . . . , 10}2.
(All occurrences of an interpolation point are mapped in
the same way such as to preserve degeneracies.) This in-
creases the bit size of the curves’ coefficients but preserves
the combinatorial structure of the arrangement (if s is suf-
ficiently large), allowing us to measure the increased cost of
arithmetic as a function of bit sizes.

The tables below report average running times measured
on a 1.2GHz Pentium IIIM system with 512 KB of cache
running Linux.

series n segs nodes h.edges bits time
random 30 226 2933 11038 99 6.1
random 60 454 11417 44440 99 25.1
random 90 680 26579 104474 100 62.2
random 120 940 46117 181978 100 114.8
random 150 1226 71594 283144 99 180.7
random 180 1460 102298 405312 101 260.2
random 200 1554 126278 500888 101 322.5

series n segs nodes h.edges bits time
degen. 30 243 2313 8604 116 11.1
degen. 60 534 7627 29284 116 40.8
degen. 90 722 17983 70378 120 95.6
degen. 120 1027 31504 123814 114 168.4
degen. 150 1292 48362 190698 116 258.9

Each row states number of input curves, total number of seg-
ments after splitting of input curves, number of nodes and

half-edges in the resulting graph, the average bit length of a
curve’s longest coefficient, and the average running time in
seconds. The fraction of time spent on the analysis of indi-
vidual curves is well below one second even for the largest in-
stances. The executable was compiled with g++ 3.1. LEDA
4.4 was used for the exact number types and the internal
data structures of our sweep code. All benchmark instances
are computed in the original coordinate system; that is, they
have not been transformed with a random shear.

The plot below shows the running times as a function of
the number of computed half-edges (output complexity). In
accordance with the theoretical analysis, the output com-
plexity looks almost linear. However, the output size is
quadratic in the number of curves, as for the straight-line
case.
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The modular filter for gcd computations (which are other-
wise performed using the classical subresultant algorithm
[18]) has been found to accelerate the “random 30” instance
by a factor of 9. This filter and the caching of curve and
curve pair analyses for repeated use in predicate evaluations
are important sources of efficiency in our implementation.

As dominant reasons for slowdown in the degenerate in-
stances we see: Multiple intersections of f , g cause mul-
tiple zeroes in res(f, g, y). High-degree vertices correspond
to equality of event point x-coordinates. Both phenomena
entail the computation of gcds that are avoided by the mod-
ular filter in the generic case. The analysis of a tangential
intersection requires the consideration of a Jacobi curve, in-
volving the refinement of an isolating interval against three
additional resultants of degree 12.

The coefficient growth benchmark gives the following results.

random 60 segs nodes h.edges bits time
original 454 11417 44440 99 25.1
with s = 102 454 11437 44520 233 47.3
with s = 104 454 11417 44440 361 63.8
with s = 106 454 11417 44440 492 84.5

degenerate 60 segs nodes h.edges bits time
original 534 7627 29284 116 40.8
with s = 102 534 7639 29332 209 81.8
with s = 104 534 7627 29284 301 127.7
with s = 106 534 7627 29284 393 187.3
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In this setup, the increase in running time is bounded by
the growth of running time for the exact arithmetic, es-
pecially multiplication. Our experiments used LEDA with
the O(N log2 3) Karatsuba multiplication. This superlinear
growth is well-visible for the degenerate instances, and in-
deed they invoke more symbolic computations (such as gcds
which are otherwise avoided and additional resultants for
Jacobi curves). For the random instances, the superlinear
term is less pronounced, reflecting the fact that the coeffi-
cients of curves and resultants grow, whereas the interval
boundaries in root isolation and comparison do not, so that
in these parts of the algorithm only one of the two operands
of multiplication grows.
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APPENDIX
We imposed certain position conditions that do not restrict
the geometry of the arrangement but its algebraic repre-
sentation, in particular the choice of the y-axis. In this Ap-
pendix, we will first derive a rough constant upper bound on
the number of forbidden directions of the y-axis by rephras-
ing these conditions on the coordinate system as conditions
that certain lines (which are well-defined without reference
to a specific coordinate system) shall be non-vertical.

Afterwards, we discuss how to detect and remove viola-
tions of the conditions.

Let us first consider the conditions for a single curve f :

• A curve f is y-regular iff its highest-order terms (HOT)
are not divisible by x. The HOT form a homogeneous
polynomial of degree deg(f) which decomposes into lin-
ear factors over C. These are the complex asymptotes
of f . We obtain: f is y-regular iff none of its complex
asymptotes is vertical. A cubic curve has at most 3
distinct complex asymptotes.

• A curve f has no vertical flexes iff the unique tangents
in all flexes are non-vertical. A cubic curve has at most
9 flexes [20].

• The non-verticality of tangents in the singularities of a
y-regular curve f excludes at most 2 further directions:
For an irreducible cubic we demand the non-verticality
of the two tangents in the singularity. For a cubic con-
sisting of a conic and a line intersecting in two distinct
singularities we demand non-verticality of the respec-
tive tangents to the conic component.

This yields an upper bound of 14 on the number of forbidden
directions for a single curve.

Now consider a curve pair {f, g}.
• The noncoverticality of the ≤ 9 distinct intersection

points is equivalent to the nonverticality of the ≤ ą
9
2

ć
=

36 lines joining any two of them.

• The noncoverticality of intersection points to one-curve
events of f is equivalent to the nonverticality of any
line ` that both contains an intersection point p ∈ f ∩g
and has a tangential intersection q 6= p with f . This
is because a tangential intersection of ` and f at q,
according to the definition from Section 4, means that
` is a tangent to f at q, or that f is singular at q.
The noncoverticality of one-curve events of f and one-
curve events of g is equivalent to the nonverticality of
any line ` which has a tangential intersection with both
f and g, by the same argument.

• There are ≤ 9 non-singular intersection points, each
with one unique tangent on f and on g, respectively.
These points are not extreme iff their ≤ 2 · 9 = 18
tangents are non-vertical.

• The Jacobi curve h = fxgy − fygx = |∇f ∇g| is well-
defined independent of a specific choice of coordinates.
It has deg(h) ≤ 4 complex asymptotes whose nonverti-
cality is equivalent to y-regularity of h.
There are ≤ 4 non-singular intersections of f and g
with multiplicity 2, and no line through any of them
that has a tangential intersection with h is allowed to
be vertical (by the same argument as above).

• The transversal intersection of fy and g in an acnode
of a triangle f holds for all but at most one choice of

a y-axis, because shearing the y-axis means for fy just
to replace it by another element of the pencil spanned
by the two transversally intersecting curves fy and fx.

To obtain estimates on the number of lines ` fulfilling a con-
dition of the form “` has a tangential intersection with f
(and we don’t care where)”, we lift the scene to the com-
plex projective plane by homogenizing f(x, y) to F (x, y, z) =

zdeg(f)f(x
z
, y

z
), and we consider the set of all complex-projec-

tive lines L that have a tangential intersection with F . Their
duals L∗ form an algebraic curve F̃ in dual space (unless F
has a line component, but we leave out this special case for
brevity) which has degree deg(F )(deg(F )−1) [5, pp. 252+].

For our setting, this means deg(F̃ ) ≤ 6. (Removing the

line components from F̃ , which reflect the intersections in
singularities, gives the well-known dual curve F ∗ of F .)

With these notions, we can now dualize “a line L through
p having a tangential intersection with curve F” to “an in-
tersection point L∗ of line p∗ and curve F̃”. This yields an
upper bound of deg(F̃ ) on the number of such lines L.

Let us proceed to bound the number of lines L tangent
to F outside some fixed non-singular point p of F . Recall
that, for degree reasons, a line can be tangent to a cubic
at no more than one point. It follows that we can dualize
“a line L through p having a tangential intersection with
curve F outside p” to “an intersection point L∗ of line p∗

and curve F̃ distinct from T ∗”. It is known [5, p. 255] that

the intersection of F̃ and p∗ at T ∗ has multiplicity 2. Hence
we have an upper bound of deg(F̃ ) − 2 on the number of
lines L.

Finally we can dualize “a line L having tangential inter-
sections with curves F and G” to “an intersection point of
F̃ and G̃”. Bézout’s Theorem implies that no more than
deg(F̃ ) deg(G̃) such lines L exist.

Returning to the original question, we obtain the following
bounds:

• Through each of the ≤ 9 intersection points p, there
are ≤ 6−2 = 4 lines that have a tangential intersection
with f outside p; same for g. This forbids ≤ 2·4·9 = 72
directions of lines.

• There are ≤ 6 · 6 = 36 lines that have a tangential
intersection with both f and g.

• Through each of the≤ 4 non-singular intersection points
of f and g with multiplicity 2, there are ≤ 4 · 3 = 12
lines that have a tangential intersection with the Jacobi
curve h. This forbids ≤ 4 · 12 = 48 directions of lines.

These three items forbid ≤ 72 + 36 + 48 = 156 directions.
Together with the ≤ 36+18+4+1 = 59 forbidden directions
from the preceding list, we obtain that no more than 156 +
59 = 215 directions of a y-axis are forbidden per analyzed
curve pair.

Since there are infinitely many possible y-axes, a ran-
dom choice will pick one that is permissible for all curves
and curve pairs analyzed during the algorithm with prob-
ability 1. Hence our strategy for finding a permissible, or
generic, coordinate system is this: Shear the input scene
with a random shearing parameter r ∈ Q and run the algo-
rithm. Check the conditions along the way. If a violation is
detected, pick a new r and restart.

A shear is an invertible linear map Sr : (x, y) 7→ (x +
ry, y) for a fixed r ∈ Q. It leaves the x-axis fixed and tilts
the y-axis. Shearing a point p means replacing it by Sr(p).



Shearing a curve f means replacing f by f ◦ S−1
r , because

f(p) = 0 ⇔ (f ◦ S−1
r )(Sr(p)) = 0.

From which range should the algorithm choose r? We do
not recommend to compute an a priori bound on the num-
ber of forbidden directions and define a range larger than
that, because most forbidden directions will lie outside that
range, being irrational or rational with large denominator,
and choosing from a large range comes at a price: A value r
of binary encoding length s will increase the coefficient size
of a curve f by a factor of s deg(f). Instead, start with a
small range and increase its size with the number of past
failures.

It remains to describe how we check the conditions during
the curve and curve pair analyses.

Let us begin with the analysis of a curve f :

• Checking y-regularity is trivial.

• Vertical flexes can be detected easily, using their char-
acterization as elements of f∩fy∩fyy\fx and exploiting
the fact that deg(res(fy, fyy, y)) ≤ 2, which allows for
explicit arithmetic in FRE.

• Vertical tangents at a rational singularity (α, β) are
evident from f(x + α, y + β) having lowest-order terms
that are not y-regular.
Vertical tangents at irrational singularities can occur
only for crunodes and are detected from the differing
number of arcs over the incident intervals.

Now for curve pairs {f, g}:
• Let α be a root of res(f, g, y). If both curves have a

singularity at x = α, we are in the case of Proposi-
tion 13 and thus essentially done. For the remaining
cases we extend the notion of a resultant. One can
define the first (scalar) subresultant sres1(f, g, y) of f
and g (a.k.a. the first principal subresultant coefficient)
such that res(f, g, y)(α) = sres1(f, g, y)(α) = 0 implies
deg(gcd(f(α, y), f(α, y))) ≥ 2 [29, 6.10]. Hence our
check reduces to testing whether α is also a root of
sres1(f, g, y).

• An intersection covertical to a singularity is detected
directly for a known rational singularity. For an irra-
tional singularity we first use the subresultant criterion
to rule out covertical intersections. Then we verify the
equality of the one intersection with the singular point
by checking whether the expected transposition of arcs
takes place. Absence of transposition also covers the
transversality condition on fy and g for an intersection
in an acnode of a triangle f .

• An intersection covertical or equal to an extreme point
of f is simply detected by the equality of the corre-
sponding roots of res(f, g, y) and of the square-free fac-
tor of multiplicity 1 of res(f, fy, y).

• The coverticality or equality of a non-singular inter-
section of f and g with multiplicity 2 and a one-curve
event on their Jacobi curve h is detected analogously.


