
An Exact, Complete and Efficient Implementation
for Computing Planar Maps

of Quadric Intersection Curves ∗

Eric Berberich
Max-Planck-Institut für

Informatik
66123 Saarbrücken, Germany

eric@mpi-sb.mpg.de

Michael Hemmer
Johannes-Gutenberg-

Universität
55099 Mainz, Germany

hemmer@uni-mainz.de

Lutz Kettner
Max-Planck-Institut für

Informatik
66123 Saarbrücken, Germany

kettner@mpi-sb.mpg.de

Elmar Schömer
Johannes-Gutenberg-

Universität
55099 Mainz, Germany

schoemer@uni-mainz.de

Nicola Wolpert
Max-Planck-Institut für

Informatik
66123 Saarbrücken, Germany

wolpert@mpi-sb.mpg.de

ABSTRACT
We present the first exact, complete and efficient implemen-
tation that computes for a given set P = {p1, . . . , pn} of
quadric surfaces the planar map induced by all intersection
curves p1 ∩ pi, 2 ≤ i ≤ n, running on the surface of p1. The
vertices in this graph are the singular and x-extreme points
of the curves as well as all intersection points of pairs of
curves. Two vertices are connected by an edge if the under-
lying points are connected by a branch of one of the curves.
Our work is based on and extends ideas developed in [20]
and [9].

Our implementation is complete in the sense that it can
handle all kind of inputs including all degenerate ones where
intersection curves have singularities or pairs of curves in-
tersect with high multiplicity. It is exact in that it always
computes the mathematical correct result. It is efficient
measured in running times.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—geometric algorithms ; G.1.5 [Numerical
Analysis]: Roots of Nonlinear Equations—methods for poly-

∗Partially supported by the IST Programme of the Euro-
pean Union as a Shared-cost RTD (FET Open) Project un-
der Contract No IST-2000-26473 (ECG – Effective Compu-
tational Geometry for Curves and Surfaces)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’05,June 6–8, 2005, Pisa, Italy.
Copyright 2005 ACM 1-58113-991-8/05/0006 ...$5.00.

nomials; D.m [Software]: Miscellaneous—robust geometric
computation

General Terms
Algorithms, Performance, Reliability

Keywords
Computational geometry, arrangements, algebraic surfaces,
algebraic curves, robustness, exact geometric computation

1. INTRODUCTION

p1

p2

p3

We consider implicitly defined quadric surfaces (quadrics)
p1, . . . , pn in 3-dimensional space. On the surface of quadric
p1 the intersection curves p1 ∩ pi, 2 ≤ i ≤ n, induce a 2-
dimensional arrangement. In our example, there are two in-
tersection curves p1 ∩ p2 and p1 ∩ p3 running on the surface
of the ellipsoid p1. They partition the surface into maximal
connected regions of dimension 2, 1 and 0. We compute
the planar map induced by this arrangement. The vertices
in the graph are the singular and x-extreme points of the
intersection curves (one-curve events) as well as all inter-
section points of pairs of curves (two-curve events). Two
vertices are connected by an edge if the underlying points
are connected by a branch of one of the curves.

In our work we pursue three goals: We want our algorithm
to be complete in the sense that we can deal with all kind
of inputs including all degenerate ones. We want it to be
exact in that it always computes the mathematically correct
result. Finally we want it to be efficient measured in running
times.

Determining the planar map of intersection curves on a
surface is the crucial operation with respect to exactness
when dealing with quadric surfaces. This is independent
of the actual computation (e.g. boolean operations) we are
interested in. The coordinates of the one- and two-curve
events in general are algebraic numbers. In degenerate situ-
ations using floating point approximations of these numbers
can lead to completely wrong results because of approxima-
tion errors, rather than just slightly inaccurate outputs. As
soon as we can locate and connect event points correctly on
every surface and are able to identify identical event points
on different surfaces, the main problem with respect to ex-
actness is solved.

Our work is based on cylindrical algebraic decomposition [6].
We project all intersection curves p1∩pi, 2 ≤ i ≤ n, and ad-
ditionally the silhouette p1 ∩ ∂p1

∂z
of p1 into the (x, y)-plane.

This projection step applied to our example proceeds like
shown in the above picture. We obtain a planar arrange-
ment of algebraic curves of degree at most 4. In [20] the ge-
ometry of the resulting curves and of pairs of curves is thor-
oughly discussed. An improved Bentley-Ottmann sweep-line
method for cubic curves based on the analysis of curves and
pairs of curves is presented in [9]. We enhance these previous
results by providing efficient schemes for the curve analysis
needed to apply the Bentley-Ottmann sweep-line method [2]
to our projected arrangements.
At the projection step we loose the spatial information:
branches on the upper and lower part of p1 are projected
on top of each other. We present a method to regain this
information and to split the arrangement into one for the
upper and one for the lower part of p1. Both arrangements
together completely describe the arrangement of intersection
curves on the surface of p1. For combining information on
different surfaces we shortly sketch how to identify identical
event points.

We present a full implementation with extensive bench-
marking of our algorithm. Our implementation achieves all
three goals: it is complete, exact and efficient. Above there
are screen shots made by our program. We compute the
planar arrangements on the upper and on the lower part of
the ellipsoid p1, see the respective upper and lower picture.

2. PREVIOUS WORK
Quadric surfaces are of great importance because they

are the simplest of all curved surfaces and they are widely
used in solid modeling for the design of mechanical parts.
Concerning efficiency the algorithms in CAD systems profit
from floating point arithmetic. But just this makes them
very sensitive to approximation and rounding errors. None
of these systems are exact nor complete. Some efforts to-
wards exact and efficient implementations have been made
in the libraries MAPC [13] and ESOLID [7] which deal with
algebraic points and curves and with low-degree surfaces,
respectively. Both libraries are not complete.

Computer algebra methods, based on exact arithmetic,
guarantee the correctness of the results. But one has to
be careful in choosing only those techniques that perform
well in the problem-specific context and that yield accept-
able running times when compared to the floating-point ap-
proach. Collins [6] introduced the cylindrical algebraic de-
composition. In principle this method is implementable and
our algorithm is based on it. But after the projection steps
one is left with roots of univariate polynomials. The main
question with respect to efficiency is how to perform the
backwards construction based on these algebraic numbers.

For a long time the focus in computational geometry was
mainly on computing arrangements of linear objects. The
ones dealing with curved objects all neglected the problem
of exact computation in the way that they were based on an

idealized real arithmetic provided by the real RAM model
of computation [19]. This model of unit cost per opera-
tion is not in accordance with real computers. Recently
the exact computation of arrangements of non-linear ob-
jects has come into the focus of research. Wein [21] ex-
tended the CGAL implementation of planar maps to conic
arcs. Berberich et al. [5] made a similar approach for conic
arcs based on the improved LEDA [17] implementation of
the Bentley-Ottmann sweep-line algorithm [2]. Eigenwillig
et al. [9] extended the sweep-line approach to cubic curves.
A generalization of Jacobi curves (used below for locating
tangential intersections) is described by Wolpert [23]. Fi-
nally there are efforts to extend CGAL with a kernel for
curved objects [10].

For computing with quadric surfaces Levin [15], [16] de-
veloped a method to parameterize the spatial intersection
curves. The resulting formulas were not suited for further
symbolic processing. Dupont et al. [8] succeeded in find-
ing parameterizations which overcome this difficulty. Re-
cently Lazard et al. [14] provided a complete implementa-
tion of this approach. The disadvantage, however, is that
it cannot be generalized to higher degree surfaces, due to
the lack of manageable parameterizations for the occurring
intersection curves. A second method dealing with arrange-
ment of quadrics by Mourrain et al. [18] reduces the static
3-dimensional problem to a dynamic 2-dimensional one.

As mentioned before, our work is based on a third ap-
proach introduced by Geismann et al. [12] and Schömer and
Wolpert [20] (for an extended version consider [22]) that
works by projection. We extend and improve the previous
ideas for computing small disjoint boxes around the event
points to a full analysis of the topology of curves and curve
pairs.

3. OUR RESULTS
We briefly summarize the results we present in this paper:

• We have the first complete, exact, and efficient im-
plementation that computes for an arbitrary set P =
{p1, . . . , pn} of quadric surfaces the planar map in-
duced by all intersection curves p1 ∩ pi, 2 ≤ i ≤ n,
running on the surface of p1.

• There is no restriction to the input. Every polynomial
p ∈ Q[x, y, z], deg(p) ≤ 2, defines a valid quadric.

• A projection reduces the 3-dimensional problem to the
one of computing a planar arrangement of algebraic
curves. The geometry of the curves is discussed in
[20]. Based on this we derive efficient realizations for
the analysis of curves and pairs of curves needed by
the Bentley-Ottmann sweep. Until now the sweep line
algorithm was only realized for cubic curves [9]. Our
curves can be of degree 4.

• All event points in the planar arrangements (including
singular points and intersection points of high multi-
plicity) are computed correctly and connected in the
right way.

• We present a method to regain the spatial informa-
tion we loose during the projection. The planar ar-
rangement is split into two parts: one consisting of all
branches running on the upper part of p1, the other
one consisting of all those running on the lower part.
The two planar maps of these arrangements completely
describe the planar map on the surface of p1.

• Our approach allows to identify identical event points
on different surfaces. This is important if one is in-
terested in applying further operations (for example
boolean operations) to the quadrics.

• Our implementation is done in C++ as part of the Ex-
acus library [11]. It uses the Bentley-Ottmann sweep
for segments.

• We present benchmarking results.

4. GEOMETRY OF CURVES AND CURVE
PAIRS

We shortly summarize the notation and results achieved
in [20]. We assume that the reader is familiar with basic al-
gebraic geometry. Let P = {p1, . . . , pn} be the set of input-
quadrics, i.e., algebraic surfaces of degree 2. If necessary we
use gcd-computations to make quadrics squarefree and pairs
of them coprime. This does not change the arrangement but
just the way it is represented. We assume throughout the
whole paper that every quadric p = q0(x, y)z2 + q1(x, y)z +
q2(x, y) is z-regular meaning q0(x, y) 6= 0. This is no loss
of generality because a violation can be easily checked by
inspecting the leading coefficients of the quadrics in P . A
random shear (x, y, z) → (x + s · z, y + r · z, z) for all pi ∈ P
establishes regularity with high probability. Then from the
point of view of the (x, y)-plane a quadric p has three differ-
ent parts: the lower part | silhouette | upper part {(a, b, c) ∈
R3 | p(a, b, z) = q0(a, b)(z − c)(z − c̃), c {< | = | >} c̃}.

We compute the resultants res(p1, pi, z) ∈ Q[x, y] for all
2 ≤ i ≤ n and also res(p1,

∂p1
∂z

, z) realizing the projection of
all intersection curves and of the silhouette of p1 into the
(x, y)-plane. We obtain a planar arrangement of algebraic
curves where we call res(p1, pi, z) cutcurve and res(p1,

∂p1
∂z

, z)
silhouettecurve. Let F be this set of curves. By construction
exactly one curve in F is a silhouettecurve and of degree at
most 2, the others are cutcurves of degree at most 4. We
assume without loss of generality that all curves in F are
squarefree, y-regular (the leading coefficient with respect to
y does not vanish – a random shear of the input quadrics
realizes this with high probability) and pairs of them are
coprime. We call two curves non-covertical if no two distinct
intersection points share a common x-coordinate.

Let us first consider a single curve f ∈ F . We always
denote fx := ∂f

∂x
. A point p ∈ R2 is a one-curve event of f

if it is x-extreme (f(p) = fy(p) = 0, fx(p) 6= 0 6= fyy(p)) or
singular (f(p) = fy(p) = fx(p) = 0). We call p a vertical
flex if f(p) = fy(p) = fyy(p) = 0, fx(p) 6= 0.

Lemma 1. The one-curve events and vertical flexes of f
are equal to the intersection points of f and fy.

The x-coordinates of intersection points of f and fy are
exactly the roots of the polynomial R = res(f, fy, y). We
partially factorize R with respect to the multiplicities of its
roots: R = R1 · R≥2 with R1, R≥2 ∈ Q[x]. R1 contains all
simple roots of R, R≥2 all multiple ones.

Lemma 2. Let f and fy be non-covertical. Then the real
roots of R1 and R≥2 are exactly the x-coordinates of extreme
points and of singular points and vertical flexes of f , respec-
tively.

The real roots of a rational quadratic polynomial we call
one-root numbers. A one-root number α can be expressed
in the form α = a + b

√
c with a, b, c ∈ Q. If a, b, c ∈ Q(

√
ρ),

ρ ∈ Q, we call α a two-root number. Computing with one-
root and two-root numbers is much easier than with arbi-
trary algebraic numbers because one has an explicit rep-
resentation of these numbers and one can compare two of
them for example using repeated squaring or separation
bounds [17, ch. 4.4]. All singular points of a cutcurve f can
be expressed as one- or two-root numbers:

Theorem 3. Let f be a cutcurve which originates from
the intersection curve of the two quadrics p1 and pi. Only
if f consists of four lines, the x-coordinates of its singular
points are two-root numbers. For all other cutcurves they are
one-root numbers. If f has no vertical flexes and no cover-
tical one-curve events, we can factorize R≥2 into quadratic
factors over Q(

√
ρ)[x] or Q[x], respectively.

Next we consider non-covertical pairs of curves f, g ∈ F .
There are two cases: either f is the silhouettecurve and g is
a cutcurve, or both f and g are cutcurves. Let us consider
the first case. We compute the resultant R = res(f, g, y).
The real roots of R are exactly the x-coordinates of inter-
section points. With respect to the sweep-line algorithm we
call these points two-curve events. We partially factorize R
according to multiplicities: R = R1 · R2 · R≥3, Ri ∈ Q[x],
such that R1 contains all simple roots, R2 contains all double
roots and R≥3 contains all roots of multiplicity ≥ 3.

Theorem 4. The real roots of R1 are the x-coordinates
of transversal intersection points of f and g. The real roots
of R2 and R≥3 are x-coordinates of tangential intersection
points. At every intersection point with x-coordinate in R2

the Jacobi-curve J := fxgy−fygx cuts both f and g transver-
sally. Every root of R≥3 can be computed as a one-root
number.

Now let both f and g be non-covertical cutcurves. They
are the result of intersecting p1 with two other quadrics pi

and pj , respectively.

Theorem 5. We can compute two polynomials R, R̃ ∈
Q[x], deg(R) ≤ 8, deg(R̃) ≤ 8, such that the real roots of

R · R̃ are exactly the x-coordinates of intersection points of
f and g and the real roots of R are exactly the x-coordinates
of common intersection points of p1, pi and pj . Both poly-
nomials can be factorized according to multiplicities R =
R1 ·R2 ·R≥3, R̃ = R̃1 · R̃2 · R̃≥3 and we can apply Theorem 4
to both factorizations.

5. ANALYSIS OF CURVES AND OF CURVE
PAIRS

In this section we show how we realize the analysis of one
and two curves. As presented in [9] this immediately leads
to the predicates needed by a modified Bentley-Ottmann
sweep [2] in the revised formulation from LEDA [17, ch. 10.7]
and [5]. Let f, g ∈ F be curves in our arrangement. We
take a y-per-x view and consider how the arcs of f and g
evolve along the vertical line x = x0 when we move x0 along
the x-axis. From the Implicit Function Theorem it follows
that between intersection points of f and fy the arcs of f
evolve smoothly.

Let us start with the analysis of one curve f ∈ F . We
compute the resultant R = res(f, fy, y) and call its real
roots f-critical points. Let C := {xi | 1 ≤ i ≤ m} be
the set of all f -critical points. For every f -critical point
we determine a rational interval representation. In case we
know the x-coordinate as a one- or two-root number due
to Theorem 3, we additionally represent it explicitly in this
form. The interval representations allow us to compare and
order the f -critical points, wlog. x1 < x2 < · · · < xm.
Let J := {(xi, xi+1) =: Ii | 1 ≤ i < m} ∪ {(−∞, x1) =:
I0, (xm,∞) =: Im} be the set of intervals between f-critical
points. Using the rational endpoints of the isolating inter-
vals it is easy to find a rational number ri ∈ Ii for every
Ii ∈ J .

Definition 6. We call a curve f generic if it has no ver-
tical flexes and no covertical intersections with fy. Let f be
generic.

1. We define a function Af : J → N. For an interval
Ii ∈ J it computes the number of arcs of f over Ii.

2. We define a second function Bf : C → N4. For an
f-critical point xi ∈ C it outputs (nb, nl, nr, na) with
nb the number of arcs below the one-curve event at
x = xi, nl and nr the number of arcs of f that go from
the left into and to right out of the event point, and na

the number of arcs of f above the event point.

Lemma 7. The functions Af and Bf are well-defined and
the outcome of the computations for every f-critical point
and every interval between f-critical points completely de-
termines the topology of f .

Proof. If f is generic, all intersections of f and fy are
one-curve events (Lemma 1) and cause different f -critical
points. Between two f -critical points the number of branches
of f does not change.

The functions Af and Bf are defined only for a generic f .
We next show how to test whether a curve f ∈ F is generic.
If this fails due to an unlucky choice of the coordinate sys-
tem, we randomly shear the set of input quadrics and start
the computation right from the beginning. Afterwards we
show how to implement the functions Bf and Af for the
f -critical points and the intervals between.

Theorem 8. The silhouettecurve is always generic. For
a cutcurve we can test whether it is generic.

Proof. Let f be the silhouettecurve. It is of degree at
most 2. For any x0 the polynomials f(x0, y) and fy(x0, y)
have at most one common root.

Next let f be a cutcurve. We first use the results behind
Theorem 3 and try to split R≥2 into quadratic polynomials.
If this fails, f is not generic. Otherwise we know every root
xi of R≥2 as a one- or two-root number. We still have to
make sure that no xi is the x-coordinate of a vertical flex
or of two covertical one-curve events. To test the latter
we compute whether f(xi, y) and fy(xi, y) have exactly one
common root y0. In this case also y0 is a one- or two-root
number. Finally we test fyy(x0, y0) 6= 0 to be sure that the
point (x0, y0) is an event point and not a vertical flex.

Lemma 9. Let f ∈ F be generic, Ii an interval between
f-critical points and ri ∈ Ii the precomputed rational number
in Ii. Then Af (Ii) = | {β ∈ R | f(ri, β) = 0} |.

Lemma 10. Let f be the silhouettecurve, xi an f-critical
point, and Ii−1 and Ii the two neighbored intervals to the
left and to the right of xi, respectively. Then Bf (xi) =
(0, Af (Ii−1), Af (Ii), 0).

Theorem 11. For a generic cutcurve f and an f-critical
point xi we can compute Bf (xi).

Proof. If xi is a multiple root of R, it is the x-coordinate
of a singular point and we know it explicitly as a one- or
two-root number. We know that f(xi, y) has exactly one
multiple root yi. We count the numbers nb and na of simple
roots below and above yi. Then Bf (xi) = (nb, Af (Ii−1) −
nb − na, Af (Ii)− nb − na, na).

Next assume that xi is a simple root of R with isolating
interval [a, b]. Then xi is the x-coordinate of an x-extreme
point. It is |Af (Ii−1) − Af (Ii)| = 2 and we assume wlog.
Af (Ii) − Af (Ii−1) = 2 (for a right-extreme point just ex-
change the left and right side). In general xi is not express-
ible as a one- or two-root number. Instead of computing
directly on the line x = xi we do all the computations along
the line x = a. If Af (Ii−1) = 0, then Bf (xi) = (0, 0, 2, 0).
Otherwise refine the interval [a, b] until it contains no one-
curve event of fy. Compute interval representations for the
real roots of f(a, y) and fy(a, y) and sort them in ascending
order. Let γ1 < · · · < γk be the real roots of fy(a, y). By
case distinction one can show nb = |{β | f(a, β) = 0 ∧ β <
γdk/2e}| and na = |{β | f(a, β) = 0 ∧ β > γdk/2e}| resulting
in Bf (xi) = (nb, 0, 2, na).

Next we consider the analysis of two curves f, g ∈ F .
Again we want to compute the order of the curves of f
and g along every vertical line x = x0. This order does
only change at the f - and g-critical points and at the x-
coordinates of the two-curve events. The latter are the
real roots of res(f, g, y). We call all these points (f, g)-
critical. LetD be the set of (f, g)-critical points and K be the
set of open intervals in-between. We can again sort them:
K0, x1, K1, x1, . . . , Km−1, xm, Km with xi ∈ D, Ki ∈ K. We
compute a rational number si ∈ Ki for all 0 ≤ i ≤ m. Let
in the following Rf := res(f, fy, y), Rg := res(g, gy, y), and
Rf,g := res(f, g, y).

Definition 12. We call a pair of curves {f, g} generic if
f and g are generic, there are no distinct covertical one- or
two-curve events and no extreme point of f or g coincides
with a two-curve event. Let {f, g} be generic.

1. We define a function Cf,g : K → ∪0≤j≤8{f, g}j. For
an interval Ki ∈ K it computes the sequence of arcs of
f and g over Ki.

2. We define a function Df,g : D → ∪0≤j≤7{f, g, ?}j.
For an (f, g)-critical point xi ∈ D it outputs the order
of the arcs of f and g along the line x = xi. This
means more mathematically the sequence of polynomi-
als associated with the ordered sequence of real roots
of f(xi, y) and g(xi, y) (without multiplicities). The
entry equals ? if f(xi, y) and g(xi, y) share a common
root.

Lemma 13. The functions Cf,g and Df,g are well-defined.
Exactly one entry in the outcome of Df,g is of the form ?.
The outcome of the computations of Af , Bf , Cf,g, and Df,g

completely determines the topology of the arrangement of f
and g.

The functions Cf,g and Df,g are defined only for a generic
pair {f, g}. If they are not generic this is again only caused
by a bad choice of the coordinate system and can be removed
by a shear.

Theorem 14. For every pair of curves f, g ∈ F we can
test whether it is generic.

Proof.

• We already know how to test coverticality of one-curve
events of f (of g).

• If Rf and Rg have a common root this should only
be caused by two singularities having the same coordi-
nates. Both are explicitly known and therefore easily
comparable.

• If Rf and Rf,g have a common root this should only be
due to an intersection of g at a singular point (x0, y0)
of f . We explicitly test g(x0, y0) = 0. Analogously for
Rg and Rf,g.

• No two different two-curve events should be covertical.
This can be tested using the first subresultant (some-
times also called first principal subresultant coefficient)
of f and g.

Lemma 15. Let f, g ∈ F be generic, Ki an interval be-
tween (f, g)-critical points and si ∈ Ki the precomputed ra-
tional number in Ki. Then Cf,g(Ki) can be computed by
sorting the real roots of f(si, y) and g(si, y).

Theorem 16. For two generic curves f, g ∈ F and an
(f, g)-critical point xi we can compute Df,g(xi).

Proof. For this proof we define a function

Eu,v : ∪0≤j≤8{f, g}j → ∪0≤j≤7{f, g, ?}j .

For a sequence (h1, . . . , hj) of f ’s and g’s it replaces the
entries hu . . . hv by one entry ?.

If Rf (xi) = 0 and Rg(xi) 6= 0 6= Rf,g(xi), we just have a
one-curve event of f at x = x0. It is obvious that the results
of Bf (xi) and of Cf,g(Ki−1) can be combined to compute
Df,g(xi).

Next consider the case Rf,g(xi) = 0 but Rf (xi) 6= 0 6=
Rg(xi). If the multiplicity of xi as a root of Rf,g is odd, the
sequences Cf,g(Ki−1) and Cf,g(Ki) differ exactly by one flip
of f and g at positions u and u + 1. We have Df,g(xi) =
Eu,u+1(Cf,g(Ki−1)). If the multiplicity of xi is 2, we use
Theorem 4 and additionally consider the Jacobi curve J .
As before we compute the indices nf and ng of the branches
of f and of g that intersects J transversally, respectively (we
omit some technical details about precomputations for J).
Then Df,g(xi) = Enf +ng−1,nf +ng (Cf,g(Ki−1)). In all other
cases, due to Theorems 4 and 5, we explicitly know xi as a
one-root number. We compute Df,g(xi) as the sequence of
roots of f(xi, y) and g(xi, y).

It remains to discuss the situations Rf (xi) = Rf,g(xi) =
0. If additionally Rg(xi) = 0, we know that the singular
point of f at x = xi and the singular point of g at x = xi

are the ones that are involved in the intersection. Combining
the results of Bf (xi), Bg(xi) and of Cf,g(Ki−1) leads to
the desired output. Now assume Rg(xi) 6= 0. We have
a singular point of f at x = xi so its y-coordinate yi is
explicitly known as a one- or two-root number. Let yi be
the k-th root of g(xi, y) and let Bf (xi) = (nb, nl, nr, na).
Then Df,g(xi) = Enb+k,nb+nl+k(Cf,g(Ki−1)).

6. REGAINING THE SPATIAL INFORMA-
TION

As shown in [9] the analysis of one curve can be used to
split each curve f ∈ F at its one-curve events into maximally
connected x-monotone segments and to represent them. The
predicates for the modified Bentley-Ottmann sweep work on
the x-monotone segments and use the analysis of curve pairs.
So we are able to compute the planar map of the arrange-
ment of curves in F , but this is not precisely the result we
are interested in. Instead we want two planar maps: one for
the upper part including the silhouette and one for the lower
part including the silhouette of the underlying quadric p1. It
remains to split the curves in F into open x-monotone seg-
ments such that each segment belongs to the upper or to the
lower part or to both parts (for more details consider [3]).
This gives us two sets of segments on which we then run the
sweep algorithm separately.

Definition 17. We call a maximally connected open part
of the silhouettecurve sweepable if it does not contain a one-
curve event in its interior. For a cutcurve we additionally
require that it does not contain an intersection with the sil-
houettecurve.

Theorem 18. All curves f ∈ F can be cut into sweep-
able segments. The interior of each sweepable segment of a
cutcurve belongs completely to the lower or to the upper part
of p1 or to both parts and the assignment can be computed.

Proof. Splitting the curves into sweepable segments is
easy due to our results in the previous section. Also the
second statement is easy to see: A connected segment of a
spatial intersection curve running on both parts of p1 inter-
sects in its interior the silhouette and so do its projection
and the silhouettecurve. We focus on the assignment. Let s
be a sweepable segment of a cutcurve f which results from
projecting the spatial intersection curve of p1 and pi. If s is
of length zero, that means s = (x0, y0) is an isolated point,
we know its coordinates explicitly as one- or two-root num-
bers. We compute the real roots z1 ≤ z2 of p1(x0, y0, z).
If z1 = z2, the point matches to a point on the silhouette.
Otherwise, if pi(x0, y0, z1) = 0 the point lies on the lower
part of p1, if pi(x0, y0, z2) = 0 the point lies on its upper
part.

Next consider the case that s has positive length. If we
explicitly know a point (x0, y0) with one-root coordinates
on s we proceed as described before. Otherwise let x0 be
a rational number in the open x-range of s and let i be
the arc-number of s with respect to f . Compute an interval
representation [ylow, yhigh] of the i-th root of f(x0, y). Refine
this interval until it contains no intersection with the silhou-
ettecurve. We shoot two rays r1 := f(x0, ylow, z), r2 :=
f(x0, yhigh, z) ∈ Q[z] in z-direction and compute the se-
quence of intersections of p1 and pi along r1 and along r2.
Comparing these sequences determines whether the lower
or upper part is involved in a flip and therefore whether s
belongs to the lower or upper part.

Now we can compute the planar maps for the upper and
the lower part of p1. A vertex v is uniquely represented
via v = (x0, f, k, p1, j). Here x0 is the x-coordinate, f is
the underlying planar curve, k is the arc number indicat-
ing that the y-coordinate is the k-th real root of f(x0, y),
p1 is the underlying quadric and finally j = 1, 2 deter-
mines the z-coordinate, namely whether v is a vertex on

the lower (j = 1) or upper (j = 2) part of p1. For an
application, for example for performing boolean operations
on quadrics, it can be that we have to compute the planar
maps on different surfaces and to test different vertices for
equality. This poses no problem. Let v = (x0, f, k, p, j) and

ṽ = (x̃0, f̃ , k̃, p̃, j̃) be two vertices. We first compare x and x̃.
If they are equal, applying the analysis of two curves from
Section 5 to f and f̃ decides whether also the y-coordinates
are equal. To compare the z-coordinates we consider the
cutcurve g = res(p, p̃, z), compute the sweepable segment of
g on which the (x, y)-coordinate of the vertices lie on (if it
exists), assign the segment to the respective parts of p and p̃
and test whether the parts equal the ones defined by j and j̃.
Remark that in an actual implementation one would widely
use caching to avoid computing cutcurves and the analysis
of them several times.

7. IMPLEMENTATION & BENCHMARKS
We have implemented all presented objects and algorithms

within the Exacus project at the Max-Planck-Institut für
Informatik in Saarbrücken, Germany. Exacus contains Li-
braries for Efficient and Exact Algorithms for Curves and
Surfaces that are available under an open-source license,
see [4] for the details of its content, design, and implementa-
tion. The libraries follow the generic programming paradigm
[1] and cover distinct parts of curved computational geome-
try, for example mathematical foundations and arrangement
of conics [5].

Our work contributes to the QuadriX library with 15.500
lines of commented code, whereof about 2500 lines are for
the representation of quadrics. About one third is needed
for projected curves and another third for projected curve
pairs and their interface to the generic algebraic curves and
surfaces (GAPS) in Exacus. The remainder contributes
mostly to the graphical output of the projection and the
shearing of the coordinate system.

The generic implementation allows to exchange important
pieces of implementation, such as number types and the al-
gorithm from SweepX or from CGAL used to compute the
arrangement.

We want to prove that our projection method is practi-
cal, i.e., efficient, for computing arrangements. We have not
analyzed the worst case in the bit-complexity model (and
it is clear in the real RAM model), since we argue that our
algorithms are adaptive in the bit-complexity and a worst-
case analysis would not be representative, see [9] for details
of this argument. Instead we show the efficiency of our ap-
proach with the following experiments.

We always compute the two planar maps on the first
quadric for different sets of quadrics based on the SweepX
sweep implementation and LEDA 4.4.1 number types. The
experiments were measured on a Pentium(R) M processor
1.7 GHz with 1024 KB cache under Linux and the GNU
C++ compiler v3.3.3 with optimizations (-O2) and disabled
assertions (-DNDEBUG).

In our experiments we use interpolated quadrics. We need
nine constraints to define a quadric uniquely. In the generic
case, these are nine rational interpolation points with a co-
ordinate range of [−99, 99]. In the degenerate case, we pre-
scribe values for partial derivatives and higher-order deriva-
tives, usually at one of the interpolation points, to enforce
tangential or singular intersections.

The first test sets contain random generic (rnd) and de-
generate (deg) arrangements of quadrics whose coefficients
need 89 bits and whose projected intersection curves need
coefficients of 329 bits. The degenerate sets contain different
kinds of degeneracies with decreasing probabilities (tangen-
tial intersections are more often than singular intersections).
Arrangement computation is sensitive to the output size,
therefore we report the runtime per computed edge: We
need about 7 milliseconds per edge in the generic cases and
about 25 milliseconds in the degenerate cases. Additionally,
we observe that the average runtime per edge decreases with
increasing number of edges, which is due to higher cost for
analyzing the linear number of one-curve events compared
to the quadratic number of two-curve events.

kind nodes edges bits time
rnd 25 1972 6574 79 (267) 32.3
rnd 50 6656 24410 77 (273) 120.3
rnd 75 16136 59552 80 (276) 257.3
rnd 100 22674 86056 79 (275) 432.0
rnd 150 42270 160810 78 (255) 830.0
deg 25 1969 6266 89 (308) 176.2
deg 50 4382 14710 83 (295) 417.9
deg 75 9043 31948 86 (286) 858.9
deg 100 17757 66350 89 (289) 1527.3
deg 150 45205 171314 88 (329) 3247.2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 160000 120000 80000 40000 0

S
ec

on
ds

Edges

rnd
deg

 0.04

 0.03

 0.02

 0.01

 0
 160000 120000 80000 40000 0

S
ec

on
ds

 p
er

 e
gd

e

Edges

rnd
deg

To analyze coefficient growth, we picked the instances with
50 quadrics, scaled each interpolation point p by a factor
s ∈ {10, 100, 1 000, 10 000}, and perturbed it to sp + ε with
an offset vector ε chosen randomly from {−5, . . . , 5}3. This
preserves degeneracies and most of the time the combinato-
rial structure of the arrangement. We can see that while the
bit length grows linearly the runtime increase quadratically.

 500

 1000

 1500

 2000

 1000 800 600 400 200

S
ec

on
ds

Bitlengths of coefficients of projected curves

rnd
deg

To measure the handling of degeneracies, we constructed
four benchmarks, each consisting of twenty data sets con-
taining three quadrics, let us call them triples in the fol-
lowing, that have the following properties (unconstrained
degrees of freedom are fixed with additional interpolation
points that are distinct for the triple).

We made significant progress in the running times dur-
ing the last months due to changes in the representation of
root numbers. To illustrate this we present two runs of our
benchmark instances. The data of the old run in December
2004 are presented in the left plot and the running times of
the newest implementation in March 2005 are shown in the
right plot.

In the first benchmark, triples are generic in the sense that
they share eight interpolation points. In the second bench-
mark, triples share four interpolation points with equal tan-
gent conditions at those interpolation points. The runtime
graph illustrates the additional cost incurred by the Jacobi
curve (Theorem 4) in this case. In the third benchmark,
triples share two interpolation points and share also the
first three derivatives at these interpolation points. Such
intersection points with high multiplicities force us to use
exact and expensive arithmetic. In the fourth benchmark,
two quadrics share a common spatial singular point through
which the third quadric passes. The expensive costs asso-
ciated to the analyzes of singular points vanished with the
new implementation. But exact arithmetic for two-curve
analysis can still be seen to be more costly than handling
generic cases.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

S
ec

on
ds

 p
er

 e
gd

e

Triples

generic
tangential

common derivatives
singular

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

Triples

generic
tangential

common derivatives
singular

We use extensive caching: Every curve/curve pair exists
only once and all algebraic data is stored after its first com-
putation. This has two impacts: 1) The first planar map
of a quadric is always more expensive than the second (150
random quadrics: 822 vs. 51 seconds). 2) The first quadric
intersection map is more costly than later ones, in particu-
lar the last quadric intersection map obtains all information
about cutcurves from the cache.

8. FUTURE WORK
In the future we want to develop floating point filters,

especially to improve the running time needed for the an-
alyzes of one-curve and two-curve event points. Another
goal is to provide a system that can compute the full three-
dimensional arrangement of quadrics based on the planar
maps on the quadric surfaces. This gives us the possibil-
ity to convert a Constructive Solid Geometry input descrip-
tion to a Boundary-Representation and finally to perform
complete, exact and efficient boolean operations on solids
bounded by quadratic surfaces.

9. REFERENCES
[1] M. H. Austern. Generic Programming and the STL:

Using and Extending the C++ Standard Template
Library. Addison-Wesley, 1998.

[2] J. L. Bentley and T. Ottmann. Algorithms for
reporting and counting geometric intersections. IEEE
Trans. Comput., C-28:643–647, 1979.

[3] E. Berberich. Exact Arrangements of Quadric
Intersection Curves. Universität des Saarlandes,
Saarbrücken, 2004. Master Thesis.

[4] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert,
L. Kettner, K. Mehlhorn, J. Reichel, S. Schmitt,
E. Schömer, D. Weber, and N. Wolpert.
Exacus—efficient and exact algorithms for curves and
surfaces. Technical Report ECG-TR-361200-02, 2004.

[5] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert,
K. Mehlhorn, and E. Schömer. A computational basis
for conic arcs and boolean operations on conic
polygons. In ESA 2002, Lecture Notes in Computer
Science, pages 174–186, 2002.

[6] G. E. Collins. Quantifier elimination for real closed
fields by cylindrical algebraic decomposition. In Proc.
2nd GI Conf. on Automata Theory and Formal
Languages, volume 6, pages 134–183. Lecture Notes in
Computer Science, Springer, Berlin, 1975.

[7] T. Culver, J. Keyser, M. Foskey, , S. Krishnan, and
D. Manocha. Esolid - a system for exact boundary
evaluation. Computer-Aided Design (Special Issue on
Solid Modeling), 36, 2003.

[8] L. Dupont, D. Lazard, S. Lazard, and S. Petitjean. A
new algorithm for the robust intersection of two
general quadrics. In Proc. 19th Annu. ACM Sympos.
Comput. Geom., pages 246–255, 2003.

[9] A. Eigenwillig, L. Kettner, E. Schömer, and
N. Wolpert. Complete, exact, and efficient
computations with cubic curves. In Proc. 20th Annu.
ACM Symp. Comput. Geom., pages 409–418, 2004.

[10] I. Emiris, A. Kakargias, S. Pion, M. Teillaud, and
E. Tsigaridas. Towards an open curved kernel. In
Proc. 20th Annu. ACM Symp. Comput. Geom., pages
438–446, 2004.

[11] Exacus - Libraries for Efficent and Exact Algorithms
for Curves and Surfaces.
http://www.mpi-sb.mpg.de/projects/EXACUS/.

[12] N. Geismann, M. Hemmer, and E. Schömer.
Computing a 3-dimensional cell in an arrangement of
quadrics: Exactly and actually! In Proc. 17th Annu.
ACM Sympos. Comput. Geom., pages 264–271, 2001.

[13] J. Keyser, T. Culver, D. Manocha, and S. Krishnan.
MAPC: A library for efficient and exact manipulation
of algebraic points and curves. In Proc. 15th Annu.
ACM Sympos. Comput. Geom., pages 360–369, 1999.

[14] S. Lazard, L. M. Penaranda, and S. Petitjean.
Intersecting quadrics: An efficient and exact
implementation. In Proc. 20th Annu. ACM Sympos.
Comput. Geom., pages 419–428, 2004.

[15] J. Levin. A parametric algorithm for drawing pictures
of solid objects composed of quadric surfaces.
Commun. ACM, 19(10):555–563, Oct. 1976.

[16] J. Levin. Mathematical models for determining the
intersections of quadric surfaces. Comput. Graph.
Image Process., 11:73–87, 1979.

[17] K. Mehlhorn and S. Näher. LEDA – A Platform for
Combinatorial and Geometric Computing. Cambridge
University Press, 1999.

[18] B. Mourrain, J.-P. Técourt, and M. Teillaud.
Sweeping an arrangement of quadrics in 3d. In Proc.
19th European Workshop on Computational Geometry,
pages 31–34, 2003.

[19] F. P. Preparata and M. I. Shamos. Computational
geometry and introduction. Springer-Verlag, New
York, 1985.

[20] E. Schömer and N. Wolpert. An exact and efficient
approach for computing a cell in an arrangement of
quadrics. CGTA (Special Issue on Robust Geometric
Algorithms and their Implementations), submitted,
2004.

[21] R. Wein. High level filtering for arrangements of conic
arcs. In ESA 2002, Lecture Notes in Computer
Science, pages 884–895, 2002.

[22] N. Wolpert. An Exact and Efficient Approach for
Computing a Cell in an Arrangement of Quadrics.
Universität des Saarlandes, 2002. Ph.D. Thesis.

[23] N. Wolpert. Jacobi curves: Computing the exact
topology of arrangements of non-singular algebraic
curves. In ESA 2003, Lecture Notes in Computer
Science, pages 532–543, 2003.

