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Abstract

Let S be a set of n points in the plane, and let each
point p of S have a positive weight w(p). We consider
the problem of positioning a point x inside a compact
region R ⊆ R2 such that min{ w(p)−1 · d(x, p) ; p ∈
S } is maximized. Based on the parametric search
paradigm, we give the first subquadratic algorithms for
this problem, with running time O(n log4 n).
Furthermore, we shall introduce the concept of ‘exact
approximation’ as the bit model counterpart to para-
metric search. Exploiting ideas from exact computa-
tion, we show that the considered problem can be solved
in time O(Lµ(L)n log n), where L denotes the maximal
bit-size of input numbers, and µ(L) the complexity of
multiplying two L-bit integers.

1 Introduction

The (weighted) maximin facility location problem is
a classical problem of operations research, and has also
found attention in the computational geometry commu-
nity. The task is to position a point in the plane such
that its distance to a set of (weighted) sites is maxi-
mized. As an example, the facility may be a source of
pollution, and the input sites cities, weighted by their
population.

This problem is unconstrained if the domain of pos-
sible locations is the entire plane. Hence one generally
considers bounding regions which themselves may have
non-constant complexity (in the literature, the bound-
ing region is often defined to be the convex hull of the
input points).

Let ||.|| denote Euclidean norm and d Euclidean dis-
tance (for generalizations see 2.3). We formulate the
maximin location problem as follows:
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Problem Statement Let S be a set of n points in the
plane, and let each point p of S have a positive weight
w(p). Let R be either

(a) the intersection of ≤ n discs, or
(b) a simple polygon with ≤ n edges.

Find a point x ∈ R which maximizes

min{ w(p)−1 · d(x, p) ; p ∈ S }.

Even for simple bounding regions, this problem is in-
trinsically different from its minimax counterpart. Ob-
viously, there can be O(n) distinct optimal locations.
Also, the problem has an Ω(n logn) lower bound in the
algebraic decision tree model (by reduction to MAX-
GAP on a line, see [13]). Our algorithms are a sub-
stantial step towards this lower bound.

1.1 Previous Work

The weighted maximin location problem has been
extensively studied in the operations research litera-
ture, for points inside different bounding regions [7, 12]
(see also the survey [15]).

The unweighted problem (largest empty circle in the
plane) can be solved via construction of the nearest-
point Voronoi diagram. Toussaint [17] describes an op-
timal O(n log n) solution for the case that the bounding
region is the convex hull of the input points, and an
O(n2 log n) solution for case (b).

For weighted sites, the Voronoi diagram is known to
have quadratic complexity in the worst case, and it can
be constructed in optimal O(n2) time [4]. The optimal
location is either a vertex of this diagram, or it lies on
the boundary of the region R. For simple bounding
regions with constant complexity, an optimal location
can thus be found in O(n2) time [8].

In this paper, we present the first subquadratic algo-
rithms for this problem. In particular, we also improve
on previous solutions for the unweighted problem, case
(b).
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1.2 Using Parametric Search

Our algorithms are based on the parametric search
paradigm as introduced in [11]. This is the obvious
technique to apply, and its growing importance in geo-
metric optimization is best reflected in some of its re-
cent applications [3].

The basic step to apply parametric search is to re-
duce the problem to the decision problem (does there
exist a feasible location ?) when the optimization pa-
rameter (the weighted distance to the sites) is fixed.

This decision problem corresponds to computing the
common intersection of regions of allowed locations,
and deciding if this intersection is empty. In our case,
the ‘forbidden regions’ are discs around the sites, and
we shall decide whether their union covers the bound-
ing region R. The union of a set of discs has only lin-
ear complexity [10], and can be computed in O(n logn)
time via inversion. This duality transformation maps
the planar circles to planes in 3-space, and reduces the
decision problem in case (a) to constructing a convex
polytope, and intersecting this polytope with a sphere.
The whole process can easily be parallelized, and para-
metric search yields an O(n log4 n) algorithm.

Case (b) requires some additional work. Here, it
may happen that the set of allowed locations (i.e., in-
tersected with the bounding region) has quadratic com-
plexity. We shall avoid the computation of this set by
a trick: to answer the decision problem, we need - in
addition to the computation of the union of discs - only
check if two contours with linear complexity intersect.
This is solved by a sweep algorithm, and parametric
search finally yields the same time bound as above:

Theorem 1 The weighted maximin location problem
(case (a) and (b)) can be solved by parametric search
in time O(n log4 n).

Section 2 is devoted to these parametric search so-
lutions. In subsection 2.3 we discuss related problems
to which the presented technique can be extended.

1.3 Bit Complexity

Most geometric algorithms are developed within one
of two distinct computational frameworks. In the alge-
braic framework, the complexity of an algorithm is mea-
sured by the number of algebraic operations on real-
valued variables, assuming exact computations. The
input size thus corresponds to the number n of input
values. In the bit framework, the complexity is mea-
sured by the number of bitwise boolean operations on
binary strings. The input generally consists of integers,
and the parameter n is supplemented by an additional

parameter L that describes the maximal bit-size of any
input value.

Parametric search is an ingenious technique to de-
sign optimization algorithms in the algebraic model.
However, there are several, well-known disadvantages:
algorithms based on parametric search are rather com-
plicated, with high constants hidden in the O–notation.
Also, the technique is based on a computing model that
is not available in practice. E.g., one of the standard
assumptions is that only polynomials of constant de-
gree are involved in comparisons, and that the roots
of these polynomials can be found exactly in constant
time.

In contrast, the basic decision schemes are readily
implemented, and immediately provide approximation
algorithms that guarantee a relative error of ε by adding
just a factor of log ε to the running time.

Problems that parametric search is applied for are
generally of ‘bounded algebraic depth’ [18]. Especially,
the algebraic complexity of the solution (and intermedi-
ate calculations) does not depend on n. However, with
this prerequisite and in a true bit model, exact compu-
tation and root bounds provide all the tools that are
necessary to make ε-approximation algorithms ‘exact’.

We shall demonstrate the practicability of ‘exact ap-
proximation’ for the considered problem. Using inver-
sion and a tricky analysis, we shall deduce constants
that lie in a range which make the approach suitable
for implementation. The theoretical result is also of
interest: the dependency on n meets the known lower
bound (though this bound is obtained in an uncompa-
rable model):

Theorem 2 In the bit complexity model, the weighted
maximin location problem (case (a)) can be solved in
time O(Lµ(L)n log n).

The corresponding bit complexity analysis is subject
of section 3.

2 Parametric Search

Parametric search is an optimization technique
which can be applied in situations where we seek a
maximum parameter ρ∗ satisfying certain conditions
that are met by all ρ ≤ ρ∗ but not by any ρ > ρ∗.
The strategy of parametric search is to give efficient se-
quential and parallel algorithms for the corresponding
decision problem: decide whether a given parameter ρ
is equal to, smaller, or larger than the maximum value
ρ∗ (for brevity in this abstract, we shall deal with the
equal-or-smaller case only). Let Ts denote the running
time of the sequential decision algorithm, and Tp (resp.,
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Figure 1: Illustration of inversion in 2D. The forbid-
den regions are I1 and I2, the bounding region is I3.
Allowed locations on Ez correspond to intersections of
P with Sz.

P ) the time (resp., number of processors) of the par-
allel version, then ρ∗ can be computed in sequential
time O(PTp + TsTp logP ). For a detailed description
of parametric search we refer to [3].

2.1 The Basic Algorithm

In the following, let D(q, r) = { x ∈ R2 ; d(x, q) ≤
r } denote the disc with radius r around q. In this
subsection, we deal with the case that the bounding
region R is given by

R =
n⋂
i=1

D(qi, ri),

for given pairs (qi, ri) ∈ R2 × R>0. To rule out the
degenerate case that optima form an arc, we assume
that qi /∈ S ∀ i = 1, . . . , n.

In order to apply the parametric search paradigm,
we start with the decision problem to determine, for
given ρ > 0, whether there exists a location x ∈ R
whose Euclidean distance to any p ∈ S is larger or
equal to ρ · w(p).

Each p ∈ S defines a forbidden region F (p) = { x ∈
R2 ; d(x, p) < ρ ·w(p) }. An admissible location exists
if and only if

A = R∩
⋂
p∈S

F (p)

is not empty (here, the bar over F (p) denotes comple-
ment). To compute this set of admissible locations, we
use inversion. As we shall need the derivation in the
bit complexity analysis, we go into some details.

First, we embed the planar problem into 3-space
(spanned by the coordinates x, y, z) by identifying the
‘input plane’ with the plane z = 1. Let 0 = (0, 0, 0)
denote the origin. The inversion transformation maps
each point x ∈ R3 \ {0} to x′ = x/||x||2. Especially,
planes are mapped to spheres that pass by the origin
and vice versa. The plane z = 1, further denoted Ez,
is mapped to the sphere Sz with radius 1/2 around
Cz = (0, 0, 1/2).

Let us consider a circle with center (mx,my, 1) and
radius r on Ez. There exists exactly one sphere S
which touches the origin and whose intersection with
the plane Ez is equal to that circle. The sphere S has
center C = (mx,my,

1
2 (1 + r2 −m2

x −m2
y)) and radius

||C||. Inversion maps S to the plane E defined by

2mxx+ 2myy + (1 + r2 −m2
x −m2

y)z = 1. (1)

Analogous to spheres, inversion maps balls that pass
by the origin (and also their complements) to half-
spaces. The whole process maps any region F (p),
p ∈ S, to a halfspace H(p), and any disc D(qi, ri),
i = 1, . . . , n, to a halfspace Hi. Let

P =
n⋂
i=1

Hi ∩
⋂
p∈S

H(p).

P is a convex polytope, and can be computed in time
O(n logn) via a standard reduction to convex hull.

The intersection of P with the sphere Sz corresponds
to the set of admissible locations A. One easily sees
that this intersection can only have linear complexity,
and hence we could afford to compute it explicitly. Al-
ternatively, it is possible to simply check for the exis-
tence of an admissible location. However, care has to
be taken here: though it is usually the case that P lies
inside Sz when ρ ≥ ρ∗, it can also happen in specific
cases that P lies outside (such a case e.g. occurs if there
is only one input point in S).

So far we have seen how to solve the decision prob-
lem in sequentialO(n logn) time. A parallel version can
be obtained by using the algorithm in [2] which com-
putes the convex hull of n points in 3-space in O(log2 n)
time with O(n) processors. (Note here that the stan-
dard reduction from halfspace intersection to convex
hull requires the knowledge of an inner point of the in-
tersection. This point can e.g. be determined by linear
programming in O((log logn)3) parallel time on n pro-
cessors [1]). The intersection test between P and Sz is
easily done in constant time with O(n) processors.

By applying the parametric search paradigm, we fi-
nally obtain running time O(n log4 n).

This time bound crucially depends on the paral-
lel time complexity of computing intersections of half-
spaces. There are many results on this basic problem,
including a randomized algorithm with O(log n) paral-
lel time complexity [14]. By leaving the firm ground of
deterministic algorithms, the time bound in theorem 1
can thus be improved to O(n log3 n) for case (a).

2.2 Polygonal Bounding Regions

Let G = (v1, . . . , vn) be a simple, closed polygon
with n vertices. Here, simple means that edges do not
intersect. In this subsection, we consider the case that
R is the region enclosed by G.

Compared to case (a), there are two difficulties.
First, in case (a) the set of admissible locations A could
be expressed as intersection of a polytope P and the
sphere Sz. This is not possible any more. Second, and
more crucial, the set of admissible locations can now
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have quadratic complexity. As an example, consider n
sites with equal weights that are arranged in 2 rows on a
grid. For adequate choices of ρ, these sites induce O(n)
‘rhombs’ of admissible locations in the plane. If we
overlay these sets by an adequate comb-shaped poly-
gon, then A will consist of O(n2) connected compo-
nents.

The first problem only introduces technical compli-
cations. In the sequential decision algorithm, we first
compute

PS =
⋂
p∈S

H(p),

intersect PS with Sz , and then retransform the intersec-
tion into the original plane by inversion. Note that the
topology of this region does not change by the trans-
formation, which simply maps intersections of facets of
PS with Sz to circular arcs in Ez . Let

AS =
⋂
p∈S

F (p)

denote the resulting region, represented by a list of cir-
cular arcs for each connected component. The remain-
ing part is to detect if the regions AS and R intersect.

Our approach to the second problem is based on the
observation that AS ∩ R 6= ∅ if and only if one of the
following conditions holds:

(i) The contours of both regions intersect.

(ii) R contains a connected component of AS .

(iii) A connected component of AS contains R.

We proceed as follows: first, we check for case (i)
by a simple sweep-line algorithm which is terminated
once an intersection has been detected (note that each
contour has only linear complexity). If this fails, cases
(ii) and (iii) can be checked separately by planar point
location (testing during the sweep is also possible).

Each step of the sequential algorithm takes
O(n log n) time. The basic parts, convex hull, plane
sweep and point location can be done in parallel
O(log2 n) time with n processors [9]. Summing up,
parametric search yields time complexity O(n log4 n).

2.3 Related Problems

The solutions in the previous subsections are based
on the fact that the union of forbidden regions has only
linear complexity and that it can be computed by a
‘parallelizable’ subquadratic algorithm. Direct exten-
sions to the considered problem – yielding the same
time bound O(n log4 n) – include:

(i) Monotone weight functions:
For point site p, we may define the weighted dis-
tance to the location x as fp(d(x, p)), for any
strictly increasing function fp : R→ R.

(ii) Different metrics:
If we replace the Euclidean distance by the L1–
or L∞–metric, then forbidden regions get squares
instead of discs. Again, the union has only linear
complexity, and can be computed by the algorithm
in [13] in sequential/parallel O(n log n)/O(log2 n)
time.

(iii) Different domains:
Instead of optimizing in Euclidean 2-space, our do-
main may be the unit sphere:
given a set S of n weighted points on the unit
sphere S2 = { x ∈ R3 ; ||x|| = 1 }, find a location
x ∈ S2 which maximizes min{ w(p)−1 ·d(x, p) ; p ∈
S }.

The solution to the latter problem can be obtained
analogous to subsection 2.1, and is even more intuitive.
The forbidden region F (p), for p ∈ S, is a spherical cap
on S2, and can be ‘cut out’ by a plane. The admissible
locations thus naturally correspond to the intersection
of a sphere (here, S2) with a convex polytope.

3 Exact Approximation

In this section, we assume that all input numbers
(i.e., coordinates of input points and weights) are given
as L-bit integers. For simplicity in this abstract, we
shall only consider case (a). We seek an algorithm that
finds the optimum by using integer arithmetic.

As a first hurdle on the way to such an ‘exact algo-
rithm’, note that the optimal locations as well as the
value ρ∗ can be algebraic numbers. We elude this prob-
lem by redefining the solution in a more combinatorial
way: as output of an exact algorithm, we shall expect
the sites that define the global maxima of the optimiza-
tion function. To be more precise, let x∗ be an optimal
location. Then S∗ = { p ∈ S ; w(p)−1 · d(x∗, p) = ρ∗ }
is assumed to be output.

In order to make an ε-approximation exact, we need
to know the gap between any two values of ρ at which
the topological structure of the boundary of the set
of admissible locations A changes (we call such values
‘critical values’ of ρ). In the following, let δ be this gap.

Using the decision algorithm from subsection 2.1, we
can approximate ρ∗ by binary search. Let ρ∗ ∈ I =
[ρ1, ρ2], with I an interval of length ≤ δ and with ra-
tional limits. Then the output sites can be detected
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from the arrangement of boundary arcs of the set of
admissible locations, computed for ρ = ρ1.

Assume we know δ. Then the decision algorithm in
subsection 2.1, with rational ρ as input, can directly be
adapted to the need of exact computation: the polytope
P = P(ρ) can be described purely by rational numbers,
and the intersection test with Sz can be done by com-
puting the necessary distances with up to O(| log δ|)
bits of precision. All elementary operations can be per-
formed in time O(µ(L)) [6]. With δ = 2−O(L), this
scheme thus has running time O(Lµ(L)n log n).

The practicability of the exact approach hinges on
the separation gap δ. To obtain a good bound is more
subtle than the algorithm above may suggest: the ra-
dius ρ∗ (as well as the other critical values for ρ) is a
square-root which again contains a square-root. Our
first approach to compute δ was based on the fact that
optimal (resp., critical) locations in the plane lie at
the intersections of Appolonius circles of pairs of input
points. This can be used to characterize the critical
values of ρ, and yielded a gap of roughly 800L. The
next subsection shows how a gap of roughly 50L can
be deduced by using inversion.

3.1 The Separation Gap

In this subsection, we use theO–notation to suppress
additive constants in the bit length of integer numbers.

Our goal is to separate the critical values of ρ. Each
critical value is a value of ρ at which a vertex, an edge
or a face of P(ρ) touches the sphere Sz. It is easy to
see that the third case is impossible as forbidden discs
can not emerge or vanish for ρ > 0.

Let us consider the first case. A vertex of P(ρ)
is the common intersection of 3 planes E1(ρ), E2(ρ),
E3(ρ), each defined by an equation of the form (1), with
(mx,my) = qi and r = ri for some i, or (mx,my) = p
and r = ρ ·w(p) for some p ∈ S. Vice versa, each choice
of 3 parametric planes E1(ρ), E2(ρ), E3(ρ) defines a
parametric vertex v(ρ), and this vertex determines po-
tential critical values of ρ. These critical values are
zeroes of the polynomial

f(ρ) = numerator (d(v(ρ), Cz)2 − 1
4

).

This polynomial is of the form

f(ρ) = α+ βρ2 + γρ4,

where α,β and γ are O(6L)-bit integers.
Analogous to this case, also the second case (edge

of P touches Sz) leads to quadratic polynomials in ρ2,
this time with O(4L)-bit integer coefficients.

Now assume that ρ1 and ρ2 are two distinct critical
values, defined as zeroes of two polynomials f1(ρ) and
f2(ρ). One way to separate these roots is by applying
Rump’s bound to (f1 ·f2)(ρ). A better way is as follows:
We first derive a lower bound for |ε| in

ε = ρ2
1 − ρ2

2.

Here, ρ2
i can be calculated from fi as

ρ2
i =

α′i +
√
β′i

γ′i
,

where α′i, β
′
i and γ′i are O(6L), O(12L) and O(6L)-bit

integers, respectively. By repeated squaring, the above
expression can be transformed to a polynomial equation

g(ε) = a0 + a1ε+ . . .+ a4ε
4 = 0

with integer coefficients a0, . . . , a4 of bit-size O(48L)
each. Cauchy’s bound applied to g gives

|ε| ≥ 1
1 + max{|a0|, . . . , |a4|}

= Ω(2−48L).

Finally, by estimating ρi ≤ 22L, we get

δ = |ρ1 − ρ2| =
|ρ2

1 − ρ2
2|

|ρ1 + ρ2|
= Ω(2−50L).

Lemma 1 In the weighted maximin location problem,
two distinct maximum values can be separated with an
absolute precision of O(50L) bits.

Though this is not a low constant, it is not totally
impractical, and it reflects the worst case. If the min-
imum is unique, then it may be detected with lower
precision – implementations can often be made sensi-
tive to this (see e.g. [5]).

4 Conclusion

In this paper, we presented the first subquadratic al-
gorithms for the weighted maximin location problem.
While parametric search is the method of choice in an
algebraic computing model, the bit framework seems
more suitable to develop practical algorithms for the
considered class of optimization problems - and is the-
oretically challenging as well.

In an exact implementation, the parametric search
solution would require calculations with O(L)-bit in-
tegers, increasing the running time in theorem 1 by a
factor µ(L). Comparing both approaches in the bit
framework, we get a tradeoff in running times between
a factor of L and a factor of log3 n.
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We conjecture that other problems that are tradi-
tionally solved by parametric search do likewise yield
to the exact approach. It would be interesting to derive
some general results on this.

As a final remark, we note that the complexity of the
maximin location problem is still somewhat mysterious:
by using floor functions combined with addressing, the
1-dimensional counterpart (MAXGAP on a line) can
be solved in linear time – despite the lower bound. It
is an open question if this result generalizes to 2D. Al-
ternatively, we state as open problem if the maximin
location problem can be solved in the bit model with a
time complexity that depends only linearly on n.

5 Acknowledgements

Thanks are due to Günter Hotz and Chee Yap for
many helpful discussions and – not least – for pointing
out to us some of the topics of this paper.

References

[1] M. Ajtai, N. Megiddo, “A Deterministic Poly(log log
N)-Time N-Processor Algorithm for Linear Program-
ming in Fixed Dimension”, 24th Annual ACM STOC,
1992, pp. 327-338.

[2] N. Amato, F. Preparata, “The Parallel 3D Convex Hull
Problem Revisited”, Computational Geometry and Ap-
plications, 2, 1992, pp. 163-173.

[3] P. Agarwal, M. Sharir, S. Toledo, “Applications of
parametric searching in geometric optimization”, Jour-
nal of Algorithms, 17, 1994, pp. 292-318.

[4] F. Aurenhammer, H. Edelsbrunner, “An optimal algo-
rithm for constructing the weighted Voronoi diagram
in the plane”, Pattern Recognition, 17(2), 1984, pp.
251-257.

[5] C. Burnikel, K. Mehlhorn, S. Schirra, “How to compute
the Voronoi diagram of line segments: theoretical and
experimental results”, Proc. ESA 94, LNCS Vol. 855,
1994, pp. 227-239.

[6] R.P. Brent, “Fast multiple-precision evaluation of ele-
mentary functions”, Journal of the ACM, 23(2), 1976,
pp. 242-251.

[7] Z. Drezner, G. Wesolowsky, “A maxmin location prob-
lem with maximum distance constraints”, IEE Trans.,
12, 1980, pp. 249-252.

[8] F. Follert, Lageoptimierung nach dem Maximin-
Kriterium, Diploma Thesis, Univ. d. Saarlandes,
Saarbrücken, 1994.

[9] J. JaJa, An Introduction to Parallel Algorithms,
Addison-Wesley, 1992.

[10] K. Kedem, R. Livne, J. Pach, M. Sharir, “On the union
of jordan regions and collision-free translational motion
amidst polygonal obstacles”, Discrete and Computa-
tional Geometry, 1(4), 1986, pp. 59-71.

[11] N. Megiddo, “Applying parallel computation algo-
rithms in the design of serial algorithms”, Journal of
the ACM, 30, 1983, pp. 852-865.

[12] E. Melachrinoudis, The maximin single facility loca-
tion problem using an Euclidian metric, Ph.D. Thesis,
Dept. of Industrial Engineering and Operations Re-
search, University of Massachusetts, MA, 1980.

[13] F. Preparata, M. Shamos, Computational geometry: an
introduction, Springer, 1988.

[14] J. Reif, S. Sen, “Optimal Parallel Randomized Algo-
rithms for Three-Dimensional Convex Hulls and Re-
lated Problems”, SIAM Journal on Computing, 23(3),
1994, pp. 466-448.

[15] J. Smith, P. Winter, “Computational geometry and
topological network design”, in D. Du, F. Hwang (eds.)
Computing in Euclidian Geometry, World Scientific
Publ. Co., 1992.

[16] R. Tamassia, J. Vitter, “Parallel transitive closure and
point location in planar subdivisions”, SIAM Journal
on Computing, 20(4), 1991, pp. 708-725.

[17] G. Toussaint, “Computing Largest Empty Circles with
Location Constraints”, Int. Journal of Computer and
Information Sciences, 12(5), 1983, pp. 347-357.

[18] C.-K. Yap, “Towards exact geometric computation”,
Proc. 5th Canadian Conf. on Comp. Geom. , 1993, pp.
405-419.

6


