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ABSTRACT

The interactive manipulation of rigid objects in virtual reality environments requires an object
behaviour which is at least physically plausible to be useful for applications like interactive
assembly simulation or virtual training. Physically plausible behaviour implies that collisions
between simulated solid objects are taken into account, and that the motion of objects with
obstacle contacts can be controlled without force feedback mechanisms in an intuitively cor-
rect manner. We present a real-time framework which enables the simulation of interactively
controlled solid objects with a dynamically changing set of contact constraints. In this paper,
all contact configurations are replaced by a canonical set of point contacts, which is updated
dynamically. The basic step to determine the contact forces and the object motion consists in
the solution of a non-linear complementarity problem (NCP), which results from the unilateral
contact conditions together with an adequate discretization of the corresponding differential
equations of motion.

Keywords: Virtual reality, motion simulation, contact constraints, non-linear complementarity
problem, NCP-functions, Newton iteration

1 INTRODUCTION

Certain virtual reality (VR) techniques have al-
ready been used for many years in industrial ap-
plications, such as in flight simulators or drive
simulators. In these cases, the navigation in vir-
tual worlds and the real time visualization of these
worlds have been major issues, while interaction
has not taken place in virtual but in real envi-
ronments, i.e. in car or aircraft cabins with real
instruments and real control devices.

Recently, new applications have been consid-
ered which require the user to directly interact
with and to manipulate simulated objects within
virtual worlds, among these ergonomy studies,
digital mockup, assembly simulation, simulation

of co-working, tele-operation, and training appli-
cations.

Such interaction in virtual environments re-
quires more than just realistic visualization - it
requires also realistic physical behaviour of the vir-
tual objects. Realistic here not necessarily means
physically correct behaviour, but at least physi-
cally plausible behaviour. For interactions in vir-
tual worlds, this means in particular that solid
objects do not interpenetrate if they collide, that
there is friction if two touching objects slide along
each other, and that objects have appropriate
gravitational, mass and inertia properties. In our
paper, we address the motion simulation of rigid
bodies subject to frictionless contact constraints.
This requires first a suitable mathematical repre-



sentation of the contact situations between two or
more touching bodies, together with a mechanism
which automatically updates this representation if
the contact situation changes during the simula-
tion. This further requires a method to determine
the motion of each involved moving object such
that the contact conditions are enforced at each
contact situation. As we have interactive applica-
tions in mind, all this has to be achieved under
real-time conditions. Finally, input data from an
external device has to be connected to the motion
simulation to enable interactive motion control of
virtual objects.

1.1 Previous Work

The simulation of the kinematics and dynam-
ics of rigid bodies in the presence of contact
constraints has been studied by several authors.
Early papers are by [Loets82] with important
contributions to the simulation of friction, by
[Cai87], and by [Hahn88], who pioneered dynamic
simulation and modeling of contacts. A thor-
ough study on the dynamics of non-penetrating
rigid bodies was presented by [Baraf92], who
is one of the most active contributors to this
field ([Baraf94, Baraf96]). Cremer, Stewart, and
Vanecek [Creme89, Vanec94] use similar methods
in their dynamic simulation systems Newton and
Isaac.

The reported approaches generally set up the
contact conditions for each contact in terms of
the local contact acceleration. As long as the nor-
mal component of this acceleration remains zero,
the contact persists. However, during numeri-
cal integration of the resulting motion equations,
small numerical errors accumulate, which leads to
a drifting problem: the contact condition is not
enforced in terms of the contact distance, and the
touching objects drift away from each other or
even interpenetrate. As one of the main contri-
butions of this paper, we will describe a method
to remedy this problem.

While these approaches are based on the solu-
tion of continuous dynamic equations and contact
forces, Mirtich and Canny [Mirti94] proposed an
impulse-based method. Here any impact among
contacting bodies is exchanged through trains of
impulses.

The formulation of motion constraints of rigid
bodies due to contact is discussed in a number of
papers [Cai87, Monta88, Shan95, Baraf96]. Quite
a number of formulations have been proposed to
determine the dynamic behaviour of objects which
are subject to motion constraints, as there are
Newton-Euler, D’Alembert, or Gauss’ principle of
least constraint. In [Baraf96], the author states
that ultimately all these approaches differ mainly
in one basic point. Either constraints are mod-

eled by reducing the number of coordinates which
are necessary to describe the remaining degrees of
freedom, or forces have to be introduced to main-
tain the constraints. A very good overview over
the pros and cons of this choice is given in that
paper.

The geometric representations of objects in VR
and simulation systems in most cases are polyhe-
dral surface descriptions. Such geometries yield
simple contact constraint conditions, as long as
the touching geometric elements (vertices, edges,
faces) remain the same. If objects in contact are
sliding along each other, contact conditions are
changing discontinuously as the set of touching ge-
ometric elements is changing. In [Bouma93], the
authors give a detailed analysis of collision con-
tacts between polyhedral objects. In the case of
face-face contacts, the area of touch is represented
by a set of point contacts. If there are more than
the 3 necessary contact points, they classify the
remaining contacts as inactive. The set of 3 ac-
tive contact points is determined through solving
a quadratic programming problem.

Although collision detection mechanisms are
necessary to detect new contacts, we do not treat
this topic in our paper. We just want to mention
here, that the main research direction in this field
is to find methods which speed up the detection of
object intersections, by using efficient data struc-
tures or by using suitable bounding volumes which
allow fast collision tests. A good state-of-the-art
paper is by Gottschalk et.al. [Gotts96].

1.2 Contributions of This Work

In this paper, we first discuss the representation
of any contact situation by a minimal set of point
contacts. This is the basis for a uniform mathe-
matical treatment of the motion simulation with
contact constraints. We further discuss how this
minimal set of point contacts updates in the course
of changing contact configurations.

Further we present a reformulation of the kine-
matic contact conditions in terms of contact dis-
tances, as opposed to the classical formulation in
terms of contact accelerations. This approach al-
lows to enforce the contact conditions without any
drift problem due to error accumulation.

In the classical approach, the motion equations
with contact constraints are formulated using a
linear complementarity problem (LCP), which can
be solved with the Lemke algorithm. In our case,
we encounter a non-linear complementarity prob-
lem instead, which we propose to solve using so-
called NCP-functions.

Finally, we will discuss the performance of our
approach, and present practical applications and
simulation results.



2 MOTION CONSTRAINTS

2.1 Mechanical Constraints due to Obstacle
Contacts

Contact configurations between polyhedra can be
composed of a subset of 9 contact primitives,
which correspond to the pairwise combinations of
the 3 geometric primitives vertex, edge, and face.
Contact primitives which are not point contacts
by themselves can be replaced by an appropriate
number of point contacts. To replace a face-face
contact we need 3 point contacts, and for an edge-
face contact we need 2. (In fact, in the physical
world, there are no perfectly planar faces or per-
fectly straight edges, and on a microscopic level
all contacts can be modeled as a composition of
point contacts.) For our problem, the formula-
tion of motion constraints, it is useful to deter-
mine a canonical set S of point contacts, that is
a non-redundant (and thus minimal) set of point
contacts which represents a given contact situa-
tion. The number k of point contacts in such a set
equals the number of degrees of freedom (DOF)
which are removed from the moving objects due
to contacts. This set can be translated directly
into a set of k scalar constraint equations for the
motion simulation.

How can we efficiently obtain the set S? It is
not sufficient to replace for example each face-face
contact with three point contacts, because this can
lead to redundancies. Furthermore, S has to be
updated each time the contact situation changes
during the motion simulation, i.e. if new contacts
are established or existing contacts vanish.

In the following, we present an algorithm which
dynamically determines a canonical set S of point
contacts during motion simulation. This requires
to register new contact points as well as vanishing
contact points.

2.2 Updating the Set of Point Contacts

To keep the set of point contacts S canonical,
we must avoid to include any redundant contact
point. Let S be canonical at the beginning of a
given simulation interval. If during this interval
the two objects start to intersect at some loca-
tion, the collision detection mechanism (which we
treat as a black box in this paper) reports one
or several points of collision. Each point of colli-
sion may be either of the type vertex-face, face-
vertex, or edge-edge. Furthermore, for each point
of collision the time of collision is reported by the
collision detection module. Now we are only inter-
ested in the earliest point of collision, because this
is the location where both objects start to inter-
sect, and where a new contact constraint should
be placed. Accordingly, the simulated motion is

stopped at the time instance tc at which the inter-
section starts, and the corresponding new contact
point is added to S, which is still canonical. Sub-
sequently, the motion simulation continues exactly
where the current simulation step was interrupted
by the collision.

Obviously the new contact point cannot be re-
dundant, otherwise an intersection could not have
been occurred at this location. Note that only
the earliest contact point is guaranteed to be non-
redundant, therefore it is important to add only
this single new contact point to S. If there are
several simultaneous earliest collision points, just
one of them is selected (according to some rule
or arbitrarily) for the new contact point. This is
however no severe restriction, as further contact
points may follow shortly one after the other in
subsequent simulation intervals, if necessary.

To find the earliest new contact point between
the two involved objects, the collision detection
module looks for all points of collision between
these objects, and determines the corresponding
collision times. The determination of the exact
collision times and of the earliest point contact is
not trivial, because the objects may move along
complicated trajectories. In our present imple-
mentation, we are using linear interpolations to
determine the collision times, which is appropriate
as long as the rotational components of the spec-
ified motion during each timestep are sufficiently
small.

The second mechanism required to update S
is to determine breaking contact points. Con-
tact points break either if attractive contact forces
would be necessary to maintain an existing con-
tact, or because a contact point moves outside a
contact region (e.g. an object vertex slides along
an obstacle face and leaves it at a convex edge).
In both cases, the corresponding contact point is
eliminated. Note that no redundancies can be
introduced into S by a removal of contact con-
straints.

The mechanism described above is illustrated in
fig.1, where at the beginning object A has already
one vertex-face contact with the fixed object B at
point P1. As object A rotates around P1, a col-
lision is detected at a second vertex-face contact,
P2. Now, object A may rotate around the axis h
through P1P2, until two edge-edge point collisions
occur at P3 and P4. These two collisions virtu-
ally occur simultaneously, however one of them
(say P3) is selected according to some rule or ar-
bitrarily as a new contact point. As long as the
motion restrictions originated by the three contact
points P1, P2, and P3 are maintained, no interpen-
etration can occur at P4, and thus no redundant
contact point will be established there.

Now let an additional force fext be applied to
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Figure 1: Several steps of a changing contact
configuration (from top left to bottom right).
Used contact points are marked by black dots.

object A at point S, the projection of which lies
outside the triangle (P1, P2, P3). This will cause
object A to rotate slightly around axis P2P3, and
the point contact at P1 will break. Further, a colli-
sion will occur at P4, and a new point contact will
be established there. Note that the contact point
at P4 now is non-redundant, because the contact
constraint at P1 no longer exists. It should be
mentioned that only in this example the new con-
tact point is close to the other contact points and
even belongs to the same object faces. In general,
new contact points can be established anywhere
on the surfaces of the involved objects, if the ear-
liest collision between them occurs there.

This example indicates how the canonical set
of point contacts can change automatically in the
course of the simulation as necessary to maintain
the dynamic force and torque equilibrium.

2.3 Unilateral Motion Constraints

Contacts, in contrast to joints or hinges, represent
unilateral constraints, as they restrict the local ob-
ject motion only in one direction (the one which
would lead to interpenetration). In the mathemat-
ical formulation, such unilateral constraints corre-
spond to inequality conditions, in contrast to the
equality conditions of bilateral constraints. This
makes the simulation of contact constraints math-
ematically more complicated. Consider two ob-
jects which are touching without friction at a set
of k point contacts, and with external forces and
torques acting on them. The resulting motion of
these objects depends on the external forces as
well as on the contact forces. A contact force how-
ever can be only repulsive, otherwise the contact

vanishes. The relation between contact forces and
the kinematics of contact i is generally described
by the following complementary set of conditions:

ai ≥ 0, fi ≥ 0, fiai = 0 (1)

which says that neither the normal acceleration ai
nor the normal contact force fi may be negative,
and at least one of both must be zero. If we collect
all ai and fi in the respective vectors a and f , we
obtain

a ≥ 0, f ≥ 0, fTa = 0 (2)

Since a can be expressed as a linear function of
f this leads to a linear complementarity problem
(LCP) (see [Cottl68, Cottl92]) for the determina-
tion of a and f . An efficient way to determine the
solution of this LCP is the Lemke algorithm (see
[Lemke65]).

As already mentioned, a disadvantage of this
classical approach is that it constrains the nor-
mal contact accelerations ai, and not directly the
normal contact distances wi, which leads to nu-
merical error accumulation during the integration
of the motion equations. To avoid this problem,
we reformulate eq. 2 as

w(f)t+∆t ≥ 0, f ≥ 0, fTwt+∆t = 0 (3)

where w(f)t+∆t indicates that the contact dis-
tances at the end of each simulation time interval
∆t are a function of the unknown contact forces f .
In contrast to the classical approach, this function
however is non-linear in our case, and methods to
solve an LCP like the Lemke algorithm cannot be
used.

In the following section, we will derive this func-
tion w(f)t+∆t. In section 4, we will employ so-
called NCP-functions to set up an equation sys-
tem in the unknown forces f , which can be solved
efficiently with the Newton iteration. Once these
forces are determined, it is trivial to derive the
resulting object motion.

3 MOTION SIMULATION WITH CON-
STRAINT FORCES

The motion of a rigid body subject to external
forces is described by the Newton-Euler motion
equations:

v̇ =
1
m

k∑
i=1

fi (4)

ω̇ = I−1

(
k∑
i=1

ri × fi − ω × Iω

)
(5)

where fi are the external forces (including contact
forces), ri are the vectors which point from the



center of mass to the points where the forces ap-
ply, I denotes the inertia tensor, and m the object
mass.

As we want to integrate these equations numer-
ically, we switch from the differential formulation
to a discrete one. Let us for the moment assume,
that only the k constraint forces are present (other
external forces can be added without difficulty),
then we obtain

vt+∆t = vt + ∆t
1
m

k∑
i=1

finti (6)

ωt+∆t = ωt + ∆t (It)−1

(
k∑
i=1

firti × nti − JtI

)
(7)

where JtI = ωt × Itωt represents the gyroscopic
forces. In (6) and (7), fi are the force magni-
tudes and ni are the force directions, which in the
frictionless case are identical with the contact nor-
mals. The position of the moving object is given
by the vector c, and its orientation by the quater-
nion . (See appendix A for details on quater-
nions).

Another integration step yields the position and
orientation of the moving object:

ct+∆t = ct + ∆tvt+∆t (8)

t+∆t = t +
1
2

∆t (0, ωt+∆t) · t (9)

where (0, ωt+∆t) and are quaternions, and the
dot represents the quaternion product (see ap-
pendix A).

Note that for (6) and (7) we choose forward dif-
ferentiation, and for (8) and (9) backward differ-
entiation. This allows to plug (6) into (8) and
(7) into (9), which results in an equation system
for the position ct+∆t and orientation t+∆t of
the moving object at the end of the simulation
interval, with the contact forces f1, . . . , fk as un-
knowns.

In the following we want to derive the contact
distances wi at each contact as a function of ct+∆t

and t+∆t. To this end, we first rewrite (9) by
replacing the quaternions by their equivalent ro-
tation matrices:

R( t+∆t) = R(1,
1
2

∆t ωt+∆t) ·R( t) (10)

This allows us to express the position pt+∆t of
a general point P of a moving object in terms
of its coordinates p̂ in an object fixed coordinate
system:

pt+∆t = R( t+∆t)p̂ + ct+∆t

3.1 The Contact Distances and Contact
Normals

As described in section 2, all contact configura-
tions between polyhedra can be represented by a

set of the two basic point contacts vertex-face and
edge-edge. In this section we give the contact dis-
tances and contact normals for these contacts as a
function of the global motion parameters Ri and
ci, i = 1, 2 of the two touching objects.

Vertex-face contact: Let a be a vertex of ob-
ject 1 which is in contact with a face of object 2.
Assume that this face lies in the plane with equa-
tion nTx = n0. We describe the motion of the
vertex and the plane as follows:

a = R1â + c1, n = R2n̂, n0 = n̂0 + cT2 n,

where Ri denotes the current orientation matrix
of object i, and ci the current position of its cen-
ter of mass. â, n̂ and n̂0 describe the position
of the vertex and the plane in the objects’ fixed
coordinate systems.

The contact normal of a vertex-face contact is
given by the face normal n and the contact point
lies at a. The contact distance is given by:

w = n̂TRT
2 (R1â + c1 − c2)− n̂0 (11)

Edge-edge contact: Let a1 and b1 be the end-
points of an edge of object 1 which is in contact
with an edge of object 2 with endpoints a2 and b2.
We describe the motion of the endpoints as ai =
Riâi+ci and bi = Rib̂i+ci. The contact normal
in this case is given by n = (b1 − a1)× (b2 − a2).
Without a detailed derivation, we give the contact
distance for this case as:

w =
(b2 − a2)T (a1 × b1)

|n|

+
(a2 × b2)T (b1 − a1)

|n| (12)

Finally, we can express the contact distances
wt+∆t
i , i = 1...k at the k contact points as func-

tions of the normal contact forces f1, . . . , fk, if we
plug eqs. (8, 10) into (11) respectively (12). We
refer to this function in the following using the
vector notation

w = g(f) (13)

4 SOLVING THE NON-LINEAR COM-
PLEMENTARITY PROBLEM

In the previous section, we derived the contact
distances w = g(f),g : IRk → IRk. Together with
the complementarity conditions

w(f) ≥ 0, f ≥ 0, fTw = 0

we obtain a non-linear complementarity problem
(NCP) for the determination of f . The math-
ematical literature proposes for the solution of
this problem the application of so-called NCP-
functions ([Kanzo96, Kanzo97]). These functions



transform the NCP into a non-linear equation sys-
tem, which can be solved with standard methods
like the Newton iteration .

The class of NCP-functions ϕ(a, b) : IR2 → IR
is defined by the property

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0 (14)

Particularly interesting properties have been re-
ported for the following NCP-function, which is
also called Fischer function ([Fisch92]):

ϕ(a, b) =
√
a2 + b2 − a− b (15)

With this auxiliary function, we define the op-
erator Fϕ : IR2n → IR2n as follows:

Fϕ(f ,w) =
(

g(f)−w
φ(f ,w)

)
. (16)

where

φ(f ,w) = (ϕ(f1, w1), . . . , ϕ(fn, wn))T

A set of (f ,w) in consequence solves the above
NCP exactly if Fϕ(f ,w) = 0 holds.

The equation system Fϕ(f ,w) = 0 has the de-
gree 2n. As pointed out in [Kanzo96], the solution
of this system can be reduced to the solution of an
equivalent equation system of degree n, as the n
components of w basically don’t represent inde-
pendent variables.

With the Jacobian
dFϕ
d(f ,w)

(f j ,wj) =
[

dg
df (f j) −I

dφ
df (f j ,wj) dφ

dw (f j ,wj)

]
we can transform the Newton-approach

dFϕ
d(f ,w)

(f j ,wj)
(

∆f j

∆wj

)
= −Fϕ(f j ,wj)

into the system(
dφ

df
(f j ,wj) +

dφ

dw
(f j ,wj)

dg
df

(f j)
)

∆f j

= −φ(f j ,wj)− dφ

dw
(f j ,wj)(g(f j)−wj)

To determine ∆f j we have to solve a linear equa-
tion system of degree n. Subsequently, ∆wj fol-
lows by direct substitution:

∆wj =
dg
df

(f j)∆f j + g(f j)−wj

The iteration

f j+1 = f j + ∆f j

wj+1 = wj + ∆wj

continues until |Fϕ(f j ,wj)| falls below a threshold
value.

This Newton-type method converges quadrat-
ically, and we generally have good estimates for
(f0,w0) from the previous simulation interval,
such that only few iterations are necessary. Ex-
perimental results are given is section 5.

4.1 Extension to Multibody Systems

In the previous sections we assumed that only con-
tacts between two rigid objects have to be taken
into account. In many practical applications how-
ever this is not true. Imagine for example that
one interactively controlled object is a kind of tool
which is used to manipulate several other move-
able objects.

If more than two objects are in contact with
each other, their motion cannot be simulated inde-
pendently, as they are mutually constraining their
relative motion. Instead, they have to be simu-
lated as one articulated combined object. A clus-
ter of n connected movable objects can have up
to 6n non-redundant point contacts, which corre-
sponds to a system of 1 ≤ k ≤ 6n scalar motion
constraints.

The mathematics for the motion simulation of
such a cluster of touching objects is basically the
same as described in the previous sections. For
each object, there is a set of motion equations (4)
... (10), and for each point contact there is an
entry in the set of complementarity conditions, eq.
(3).

The numerical effort to determine all k contact
forces is dominated by the solution of linear equa-
tion systems. Since this step has complexity O(k3)
great values of k are inhibitive for real-time solu-
tions. So far, we limited ourselves to applications
with few moveable objects, which can be handled
in real-time as indicated in section 5.

5 APPLICATIONS AND EXPERIMEN-
TAL RESULTS

The methods described in the previous sections
have been tested in different interactive applica-
tions. To enable the interactive control of one of
the virtual objects, we translated input data from
a spaceball or a data glove into a virtual force
and torque. These external forces and torques
have been applied to the selected object by sim-
ply adding these values to the motion equations
(4, 5). A gravitational effect is easily included
by just adding a negative vertical acceleration to
equation (4).

The first example we want to present consists
of two moveable objects, one of which is interac-
tively controlled, and a fixed horizontal ground
plane with bounds and a hole (see fig.2). The in-
teractively controlled object can be moved around,
and in case of mechanical contacts behaves intu-
itively correct, i.e. the touching objects do not in-
terpenetrate, but slide along each other. The sec-
ond moveable object can be pushed around when
touched by the first one.

The second example, illustrated in fig.3, is an
assembly simulation, where the user has to insert



Figure 2: Virtual scene with two movable ob-
jects, one of which is controlled interactively,
and a static obstacle.

a virtual car radio into the console of the car, using
a data glove. In this example, the simulation of
sliding contacts is essential in order to perform the
task in a realistic and intuitive manner.

Average computing times on an SGI O2TM

(R10000, 150MHz) for the iterative solution of the
equation system for different numbers of contacts
are given in the following table:

contacts 1 2 3 5 10
time (ms) 0.3 0.4 0.6 2.1 11.5

For a visualisation frame rate of 30 Hz, 33 ms
are available for the motion simulation. In this
application, we are far below that limit. So the
computing times for the motion simulation with
up to 10 point contacts are clearly adequate for
real-time solutions.

6 SUMMARY AND FURTHER RE-
SEARCH

In this paper, we presented a real-time framework
which enables the simulation of interactively con-
trolled solid objects with contact constraints. Due
to the chosen physically oriented simulation model
with contact forces, the resulting object motion
in case of mechanical contacts is realistic and in-
tuitively correct. This is an important prerequi-
site for practical applications like assembly simu-
lations or virtual training. The computing times
for the motion simulation with up to 10 point con-
tacts are clearly adequate for real-time solutions.
The framework scales with any number of involved
objects, however for large contact clusters with
many mutual contacts the simulation times will
go up significantly.

So far, only frictionless contacts have been taken
into account. As friction is an important property

Figure 3: Ergonomy study and assembly sim-
ulation in a virtual car interior. The user has
to install the car radio.

of real environments, a planned direction for fu-
ture extentions is to add this feature to the sim-
ulation system. As our contact model is based
on point contacts, and contact forces are already
implemented, it should be possible to introduce
friction forces to the presented framework.

If the complementarity condition eq. (3) for uni-
lateral motion constraints is replaced by the con-
tact condition w(f)t+∆t = 0, bilateral constraints
(like joints or hinges) can be included as well.

Another potential field of improvements con-
cerns the mechanical user interface. For a per-
fectly realistic user interaction with virtual en-
vironments, force feedback mechanisms would be
necessary. Otherwise, even though the motion be-
haviour within the simulated environment is cor-
rect, the user does not feel the reaction forces, and
mainly depends on the visual feedback, which is
a significant limitation. Nevertheless, as long as
practical force feedback devices are not available,
the described techniques allow a satisfactory solu-
tion for interactive manipulation tasks in virtual
environments.

APPENDIX A: DESCRIPTION OF RO-
TATIONS AS QUATERNIONS

A quaternion = (q0,q) ∈ IR4 is composed of
a vector component and a scalar, which together
describe the orientation or rotation of an object by
the rotation axis r ∈ IR3, |r| = 1, and the rotation
angle ϕ as follows:

r,ϕ =
(

cos
ϕ

2
, sin

ϕ

2
r
)

The rotation matrix which corresponds to the



quaternion = (q0,q) is given by

R( ) =
(q2

0 − q2)E + 2qqT + 2q0q×

q2
0 + q2

(17)

The concatenation of rotations is determined
by the multiplication of the corresponding quater-
nions R( ) ·R( ) = R( · ), where the quaternion
product · is defined as

(a0, a) · (b0,b) =
(
a0b0 − aTb, a0b + b0a + a× b

)
For further details on quaternion derivation and

arithmetics, refer to [Glass90].
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