Which electronic structure method? An introduction to Density Functional Theory (part 1)

Marialore Sulpizi

Uni Mainz

November 3, 2015

(4月) イヨト イヨト

Elementary Quantum Mechanics

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

Density Functional Theory

Thomas-Fermi model The Hohenberg-Kohn theorems Orbitals and Kohn-Sham equations

・ 同 ト ・ ヨ ト ・ ヨ ト

Recommended readings:

- Density-Functional Theory of Atoms and Molecules by Robert
 G. Parr, Yang Weitao Oxford Science Publications
- Modern Quantum Chemistry. Introduction to Advanced Electronic Structure Theory by Attila Szabo and Neil S. Ostlund - Dover Publications
- Ab initio Molecular dynamics. Basic Theory and Advanced Methods by Dominik Marx and Jürg Hutter - Cambridge University Press

イロト イポト イヨト イヨト

3

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

The Schrodinger Equation

$$\hat{H}\Psi = E\Psi \tag{1}$$

$$\Psi = \Psi(x_1, x_2, \dots, x_n) \tag{2}$$

$$\hat{H} = \hat{T} + \hat{V_{ne}} + \hat{V_{ee}}$$
(3)

$$\hat{H} = \sum_{i=1,}^{N} (-\frac{1}{2} \nabla_i^2) + \sum_{i=1,}^{N} v(r_i) + \sum_{i(4)$$

where

$$v(r_i) = -\sum_{\alpha} \frac{Z_{\alpha}}{r_{i\alpha}}$$
(5)

▶ The total energy is
$$W = E + V_{nn}$$

where $V_{nn} = \sum_{\alpha < \beta} \frac{Z_{\alpha} Z_{\beta}}{R_{\alpha\beta}}$

・ロト ・回 ト ・ヨト ・ヨト

æ

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

The Schrodinger Equation

$$\hat{H}\Psi = E\Psi$$

must be solved subject to appropriate boundary conditions, namely $\Psi(x_1, ..., x_n)$ decays to zero at infinity, or appropriate periodic boundary condition for a solid.

$$\Psi(x_1,...,x_n)|^2 dr_1...dr_N$$
 (6)

is the probability of finding the system with position coordinates between $x_1, ..., x_N$ and $x_1 + dx_1, ..., x_N + dx_N$. Ψ must be antisymmetric.

$$\int \Psi_k^* \Psi_l dx^N = \langle \Psi_k | \Psi_l \rangle = \delta_{kl}$$
(7)

・ロン ・回 と ・ ヨ と ・ ヨ と

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

The Schrodinger Equation

Expectation values of observables are given by:

$$\left\langle \hat{A} \right\rangle = \frac{\int \Psi^* \hat{A} \Psi dx}{\int \Psi^* \Psi dx} = \frac{\left\langle \Psi | \hat{A} | \Psi \right\rangle}{\left\langle \Psi \Psi \right\rangle}$$
 (8)

In particular we also have

$$T\left[\Psi\right] = \left\langle \hat{T} \right\rangle = \int \Psi^* \hat{T} \Psi dx \tag{9}$$

and

$$V[\Psi] = \left\langle \hat{V} \right\rangle = \int \Psi^* \hat{V} \Psi dx \tag{10}$$

・ロン ・聞と ・ほと ・ほと

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

Variational Principle

For a system in a state Ψ

$$E[\Psi] = rac{\langle \Psi | \hat{H} | \Psi
angle}{\langle \Psi | \Psi
angle}$$
 (11)

where $\langle \Psi | \hat{H} | \Psi
angle = \int \Psi^* \hat{H} \Psi dx$ The variational principles states that

$$E[\Psi] \ge E_0 \tag{12}$$

The total energy computed for a guessed state Ψ is an upper bound to the true ground state energy E_0 .

$$E_0 = \min_{\Psi} E\left[\Psi\right]. \tag{13}$$

・ロン ・回と ・ヨン ・ヨン

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

Variational Principle

Formal proof of the variational principle.

Let's expand Ψ in terms of the normalized eigenstates of \hat{H} , Ψ_k :

$$\Psi = \sum_{k} C_{k} \Psi_{k} \tag{14}$$

The the energy becomes:

$$E[\Psi] = \frac{\sum_{k} |C_{k}|^{2} E_{k}}{\sum_{k} |C_{k}|^{2}} \ge \frac{\sum_{k} |C_{k}|^{2} E_{0}}{\sum_{k} |C_{k}|^{2}} \ge E_{0}$$
(15)

since $E_k \ge E_0$. (E_k is the energy for the *k*th eigenstate of \hat{H}).

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

Variational Principle

The variational principle can also be state in the variational form:

$$\delta\left[\left\langle \Psi|\hat{H}|\Psi\right\rangle - E\left\langle \Psi|\Psi\right\rangle\right] = 0 \tag{16}$$

where E is the Lagrange multiplier. This eq guarantees extremization of $\left\langle \Psi | \hat{H} | \Psi
ight
angle$ under the constraint $\langle \Psi | \Psi \rangle = 1$.

The variational principle can be extended to excited states

$$E\left[\tilde{\Psi_1}\right] \ge E_1$$
 (17)

if $\tilde{\Psi_1}$ is orthogonal to Ψ_0 .

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

The Hartree Fock Approximation

$$\Psi_{HF} = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_1(x_1) & \psi_2(x_1) & \dots & \psi_N(x_1) \\ \psi_1(x_2) & \psi_2(x_2) & \dots & \psi_N(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \psi_1(x_N) & \psi_2(x_N) & \dots & \psi_N(x_N) \end{vmatrix} = \frac{1}{\sqrt{N!}} det[\psi_1\psi_2\cdots\psi_N]$$
(18)
orthogonal orbitals ψ_i are found minimizing $E[\Psi] = \frac{\langle \Psi|\hat{H}|\Psi\rangle}{\langle \Psi|\Psi\rangle}$ where Ψ is in the form of a Slater determinant. $\langle \Psi_{HF}|\Psi_{HF}\rangle = 1$

・ロト ・回ト ・ヨト ・ヨト

æ

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

The Hartree Fock Approximation

$$E_{HF} = \langle \Psi_{HF} | \hat{H} | \Psi_{HF} \rangle = \sum_{i=1}^{N} H_i + \frac{1}{2} \sum_{i,j=1}^{N} (J_{ij} - K_{ij})$$
(19)

where

$$H_{i} = \int \psi_{i}^{*}(x) [-\frac{1}{2}\nabla^{2} + v(x)]\psi_{i}(x)dx$$
 (20)

$$J_{ij} = \iint \psi_i(x_1)\psi_i^*(x_1)\frac{1}{r_{12}}\psi_j^*(x_2)\psi_j(x_2)dx_1dx_2$$
(21)

$$K_{ij} = \iint \psi_i^*(x_1)\psi_j(x_1)\frac{1}{r_{12}}\psi_i(x_2)\psi_j^*(x_2)dx_1dx_2 \qquad (22)$$

$$J_{ii} = K_{ii} \tag{23}$$

イロン イヨン イヨン イヨン

э

this explain the double sum in (19).

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

The Hartree Fock Approximation

Minimizing E_{HF}

$$E_{HF} = \langle \Psi_{HF} | \hat{H} | \Psi_{HF} \rangle = \sum_{i=1}^{N} H_i + \frac{1}{2} \sum_{i,j=1}^{N} (J_{ij} - K_{ij})$$
(24)

subject to the orthonormalization conditions

$$\int \psi_i^*(x)\psi_j(x)dx = \delta_{ij}$$
(25)

gives the Hartree Fock differential equations:

$$\hat{F}\psi_i(x) = \sum_{j=1}^N \epsilon_{ij}\psi_j(x)$$
(26)

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

 $\hat{F}\psi_i(x) = \sum_{k=1}^N \epsilon_{ij}\psi_j(x)$ where

$$\hat{F} = -\frac{1}{2}\nabla^2 + v(x) + \hat{g}$$
 (27)

in which the Coulomb-exchange operator \hat{g} is given by

$$\hat{g} = \hat{j} - \hat{k}. \tag{28}$$

Here

$$\hat{j}(x_1)f(x_1) \equiv \sum_{k=1}^N \int \psi_k^*(x_2)\psi_k(x_2)\frac{1}{r_{12}}f(x_1)dx_2$$
(29)

and

$$\hat{k}(x_1)f(x_1) \equiv \sum_{k=1}^{N} \int \psi_k^*(x_2)f(x_2)\frac{1}{r_{12}}\psi_k(x_1)dx_2$$
(30)

where $f(x_1)$ is an arbitrary function and the matrix ϵ consists of Lagrange multipliers.

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

Restricted Hartree Fock (RHF)

For an even number of electrons the alpha and beta electron are chosen so occupy the same orbitals, namely we have N/2 orbitals of form $\phi_k(r)\alpha(s)$ and N/2 orbitals of form $\phi_k(r)\beta(s)$

$$E_{HF} = 2\sum_{k=1}^{N/2} H_k + \sum_{k,l=1}^{N/2} (2J_{kl} - K_{kl})$$
(31)

where

$$H_{k} = \int \phi_{k}^{*}(r) [-\frac{1}{2}\nabla^{2} + v(r)]\phi_{k}(r)dr$$
(32)

$$J_{kl} = \iint \phi_k(r_1)\phi_k^*(r_1)\frac{1}{r_{12}}\phi_l^*(r_2)\phi_l(r_2)dr_1dr_2$$
(33)

$$K_{kl} = \iint \psi_k^*(r_1)\psi_l(r_1)\frac{1}{r_{12}}\psi_k(r_2)\psi_l^*(r_2)dr_1dr_2 \qquad (34)$$

The Hartree-Fock equations now read:

$$\hat{F}\phi_k(r) = \sum_{l=1}^{N/2} \epsilon_{kl}\phi_l(r)$$
(35)

with operator $\hat{\mathcal{F}} = -rac{1}{2}
abla^2 +
u(x) + \hat{g} \, \left(\hat{g} = \hat{j} - \hat{k}
ight)$ where

$$\hat{j}(r_1)f(r_1) \equiv 2\sum_{m=1}^{N/2} \int \phi_m^*(r_2)\phi_m(r_2)\frac{1}{r_{12}}dr_2f(r_1)$$
(36)

and

$$\hat{k}(r_1)f(r_1) \equiv \sum_{m=1}^{N/2} \int \phi_m^*(r_2)f(r_2)\frac{1}{r_{12}}dr_2\phi_m(r_1)dr_2 \qquad (37)$$

・ロト ・回ト ・ヨト ・ヨト

3

the determinant wavefunction for the "closed-shell" case is

$$\Psi_{HF} = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_1(r_1)\alpha(s_1) & \phi_1(r_1)\beta(s_1) & \dots & \phi_{N/2}(r_1)\beta(s_1) \\ \phi_1(r_2)\alpha(s_2) & \phi_1(r_2)\beta(s_2) & \dots & \phi_{N/2}(r_2)\beta(s_2) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \phi_1(r_N)\alpha(s_N) & \phi_1(r_N)\beta(s_N) & \dots & \phi_{N/2}(r_N)\beta(s_N) \end{vmatrix}$$
(38)

<ロ> (四) (四) (三) (三) (三)

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

A unitary transformation of the occupied orbitals ϕ_k to another set of orbitals η_k leaves the wavefunction unchanged except possibly by a phase factor. Also the operators \hat{F} , \hat{k} and \hat{j} are invariant to such a transformation.

If we have

$$\eta_m = \sum_k U_{mk} \psi_k \tag{39}$$

where

$$U^+ U = 1 \tag{40}$$

then the Hartree Fock equations become:

$$\hat{F}\eta_m = \sum_{n=1}^{N/2} \epsilon_{mn}^\eta \eta_n \tag{41}$$

One can choose U so to diagonalize the Hartree Fock equations:

$$\hat{F}\lambda_m(r) = \epsilon_m^\lambda \lambda_m(r) \tag{42}$$

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

The orbitals solution of

$$\hat{F}\lambda_m(r) = \epsilon_m^\lambda \lambda_m(r)$$

are uniquely appropriate for describing removal of electrons from the system.

Koopmans theorem If one assume no reorganization on ionization, then the best (lowest energy) single-determinant description for the ion is the determinant built from the canonical Hartree Fock orbitals $\lambda_m(r)$.

$$\epsilon_m^\lambda = -I_m \tag{43}$$

where I_m is the ionization energy associated with the removal of an electron from the orbital λ_m .

When the number of electron is not even, the standard HF approach is called *unrestricted open-shell* HF method.

spatial part of wf for spin α is allowed to be different from the spatial part of the wf for spin β .

UHF can be used also in the case of even number of electrons. It often doesn't give a lower energy, but there are important examples where the UHF is required. (e.g. H_2).

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

UHF for H_2 molecule

$$\phi_{1s}^{CGF}(\zeta = 1.0, STO - 3G) = \\ d_{13}\phi_{1s}^{GF}(\alpha_{13}) + d_{23}\phi_{1s}^{GF}(\alpha_{23}) + \\ d_{33}\phi_{1s}^{GF}(\alpha_{33}) \\ \text{where} \\ \phi_{1s}^{GF}(\alpha, r - R_{A}) = \\ (2\alpha/\pi)^{3/4}e^{-\alpha|r - R_{A}|^{2}}$$

・ロト ・回 ト ・ヨト ・ヨト

æ

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

Kolos-Wolniewicz, J. Chem. Phys. 41, 3663 (1964); doi:10.1063/1.1725796

< ∃⇒

Э

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

Correlation energy

HF is a single determinant description, but the Exact solution is never a single determinant or a combination of a few determinants. The energy difference between the exact energy and HF energy is the correlation energy.

$$E_{corr} = E - E_{HF} < 0 \tag{44}$$

How to improve?

 CI (linear mixing of several determinants. Conceptually the simplest, but NOT computationally

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

Correlation energy

HF is a single determinant description, but the Exact solution is never a single determinant or a combination of a few determinants. The energy difference between the exact energy and HF energy is the correlation energy.

$$E_{corr} = E - E_{HF} < 0 \tag{44}$$

How to improve?

- CI (linear mixing of several determinants. Conceptually the simplest, but NOT computationally
- Many body perturbation theory

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

Electron Density

$$\rho(r_1) = N \int \dots \int |\Psi(x_1, x_2, \dots, x_N|^2 ds_1 dx_2 \dots dx_N \qquad (45)$$
$$\int \rho(r) dr = N \qquad (46)$$

- For an atom in its ground state, the density decrease monotonically away from the nucleus
- At any atomic nucleus, the electron density has a finite value. Cusp in the density to avoid $-\frac{1}{2}\nabla^2 - (Z_{\alpha}/r_{\alpha})$ to blow up in $\hat{H}\Psi$.

$$\frac{\partial}{\partial r_{\alpha}}\bar{\rho}(r_{\alpha})|_{\alpha=0} = -2Z_{\alpha}\bar{\rho}(0)$$
(47)

where $\bar{\rho}(r_{\alpha})$ is the spherical average of $\rho(r_{\alpha})$.

The Schrodinger Equation Variational Principle The Hartree Fock Approximation Correlation energy

Electron Density

Long-range law for the electron density:

$$\rho \sim \exp\left[-2\left(2I_{\min}\right)^{1/2}r\right] \tag{48}$$

where I_{min} is the first ionization potential. The Hartree Fock result following from Koopmans theorem will be:

$$\rho_{HF} \sim \exp\left[-2\left(-2\epsilon_{max}\right)^{1/2}r\right] \tag{49}$$

Thomas-Fermi model The Hohenberg-Kohn theorems Orbitals and Kohn-Sham equations

The original idea: the Thomas-Fermi model

The fundamental idea is to replace the N-electron wavefunction with the electron density.

$$\psi(x_1, x_2, \dots x_N) \to \rho(r) \tag{50}$$

How to approximate the the distribution of electrons in an atom? Let's assume electrons are uniformly distributed

$$\epsilon(n_x, n_y, n_z) = \frac{h^2}{8ml^2} (n_x^2 + n_y^2 + n_z^2)$$
(51)
$$\epsilon(n_x, n_y, n_z) = \frac{h^2}{8ml^2} R^2$$
(52)

Thomas-Fermi model The Hohenberg-Kohn theorems Orbitals and Kohn-Sham equations

number of distinct energy levels with energy lower than ϵ

$$\Phi(\epsilon) = \frac{1}{8} \frac{4\pi}{3} R^3 \tag{53}$$

$$\Phi(\epsilon) = \frac{\pi}{6} \left(\frac{8ml^2}{h^2}\right)^{3/2} \epsilon^{3/2}$$
(54)

The number of energy levels between ϵ and $\epsilon + \delta \epsilon$ is

$$g(\epsilon)\Delta\epsilon = \Phi(\epsilon + \delta\epsilon) - \Phi(\epsilon)$$
(55)
$$= \frac{\pi}{4} \left(\frac{8ml^2}{h^2}\right)^{3/2} \epsilon^{1/2} \delta\epsilon$$
(56)

イロン イヨン イヨン イヨン

3

Thomas-Fermi model The Hohenberg-Kohn theorems Orbitals and Kohn-Sham equations

$$\Delta E = 2 \int \epsilon f(\epsilon) g(\epsilon) d\epsilon$$
(57)

$$= 2 \int_{0}^{\epsilon_{F}} \frac{\pi}{4} \left(\frac{8ml^{2}}{h^{2}}\right)^{3/2} \epsilon^{3/2} \delta \epsilon$$
(58)
$$= \frac{\pi}{5} \left(\frac{8ml^{2}}{h^{2}}\right)^{3/2} \epsilon_{F}^{5/2}$$
(59)

$$= \frac{8\pi}{5} \left(\frac{2m}{h^2}\right)^{3/2} l^3 \epsilon_F^{5/2}$$
(60)

where we have used the Fermi-Dirac distribution for the electrons:

$$f(\epsilon) = \frac{1}{1 + e^{\beta(\epsilon - \mu)}} \tag{61}$$

which at T=0 becomes

$$f(\epsilon) = \begin{cases} 1 & \text{if } \epsilon < \epsilon_F \\ 0 & \text{if } \epsilon > \epsilon_F < \square > \langle B \rangle > \langle B \rangle$$

Thomas-Fermi model The Hohenberg-Kohn theorems Orbitals and Kohn-Sham equations

$$\Delta N = 2 \int f(\epsilon)g(\epsilon)d\epsilon \qquad (62)$$

$$= \frac{8\pi}{3} \left(\frac{2m}{h^2}\right)^{3/2} l^3 \epsilon_F^{3/2}$$
(63)

$$\Delta E = \frac{3}{5} \Delta N \epsilon_F$$
(64)

$$= \frac{3h^2}{10m} \left(\frac{3}{8\pi}\right)^{2/3} \left(\frac{\Delta N}{l^3}\right)^{5/3}$$
(65)

$$= \frac{3h^2}{10m} \left(\frac{3}{8\pi}\right)^{2/3} \rho^{5/3}$$
(66)

Adding the contributions from all the cells we get

$$T_{TF}[\rho] = C_F \int \rho^{5/3}(r) \, dr \tag{67}$$

Thomas-Fermi model The Hohenberg-Kohn theorems Orbitals and Kohn-Sham equations

If we now come back to the Hamiltonian for an atomic system

$$\hat{H} = \sum_{i=1,}^{N} (-\frac{1}{2} \nabla_i^2) + \sum_{i=1,}^{N} v(r_i) + \sum_{i(68)$$

we can write the Thomas-Fermi functional of atoms

$$E_{TF}[\rho] = C_F \int \rho^{5/3}(r) \, dr - Z \int \frac{\rho(r)}{r} dr + \frac{1}{2} \int \int \frac{\rho(r_1) \, \rho(r_2)}{|r_1 - r_2|} dr_1 dr_2$$
(69)

We now assume that for the ground state the electron density minimizes the energy functional under the condition:

$$N = N\left[\rho\left(r\right)\right] = \int \rho\left(r\right) dr \tag{70}$$

・ロト ・回ト ・ヨト ・ヨト

3

Thomas-Fermi model The Hohenberg-Kohn theorems Orbitals and Kohn-Sham equations

Or in the Lagrange multiplier formalism:

$$\delta\{E_{TF}[\rho] - \mu_{TF}\left(\int \rho(r)\,dr - N\right)\} = 0 \tag{71}$$

which yields the Euler-Lagrange equation

$$\mu_{TF} = \frac{\delta E_{TF}\left[\rho\right]}{\delta\rho\left(r\right)} = \frac{5}{3} C_F \rho^{2/3}\left(r\right) - \phi\left(r\right) \tag{72}$$

where $\phi(r)$ is the electrostatic potential

$$\phi(\mathbf{r}) = \frac{Z}{r} - \int \frac{\rho(\mathbf{r}_2)}{|\mathbf{r} - \mathbf{r}_2|} d\mathbf{r}_2$$
(73)

At the beginning the model encountered limited success, indeed

- Accuracy for atoms is not high
- No molecular binding is predicted

However the situation changed in 1964 with the publication of a landmark paper by Hohenberg and Kohn. They provided the fundamental theorems to show that:

Thomas-Fermi model can be regarded as an approximation to an exact theory, the *Density Functional Theory*.

Thomas-Fermi model The Hohenberg-Kohn theorems Orbitals and Kohn-Sham equations

The Hohenberg-Kohn theorems

For a given system described by the Hamiltonian:

$$\hat{H} = \sum_{i=1,}^{N} (-\frac{1}{2} \nabla_i^2) + \sum_{i=1,}^{N} v(r_i) + \sum_{i(74)$$

N and v(r) determines all properties of the ground state. The first Hohenberg-Kohn theorem states: The external potential v(r) is determined, within a trivial additive constant, by the electron density $\rho(r)$.

Let's consider the ground state density $\rho(r)$.

 $\rho(r)$ determines N as $N = \int \rho(r) dr$.

 $\rho(r)$ also determines v(r). Let's that is not true and there two distinct v(r) and v'(r) that differ but more than a constant, both giving the same $\rho(r)$. We would have two Hamiltonian H and H'. Using the variational principle we can write

$$E_{0} < \left\langle \psi' | H | \psi' \right\rangle = \left\langle \psi' | H - H' | \psi' \right\rangle + \left\langle \psi' | H' | \psi' \right\rangle$$
(75)

$$= \int \rho(r) \left[v(r) - v'(r) \right] dr + E'_0 \quad (76)$$

In the same way we can write

$$E'_{0} < \langle \psi | H' | \psi \rangle = \langle \psi | H' - H | \psi \rangle + \langle \psi | H | \psi \rangle$$

$$= -\int \rho(r) \left[v(r) - v'(r) \right] dr + E_{0}$$
(78)

Summing up the two we arrive to the absurd $E_0 + E'_0 < E'_0 + E_0$, so it must be v(r) = v'(r).

Thomas-Fermi model The Hohenberg-Kohn theorems Orbitals and Kohn-Sham equations

The second Hohenberg-Kohn theorem states: For a trial density $\tilde{\rho}(r)$ such that $\tilde{\rho}(r) > 0$ and $\int \tilde{\rho}(r) dr = N$, there is a variational principle and $E_0 \leq E_v [\tilde{\rho}]$.

$$E_{v}\left[\rho\right] = T\left[\rho\right] + V_{ne}\left[\rho\right] + V_{ee}\left[\rho\right]$$
(79)

$$= \int \rho(r) v(r) dr + F_{HK}[\rho]$$
(80)

and

$$F_{HK}[\rho] = T[\rho] + V_{ee}[\rho]$$

$$= T[\rho] + J[\rho] + \text{nonclassical term}$$
(81)
(82)

The second HK theorem provides the justification for the variational principle in TF, where $E_{TF}[\rho]$ is an approximation to $E[\rho]$.

Thomas-Fermi model The Hohenberg-Kohn theorems Orbitals and Kohn-Sham equations

From the first HK Theorem we have that $\tilde{\rho}(r)$ determines $\tilde{v}(r)$ and consequently \tilde{H} and $\tilde{\psi}$. Let's consider $\tilde{\psi}$ as the trial wf for the problem H

$$\left\langle \tilde{\psi}|H|\tilde{\psi}\right\rangle = \int \tilde{\rho}(r) dr + F_{HK}\left[\tilde{\rho}\right] = E_{\nu}\left[\tilde{\rho}\right]$$
(83)
$$\left\langle \tilde{\psi}|H|\tilde{\psi}\right\rangle \ge \left\langle \psi|H|\psi\right\rangle = E_{\nu}\left[\rho\right]$$
(84)

So it follows that $E_{v} [\tilde{\rho}] \geq E_{v} [\rho]$. In the differential form:

$$\delta\{E_{\nu}[\rho] - \mu\left[\int\rho(r)\,dr - N\right]\} = 0 \tag{85}$$

where

$$\mu = \frac{\delta E_{\nu} \left[\rho\right]}{\delta \rho \left(r\right)} = \nu \left(r\right) + \frac{\delta F_{HK} \left[\rho\right]}{\delta \rho \left(r\right)}$$
(86)

Thomas-Fermi model The Hohenberg-Kohn theorems Orbitals and Kohn-Sham equations

Orbitals and Kohn-Sham equations

it is quite appealing that we can get the ground-state energy of a many-electron system as minimum of an energy functional

$$E_{v}\left[\rho\right] = T\left[\rho\right] + V_{ne}\left[\rho\right] + V_{ee}\left[\rho\right]$$

we have seen that a drastic approximation to the functional can be obtained by the TF model:

$$V_{ee}[
ho] o J[
ho] = rac{1}{2} \iint rac{
ho(r_1)
ho(r_2)}{|r_2 - r_2|} dr_1 dr_2$$

 $T\left[\rho
ight]
ightarrow$ uniform electron gas

Can we do better?

Thomas-Fermi model The Hohenberg-Kohn theorems Orbitals and Kohn-Sham equations

Let's consider a *noninteracting reference system* in which there is no electron electron repulsion term and for which the electron density is exactly ρ :

$$\hat{H}_{s} = \sum_{i}^{N} \left(-\frac{1}{2} \nabla_{i}^{2} \right) + \sum_{i}^{N} v_{s} \left(r_{i} \right)$$
(87)

For this system we have an exact solution

$$\Psi_{s} = \frac{1}{\sqrt{N!}} det \left[\psi_{1} \psi_{2} \dots \psi_{N} \right]$$
(88)

for such a system the kinetic energy is

$$T_{s}[\rho] = \langle \Psi_{s}| \sum_{i}^{N} \left(-\frac{1}{2}\nabla_{i}^{2}\right) |\Psi_{s}\rangle =$$
(89)
$$= \sum_{i}^{N} \langle \Psi_{s}| - \frac{1}{2}\nabla_{i}^{2}|\Psi_{s}\rangle$$
(90)

Thomas-Fermi model The Hohenberg-Kohn theorems Orbitals and Kohn-Sham equations

Now the very clever idea by Kohn and Sham was to rewrite

$$E_{v}\left[\rho\right] = T\left[\rho\right] + V_{ne}\left[\rho\right] + V_{ee}\left[\rho\right]$$

as

$$E_{v}[\rho] = T_{s}[\rho] + V_{ne}[\rho] + J[\rho] + E_{xc}[\rho]$$
(91)

where

$$E_{xc}[\rho] = T[\rho] - T_{s}[\rho] + V_{ee}[\rho] - J[\rho]$$
(92)

The quantity $E_{xc}[\rho]$ is the exchange-correlation energy , which contains the difference between $T[\rho]$ and $T_s[\rho]$ and the non-classical part of $V_{ee}[\rho]$.

3