Mathematische Rechenmethoden 1

Blatt 11 - Abgabe (**nur B.Sc.!**): Freitag, den 03.07.15, 12 Uhr

Staudinger Weg 7, EG, rote Kästen

M. Sulpizi, T. Davis und Assistenten

SoSe 2015

Aufgabe 1: Rechenregeln: Divergenz und Rotation

(6 Punkte)

Gegeben seien die Vektorfelder $\vec{F}(\vec{r})$ und $\vec{G}(\vec{r})$. Beweisen Sie die folgenden Rechenregeln:

$$\vec{\nabla} \cdot (\vec{F} \times \vec{G}) = \vec{G} \cdot \vec{\nabla} \times \vec{F} - \vec{F} \cdot \vec{\nabla} \times \vec{G} \tag{0.1}$$

$$\vec{\nabla} \times (\vec{F} \times \vec{G}) = (\vec{G} \cdot \vec{\nabla})\vec{F} - \vec{G}(\vec{\nabla} \cdot \vec{F}) - (\vec{F} \cdot \vec{\nabla})\vec{G} + \vec{F}(\vec{\nabla} \cdot \vec{G})$$
 (0.2)

$$\vec{\nabla} \times \vec{\nabla} \times \vec{F} = \vec{\nabla}(\vec{\nabla} \cdot \vec{F}) - \vec{\nabla}^2 \vec{F} = \vec{\nabla}(\vec{\nabla} \cdot \vec{F}) - \Delta \vec{F}$$
(0.3)

Aufgabe 2: Diffentialoperatoren in krummlinigen Koordinaten

(12 Punkte)

- (a) Stellen Sie den Gradienten, die Divergenz und die Rotation in Kugelkoordinaten dar.
- (b) Bestimmen Sie nun die Gradienten $\vec{\nabla}r$ und $\vec{\nabla}f(r)$, einer Funktion f(r), in Kugelkoordinaten mit $r=|\vec{r}|$.

Das Potenzial eines Dipols ist durch $U(r,\theta)=\frac{p\cos(\theta)}{4\pi\epsilon_0 r^2}$ gegeben. Hierbei sind p und ϵ_0 Konstanten und θ ist der Polarwinkel.

- (c) Berechnen Sie das elektrische Feld $\vec{E} = -\vec{\nabla}U$
- (d) Mit welcher Potenz nimmt $|\vec{E}|$ mit dem Abstand vom Dipol ab und für welche Winkel θ ist $|\vec{E}|$ minimal bzw. maximal?

Gegeben sei die Gravitationskraft $\vec{G}(\vec{r}) = -\gamma \frac{mM}{r^2} \frac{\vec{r}}{r}$ mit den Massen m und M, der Gravitationskonstanten γ , dem Ortsvektor $\vec{r} = (x, y, z)$ und seinem Betrag $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$.

- (e) Zeigen Sie, dass $\vec{G}(\vec{r})$ wirbelfrei ist. Die Rotation muss hierfür also verschwinden, d.h. $\vec{\nabla} \times \vec{G} = \vec{0}$.
- (f) Zeigen Sie, dass $U(r)=-\gamma \frac{mM}{r}$ ein Potential von $\vec{G}(\vec{r})$ ist und plotten Sie U mit einem Programm ihrer Wahl in einem 3D Plot (x/y/U) für feste Werte von z (z.B. z=-1;0;1) und interpretieren Sie Ihre Lösung. Setzen Sie für die Plots die Konstante C gleich 0.

(12 Punkte)

Gegeben seien die Vektorfelder $\vec{A}(\vec{r}) = \begin{pmatrix} -yz \\ x^2z \\ xy^2 \end{pmatrix}$ und $\vec{B}(\vec{r}) = \begin{pmatrix} yzx \\ -xz \\ xy \end{pmatrix}$. Berechnen Sie jeweils das Kurvenintegral $I = \int\limits_C \vec{F} d\vec{r}$ über die folgenden Wege von $P_A = (0/0/0)$ nach $P_E = (1/1/1)$:

- (a) C_1 : gerade Linie
- C_2 : $\vec{r}(t) = (\frac{1}{2}t, \frac{1}{4}t^2, \frac{1}{2}t)$ (b)
- C_3 : gerade Line von P_A zu $P_1=(4/0/0)$, gerade Line von P_1 zu $P_2=(2/2/0)$, (c) gerade Line von P_2 zu P_E . Sind die Integrale wegabhängig?
- Überprüfen Sie, ob $\vec{A}d\vec{r}$ bzw. $\vec{B}d\vec{r}$ das totale Differential ist und berechnen Sie $\vec{\nabla} \times \vec{A}$ und (d) $\vec{\nabla} \times \vec{B}$.
- Argumentieren Sie, dass das Kurvenintegral über die Gravitationskraft wegunabhängig ist. (e)

Aufgabe 4: Konservatives Kraftfeld

(5 BONUSpunkte)

Sei $\vec{F}(\vec{x}) = f(\vec{x}) \begin{pmatrix} x \\ y \end{pmatrix}$ ein radial gerichtetes Vektorfeld in der x-y-Ebene mit einer überall definierten

(a) Zeigen Sie, dass \vec{F} nur dann ein Potential Φ besitzt wenn f die (partielle) DGL

$$y\frac{\partial f}{\partial x} - x\frac{\partial f}{\partial y} = 0$$

erfüllt.

- (b) Zeigen Sie, dass jedes radialsymmertische f, welches $f(x,y)=\Psi(u)=\Psi(x^2+y^2)$ mit einer beliebigen Funktion Ψ einer Variable ist, erfüllt diese DGL.
- (c) Zeigen Sie, dass $\Phi(r^2) = \Phi(x^2 + y^2)$ mit $\Phi(u) = -\frac{1}{2} \int \Psi(u) du$ ein gültiges Potential für \vec{F} darstellt.