Übungsblatt 6

Abzugeben bis: Freitag 03.06.2016 - 16Uhr

Benötigte Zeit für die Bearbeitung dieses Blattes: _____

Aufgabe 6.1: Mehrdimensionale Integrale

i) Berechnen Sie die Jacobi-Determinante der Transformation von kartesischen auf Zylinderkoordinaten. (1 Punkte)

ii) Berechnen Sie durch Integration das Volumen des Metalls eines ein Meter langen Rohres mit einem Innenradius $r_1 = 3$ cm und einem Auenradius $r_2 = 4$ cm. (2 Punkte)

Aufgabe 6.2: Komplexe Zahlen

i) Zeigen Sie, dass Real- und Imaginärteil von z = x + iy wie folgt dargestellt werden können:

$$\operatorname{Re}(z) = \frac{z + z^*}{2}$$

und

$$\operatorname{Im}(z) = \frac{z - z^*}{2i}$$

(2 Punkte)

- ii) Berechnen Sie $z_1 = (2+2i)^2 + (2-2i)^2$ und $z_2 = \frac{(2+3i)^2}{4-4i}$. (2 Punkte)
- iii) Bestimmen Sie für $z=1+\sqrt{3}i$ die reellen Zahlen r und φ so, dass $z=r\exp{(i\varphi)}.$ (2 Punkte)
- iv) Finden Sie alle Lösungen der Gleichung $z^3 = -1$. (2 Punkte)
- v) Zeigen Sie mittels der Taylorreihendarstellung, dass $z = |r| (\cos(\varphi) + i \sin(\varphi)) = r \exp(i\varphi)$ ist. Hinweis: Eine Entwicklung ist nicht vonnöten. Betrachten Sie die Darstellungen bis $\mathcal{O}(x^5)$.

Aufgabe 6.3: Potenzen und Wurzeln komplexer Zahlen

- i) Bestimmen Sie den Real- und Imaginärteil der folgenden komplexen Zahlen:
- a) $(2i)^{16}$

b)
$$(3+\sqrt{2}i)^2$$
 (2 Punkte)

- ii) Berechnen Sie den Hauptwert von:
- a) $\sqrt{-9}$
- b) ln(i)
- c) $\ln(-1 + \sqrt{3}i)$
- d) $(-2i 2\sqrt{3})^{\frac{1}{4}}$

e)
$$(1+i)^i$$
 (5 Punkte)

BONUSAufgabe 6.4: Die Quaternionen

Quaternionen sind Zahlen der Form q=a+bi+cj+dk für die gilt $i^2=j^2=k^2=ijk=-1$ und $a,b,c,d\in\mathbb{R}$ sowie $ij=-ji=k,\ jk=-kj=i$ und ki=-ik=j. Ihr Symbol ist \mathbb{H} .

i) Zeigen Sie, dass
$$\mathbb{C} \subset \mathbb{H}$$
. (1 Punkt)

ii)
$$q^*=a-bi-cj-dk$$
 heißt das konjugierte Quaternion zu q . Zeigen Sie, dass
$$(q\cdot q^*)\in\mathbb{R}. \tag{2 Punkte}$$

iii) Wie lautet demnach das Inverse q^{-1} zu einem $q \neq 0$? Tipp: Gehen Sie von analogen Beschaffenheiten wie in $\mathbb C$ aus. (1 Punkte)

B.Ed.-Aufgabe 6.5: Die Eulerformel

Leiten Sie mit Hilfe der Eulerschen Formel die Additionstheoreme

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

für Sinus und Cosinus her. Tipp: Fangen Sie auf der rechten Seite an. (5 Punkte)