Übungsblatt 2

Abzugeben bis: Dienstag 30.10.2018 - 16.00 Uhr

Aufgabe 1

Differenzieren

Zeigen Sie, dass für $f(x) = x^n \ (n \in \mathbb{N}), f'(s) = ns^{n-1}, s \in \mathbb{R}.$ (Hinweis: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$) (2 Punkte)

Aufgabe 2

Die Differenzierbarkeit und Stetigkeit einer Funktionen

Gegeben sei die Funktion $f_a = \begin{cases} x^a & x \ge 0 \\ 0 & x < 0 \end{cases}$

- i) Für welche $a \in \mathbb{R}$ ist f stetig in x = 0? (2 Punkte)
- ii) Für welche $a \in \mathbb{R}$ ist f differenzierbar in x = 0? In diesem Fall, ist die Ableitung in x = 0 stetig? (Hinweis: Für x > 0, $f'_a(x) = ax^{a-1}$) (3 Punkte)

Aufgabe 3

Funktionen und Tangenten

- i) Es sei $f(x) = 3x^3 + 12x^2 + 3x + 1$ gegeben. Finden Sie alle Punkte, bei denen die Tangente Null ist. In welchen Bereichen von x ist die Tangente negativ oder positiv? (3 Punkte)
- ii) Finden Sie die Gleichung der Tangentenlinie und der Normallinie zur Kurve $y = \sqrt{x^2 + 25}$ im Punkt y = 7. Berechen Sie allgemein die Tangente im Punkt $(x_0, f(x_0))$. Für welche x_0 ist die Tangente senkrecht zur ersten und zur zweiten Winkelhalbierenden? (3 Punkte)

Aufgabe 4

Die Regel von de l'Hôpital

Bestimmen Sie die folgenden Grenzwerte mit Hilfe der Regel von de l'Hôpital.

i)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin(x)} \right)$$
 (2 Punkte)

ii)
$$\lim_{x \to 0^+} x^{\alpha x}$$
; $\alpha \in \mathbb{N}$ (2 Punkte)

iii)
$$\lim_{x \to 0} \frac{\cos(2x) - \cos(x)}{\sin^2(x)}$$
 (2 Punkte)

Aufgabe 5

Taylorpolynome

Berechnen Sie die Taylorpolynome der folgenden Funktionen um den angegebenen Punkt x_0 bis zur Ordnung n.

i)
$$f(x) = x^4$$
, $x_0 = -3$, $n = 4$ (2 Punkte)

ii)
$$f(x) = \sin(x), \qquad x_0 = \frac{\pi}{4}, \quad n = 6$$
 (2 Punkte)

iii)
$$f(x) = \frac{1}{x}$$
, $x_0 = 1$, $n = 4$ (2 Punkte)

BONUS Aufgabe

Eigenschaften von Funktionen und Ungleichungen

i) Zeigen Sie, dass die Funktion $f(x) = (x^2 + 1)\log(x)$ streng monoton steigend ist. (2 Punkte)

ii) Zeigen Sie, dass
$$\forall x \in \mathbb{R} > 0, e^x > 1 + x + \frac{x^2}{2}$$
 (1 Punkte)