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All electrons vs pseudopotentials

There are two classes of electrons: valence electrons (participate to
chemical bonds) and core electrons (tightly bound to the nuclei).
Eventually semi-core electrons (close in energy to valence states to
feel the presence of the environment)
All-electron methods

I fixed orbital basis set: core electron minimal number of basis
function to reproduce atomic features, valence and semi-core
more complete basis set to describe the chemical bond.

I augmented basis set. Divide the space into spherical regions
around the atoms and interstitial regions and requesting that
the basis functions are continuous and differentiable across
the boundaries.
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Pseudopotential methods

I Core electrons are eliminated. Nuclei effective charge
ZV = Z − Zcore .

I Number of electron treated explicitly is reduced

I The bare Coulomb potential is replaced by a screened
Coulomb potential

I Inner solution, inside the core radius, is replaced with a
smooth, node-less pseudo-wave function

I Pseudopotentials are usually chosen to be dependent on the
angular momentum.
E.g. for Pt 6p orbitals are quite external and peaked at
around 3.9Å, the 6s peak at around 2.4 Åand the main peak
of 5d is located ate 1.3 Å.
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Classes of Basis-set

I Extended basis set: delocalized, such as plane waves, useful
for condensed phase systems. Tends to be inefficient for
molecular systems.

I Localized basis set: mainly centered at the atomic positions
(but also at position of ”ghost” atoms). Mainly used for
molecular systems

I Mixed basis set: designed to take best of the two worlds
(delocalized + localized). There can be some technical issues
(over-completeness).

I Augmented basis set: where an extended or atom centered
basis set is augmented with atomic like wf in spherical regions
around the nuclei.
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Condensed phase: Bloch’s th and PBC

Condensed phase: problem of choosing the size of the simulation cell.
For periodic system: unit of Wigner-Seitz cell, the minimal choice that
contains the whole symmetry of the system. Sometimes it is convenient
to choose a larger cell to simplify description of symmetry properties.
In an external periodic potential v(r) = v(r + ai ) the wf can be written
as:

ψk(r) = e ik·ruk(r) (1)

with uk(r) = uk(r + ai ).

ψk(r + ai ) = e ik·aiψk(r) (2)

So that the probability density is |ψk(r)|2 is exactly the same.
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Looking at
ψk(r + ai ) = e ik·aiψk(r)

we notice that there is a a class of vectors k such that

e ik·ai = 1 (3)

The reciprocal lattice vectors are defined by

ai · bj = 2πδij (4)

and

b1 = 2π
a2 × a3

Ω
; b2 = 2π

a3 × a1
Ω

; b3 = 2π
a1 × a2

Ω
(5)

The reciprocal lattice vectors define the first Brillouin Zone (BZ).

Marialore Sulpizi Density Functional Theory: from theory to Applications



Outline
Solving the electronic problem in practice

Pseudopotentials
Thermostats

Imposing pressure: barostats

All electrons vs pseudopotentials
Classes of Basis-set
Condensed phase: Bloch’s th and PBC

Marialore Sulpizi Density Functional Theory: from theory to Applications



Outline
Solving the electronic problem in practice

Pseudopotentials
Thermostats

Imposing pressure: barostats

All electrons vs pseudopotentials
Classes of Basis-set
Condensed phase: Bloch’s th and PBC

Bloch’s theorem indicates that it is not necessary to determine the
electronic wavefunction everywhere in space. It is sufficient to
know the solution in the unit cell.
Using the fact that a periodic function can be represented by a
Fourier series:

ψk(r) = e ik·r
∑
G

Ck+Ge
iG·r (6)

where the sum is over G = n1b1 + n2b2 + n3b3, the reciprocal
lattice vectors.
k is restricted to all the vectors in the first Brillouin zone. In
practice calculations are done only for a finite number of k.
The number of k points depends on the systems we want to study.
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Aperiodic systems: molecules, surfaces and defects

I supercell approach with PBC, making sure that required
physical and chemical properties are converged with respect to
the size of the supercell.

I For surfaces and molecules, e.g., introduce a a vacuum region
large enough that there so interaction between images.

I For charged systems difficulties due to the electrostatic
interactions (long range). A uniform neutralizing background
is introduced.
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I Only the chemically active electrons are considered explicitly.

I The core electrons are eliminated within the frozen-core
approximation and are considered together with the nuclei as
rigid non-polarizable ion cores.

I The Pauli repulsion largely cancels the attractive parts of the
true potential in the core region, and is built into the therefore
rather weak pseudopotentials.
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Hamann-Schlüter-Chiang pseudopotentials
Bachelet, Kerker, Martin-Troulliers

Why Pseudopotentials?

I Reduction of the number of electron in the systems, faster
calculation for large systems

I Relativistic effects depending on the core electrons treated
incorporated indirectly in the pseudopotentials

I In the frame of plane wave basis set: reduction of the basis
set size introducing smoother functions which requires a lower
cutoff

I The number of plane waves needed for a certain accuracy
increases with the square of the nuclear charge.
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Norm-conserving pseudopotentials

Norm-conserving pseudopotentials conserves the normalization of
the pseudo wf in the core region so that the wf outside resembles
that of the all-electrons as closely as possible.

Valence and pseudo wf of a Si
atom, generated according to
Martin-Troullier scheme.
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Ground state core density (dashed line) and pseudo valence density
(solid line) for a Si atom.
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Note: The pseudopotentials converge to the limit −Z/r outside
the core radius.
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Hamann-Schlüter-Chiang conditions1

Norm-conserving pseudos are derived from atomic reference state:

(T + V AE )|Ψl >= εl |Ψl > . (7)

This is replaced by the ”valence electrons only”

(T + V val)|Φl >= ε̃l |Φl > . (8)

Imposing the following:

I εl = ε̃l for a chosen prototype atomic configuration.

I Ψl(r) = Φl(r) for r ≥ rc .

I Norm conservation, < Φl |Φl >R=< Ψl |Ψl >R for R ≥ rc .

I Log derivative of Φl equal to that of Ψl .
1Hamann-Schlüter-Chiang, Phys. Rev. Lett., 43, 1494 (1979)
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Hamann-Schlüter-Chiang recipe

I First step: the all-electron wf is multiplied by a smoothing function
f1 to remove strongly attractive and singular part of the potential:

V
(1)
l (r) = V AE (r)

[
1− f1

(
r

rc,l

)]
(9)

I Then a function f2 is added in order to obtain εl = ε̃l

V
(2)
l (r) = V

(1)
l (r) + cl f2

(
r

rc,l

)
(10)

(
T + V

(2)
l (r)

)
w

(2)
l (r) = ε̃lw

(2)
l (r) (11)

This determines the value of cl .
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Hamann-Schlüter-Chiang recipe

I The valence wf is defined as

Φl(r) = −γl
[
w

(2)
l (r) + δl r

l+1f3

(
r

rc,l

)]
(12)

where γl and δl are chosen such that
Φl(r)→ Ψl(r) for R ≥ rc .
And

γ2l

∫
|w (2)

l (r) + δl r
l+1f3

(
r

rc,l

)
|2idr = 1 (13)
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Hamann-Schlüter-Chiang recipe

I Given Φl and ε̃l the equation:

(T + V val)|Φl >= ε̃l |Φl > .

is inverted to get V val(r).

Hamann-Schlüter-Chiang chose f1(x) = f2(x) = f3(x) = exp[−x4].

V PP
l (r) = V val

l (r)− VH(nV )− Vxc(nV ) (14)

The total atomic pseudopotential then takes the form of a sum over all
angular momentum channels:

V PP(r) =
∑
L

V PP
L (r)PL(ω) (15)

where PL(ω) is the projector on the angular momentum state L, defined

by {l ,m} and ω are angular variables.
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Bachelet-Hamann-Schlüter pseudopotentials

Bachelet et proposed an analytic form to fit the pseudos generated
by Hamann-Schlüter-Chiang of the form:

V PP(r) = V core(r) +
∑
L

∆V ion
L (r) (16)

V core(r) = −ZV

r

[
2∑

i=1

ccorei erf (
√
αcore
i r)

]
(17)

V ion
L (r) =

3∑
i=1

(Ai + r2Ai+3)exp[−αi r
2] (18)

the advantage here is that this form allow an easy implementation
in plane-wave code, since the Fourier transform can be also written
analytically.
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Kerker pseudopotentials

In the Kerker approach2 psedupotentials are constructed to satisfy
HSC conditions, but replacing the AE wf inside rc with a smooth
analytic function that matches the AE wf at rc .

I rc is generally larger than that used in HSC

The analytic form proposed by Kerker is

Φl(r) = r l+1exp[p(r)] for r < rc,l (19)

with l-dependent cut-off radii rc,l and

p(r) = αr4 + βr3 + γr2 + δ (20)

The method of Kerker was generalized by Troullier and Martins to
polynomials of higher order3

2Kerker, J. of Phys. C 13; L189 (1980)
3Phys. rev. B, 43: 1993. (1991).
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An Example: pseudos for carbon

Martin-Troulliers
pseudopotential for carbon in
the LDA.
reference configuration:
1s22s22p2
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Convergence of the kinetic energy for carbon atom as function of
the cutoff.

Marialore Sulpizi Density Functional Theory: from theory to Applications



Outline
Solving the electronic problem in practice

Pseudopotentials
Thermostats

Imposing pressure: barostats
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Convergence of the total energy of diamond as function of the
cutoff.
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Controlling temperature: thermostats
Controlling pressure: barostats
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Thermostat on the electrons
Nose‘-Hoover chain thermostat

Zero or small electronic gaps: thermostatted electrons

I One way to (try to) overcome the problem in coupling of
electronic and ionic dynamics is to thermostat also the
electrons (Blöchl & Parrinello, PRB 1992)

I Thus electrons cannot heat up; if they try to, thermostat will
adsorb the excess heat

I Target fictitious kinetic energy Ekin,0 instead of temperature

I Mass of thermostat to be selected appropriately:
Too light: Adiabacity violated (electrons may heat up)
Too heavy: Ions dragged excessively

I Note: Introducing the thermostat the conserved quantity
changes
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Thermostat on the electrons
Nose‘-Hoover chain thermostat

MI R̈I (t) = − ∂

∂RI
< Ψ0|HKS

e |Ψ0 > −MI ṘI ẋR (21)

µφ̈i (t) = −HKS
e φi +

∑
j

Λijφj−µφ̇i ẋe (22)

in blue are the frictious terms governed by the following equations:

Qe ẍe = 2

[∑
i

µφ̇2 − Ekin,0

]
(23)

QR ẍR = 2

[∑
I

1

2
MI Ṙ

2 − 1

2
gKBT

]
(24)

The masses Qe and QR determines the time scale for the thermal
fluctuations. The conserved quantity is now:

Etot =
∑
I

1

2
MI Ṙ

2
I +

∑
i

µ < φ̇i |φ̇i > + < Ψ0|HKS
e |Ψ0 >

+
1

2
Qe ẋ

2
e + 2Ekin,0xe +

1

2
QR ẋ

2
R + gKBTxR (25)

Marialore Sulpizi Density Functional Theory: from theory to Applications



Outline
Solving the electronic problem in practice

Pseudopotentials
Thermostats

Imposing pressure: barostats

Thermostat on the electrons
Nose‘-Hoover chain thermostat

Standard Nose‘-Hoover thermostat suffers from non-ergodicity problems
for certain classes of Hamiltonian, so a closely related technique has been
proposed, the Nose‘-Hoover chain thermostat. For the nuclear part:

MI R̈I = −∇EKS−MI ξ̇1ṘI (26)

Qn
1 ξ̈1 =

[∑
I

MI Ṙ
2
I − gKBT

]
−Qn

1 ξ̇1ξ̇2 (27)

Qn
k ξ̈k = 2

[
Qn

k−1ξ̇
2
k−1 − KBT

]
− Qn

k ξ̇k ξ̇k+1(1− δkK ) (28)

For the electronic part:

µφ̈i = −HKS
e φi +

∑
ij

Λijφj−µη̇1φ̇i (29)

Qe
1 η̈1 =

[
occ∑
i

µ < φi |φi > −T 0
1

]
−Qe

1 η̇1η̇2 (30)

Qn
l η̈l = 2

[
Qn

l−1η̇
2
l−1 −

1

βe

]
− Qe

l η̇l η̇l+1(1− δlL) (31)
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I Separate chains composed of K and L coupled thermostats are
attached to the nuclear and electronic equations of motion,
respectively

I Masses for the thermostats are chosen so that there overlap of the
thermostat and system power spectra.

Qn
1 =

gKBT

ω2
n

, ... Qn
k =

gKBT

ω2
n

, (32)

Qe
1 =

2T 0
e

ω2
e

, ... Qe
l =

2T 0
e

ω2
e

(33)

I massive thermostatting method: NH chains for individual nuclear
degree of freedom. Accelerate expensive equilibration periods
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Energy and Momentum conservation

In micro-canonical classical molecular simulations the total energy and
the total momentum are conserved.
In the case of thermostatted NVT simulations the constant of motion is:

ENVT
cons =

occ∑
i

µ < φ̇i |φ̇i > +
∑
I

1

2
MI Ṙ

2
I + EKS [{φi}, {RI}] (34)

+
L∑

l=1

1

2
Qe

l η̇
2
l +

L∑
l=2

ηl
βe

+ 2T 0
e η1+

K∑
k=1

1

2
Qn

k ξ̇
2
k +

K∑
k=2

KbT ξk + gKbT ξ1 (35)

In micro-canonical CPMD a generalized linear momentum is conserved:

PCP = Pn + Pe =
∑
I

PI +
occ∑
i

µ < φ̇i | −
1

2
∇r |φi > +c .c . (36)

where PI = MI ṘI .
Marialore Sulpizi Density Functional Theory: from theory to Applications
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Time evolution of Pion (solid line)
and Pwf (dashed line) in the
diamond structure of Si. From the
upper panel, three components, x, y,
z, are shown, respectively.
(Morishita and Nose‘Phys Rev B ,
59, 15126 (1999))
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Alternative approach for clusters

Imposing pressure: barostats

Original version from Andersen4 devised to allow isotropic fluctuations in
the volume of the supercell. Variable cell approach: allows structural
phase transition in solids at finite temperature. Parrinello-Rahman5

Built an extended Lagrangian with additional dynamical variables
a1, a2, a3, the primitive Bravais lattice vectors.
Using the 3X3 matrix h = [a1, a2, a3] which define the volume Ω, the
scaled coordinates S are defined by RI = hSI .
the normalized original orbitals are transformed according to:

φi (r) =
1

Ω
φi (s) (37)

The cell-variable extended Lagrangian is:

L =
∑
i

µ < φ̇(s)i |φ̇i (s) > −EKS [{φi}, {hSI}] (38)

+
∑
ij

Λij(< φi (s)|φj(s) > −δij) +
∑
I

1

2
MI (ṠT

I h
ThṠI ) +

1

2
WTr ḣT ḣ− pΩ

4J. Chem. Phys. 72, 2384 (1980).
5PRL 45, 1196 (1980); J. Appl. Phys 52, 7182 (1981); JCP 76, 2662 (1982)
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Alternative approach for clusters

L =
∑
i

µ < φ̇(s)i |φ̇i (s) > −EKS [{φi}, {hSI}] (39)

+
∑
ij

Λij(< φi (s)|φj(s) > −δij) +
∑
I

1

2
MI (ṠT

I h
ThṠI ) +

1

2
WTr ḣT ḣ− pΩ

I nine additional degrees of freedom associated with lattice vectors of
supercell h.

I This constant-pressure CPMD reduce to constant-volume CPMD in
the limit ḣ→ 0 (apart from a constant term pΩ

I W is the fictious mass that controls the timescale of the cell
dynamics

Marialore Sulpizi Density Functional Theory: from theory to Applications
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Alternative approach for clusters

The resulting equations of motion are:

MI S̈I ,u = −
3∑

v=1

∂EKS

∂RI ,v
(hT )−1

v ,u −MI

3∑
v=1

3∑
s=1

G−1
uv Ġvs ṠI ,s (40)

µφ̈i (s) = − ∂EKS

∂φ∗i (s)
+
∑
j

Λijφj(s) (41)

Wḧuv = Ω
3∑

s=1

(Πtot
us − pδus)(hT )−1

sv (42)

where the total stress tensor is:

Πtot
us =

1

Ω

∑
I

MI (Ṡ
T
I GṠI )us + Πus (43)

and Πus is electronic stress tensor:

Πus = − 1

Ω

∑
v

∂Etot

∂huv
hTvs (44)
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Alternative approach for clusters

I frictional feedback mechanism

I Parrinello-Rahman used in connection with metadynamics

I practical issue: basis set error, when using a fixed cutoff in
plane wave with a varying cell
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Alternative approach for clusters

Alternative approach for clusters6.
Idea: surrounding the finite cluster by a pressurizing medium described by
NL classical point particles.i (e.g. liquid of purely repulsive soft spheres).

6R. Martonak, C. Molteni and M. Parrinello, Comp Mat Science 20 (3-4)
2001, 293-299
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Alternative approach for clusters7.
Idea: surrounding the finite cluster by a pressurizing medium described by
NL classical point particles.i (e.g. liquid of purely repulsive soft spheres).
The corresponding Lagrangian is:

L =
∑
I

1

2
MI Ṙ

2
I +

∑
i

µ < φ̇(r)i |φ̇i (r) > −EKS [{φi}, {RI}] (45)

+
∑
ij

(< φ(r)i |φj(r) > −δij) +
∑
α

1

2
MαẊ

2
α (46)

+ −
∑
I ,α

VC−L(|RI − Xα|)−
∑
α<β

VL−L(|Xα − Xβ |) (47)

where Mα is the mass of a liquid particle at position Xα and VC−L and

VL−L are model pair potential to describe the cluster-liquid and the

liquid-liquid interactions.
7R. Martonak, C. Molteni and M. Parrinello, Comp Mat Science 20 (3-4)

2001, 293-299
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Outline
Solving the electronic problem in practice

Pseudopotentials
Thermostats

Imposing pressure: barostats

Alternative approach for clusters

How is the pressure controlled?
For purely repulsive soft spheres:

VL−L(r) = εL−L

(σL−L

r

)12
(48)

the equation of state gives:

p =
NLKBT

ΩL
ξ(ρ̃) (49)

where

ξ(ρ̃) =
NL

ΩL

σ3
L−L√

2

(
εL−L

KBT

)1/4

(50)

the pressure is adjusted tuning εL−L.
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Outline
Solving the electronic problem in practice

Pseudopotentials
Thermostats

Imposing pressure: barostats

Alternative approach for clusters

Si35H36 at 25 GPa (top), 35 GPa
(center), and 5 GPa (after the
pressure has been released, bottom).Marialore Sulpizi Density Functional Theory: from theory to Applications



Outline
Solving the electronic problem in practice

Pseudopotentials
Thermostats

Imposing pressure: barostats

Alternative approach for clusters

Si71H60 at 25 Gpa (top), 30 GPa
(center), and 5 GPa (after the
pressure has been released, bottom)Marialore Sulpizi Density Functional Theory: from theory to Applications



Outline
Solving the electronic problem in practice

Pseudopotentials
Thermostats

Imposing pressure: barostats

Alternative approach for clusters

In both clusters, up to 25 GPa, a distorted but predominantly tetrahedral
coordination is maintained, with no sign of a transformation to a
different structure. This also holds for the case with the vacancy, even if
with a higher degree of disorder.

Marialore Sulpizi Density Functional Theory: from theory to Applications



Outline
Solving the electronic problem in practice

Pseudopotentials
Thermostats

Imposing pressure: barostats

Alternative approach for clusters

Dramatic structural transformation occurs for Si35H36 at 35 GPa and for
Si71H60 at 30 GPa. Shape changes to roughly spherical and the
tetrahedral coordination is no longer dominant. (In accord with exps.)

Distributions of the SiSi distances for Si35H36
Marialore Sulpizi Density Functional Theory: from theory to Applications
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Distributions of the SiSi distances for Si71H60
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Outline
Solving the electronic problem in practice

Pseudopotentials
Thermostats

Imposing pressure: barostats

Alternative approach for clusters

The change in coordination and shape is accompanied by a change
in the electronic properties.
There is a clear qualitative trend toward metallicity at high
pressure.

Time evolution of the KohnSham energy gap of Si35H36

Marialore Sulpizi Density Functional Theory: from theory to Applications
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