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Recap of Previous lecture
The Hohenberg-Kohn theorems

The Hohenberg-Kohn theorems

For a given system described by the Hamiltonian:

N
H:Z—7V2)+ZV(r, +Z* (1)

i<j

N and v(r) determines all properties of the ground state.

The first Hohenberg-Kohn theorem states:

The external potential v(r) is determined, within a trivial additive
constant, by the electron density p(r).
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Recap of Previous lecture
The Hohenberg-Kohn theorems

The second Hohenberg-Kohn theorem states:
For a trial density j(r) such that p(r) > 0 and [ p(r)dr=N, there
is a variational principle and Ey < E, [J].

Eclp] = Tlol+ Vaelp] + Vee [#] (2)
— o)+ Fuuc o)

and

Fuk[p] = T lp] + Vee [p] (4)
= T [p] + J[p] + nonclassical term (5)

The second HK theorem provides the justification for the
variational principle in TF, where E7¢ [p] is an approximation to

E [p].
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The Kohn-Sham equations Orbitals and Kohn-Sham equations

Orbitals and Kohn-Sham equations

It is quite appealing that we can get the ground-state energy of a
many-electron system as minimum of an energy functional

E, [P] =T [p] + Vhe [P] + Vee [P]

we have seen that a drastic approximation to the functional can be
obtained by the TF model:

Vool - 01 =5 [ X% o,

|r2 —

T [p] — uniform electron gas

» Can we do better?
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The Kohn-Sham equations Orbitals and Kohn-Sham equations

» The main problem at this stage is the kinetic energy
functional T [p] because its explicit expression in term of the
density p is not known.

> In 1965 Kohn and Sham invented an ingenious approach to
T [p]- Their idea was to find a system of non-interacting
electrons that produces the same density of the interacting
system.
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The Kohn-Sham equations Orbitals and Kohn-Sham equations

Let's consider a noninteracting reference system in which there is
no electron electron repulsion term and for which the electron
density is exactly p:

A, — i (_;v,z) n i ve (i) (6)

For this system we have an exact solution

v, = \/1N7!det [tbo..ton] (7)

for such a system the kinetic energy is

N
A A M C ®)

N 1
= Y <SR, > (9)
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The Kohn-Sham equations Orbitals and Kohn-Sham equations

Now the very clever idea by Kohn and Sham was to rewrite
Ey[p] = T [p] + Ve [p] + Vee [o]

as
E, [p]l = Ts[pl + Ve [p] + J[p] + Exc [p] (10)

where
Exc [p] = T [p] = Ts [p] + Vee [p] — J 1] (11)

The quantity E.c [p] is the exchange-correlation energy , which
contains the difference between T [p] and T [p] and the
non-classical part of Vee [p].
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The Kohn-Sham equations Orbitals and Kohn-Sham equations

Ep] = Tolp] + J o] + Bee [f] —|—/v(r)p(r)dr _
‘E:EJ/W“OCévﬁwm®w+ﬂm+a4m+/vmmnm

and the electron density

N
o) = D e )P (12)

The variational search for the minimum of E [p] can be equivalently
effected in the space of orbitals ¢;, constraining the orbitals to be
orthonormal:

/wwwmw:%. (13)
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The Kohn-Sham equations Orbitals and Kohn-Sham equations

If we now define the functional
N N
Q= E[l - >3 ¢ / GO (1)
i

where ¢;; are the Lagrange multiplier for the orthonormality
constraints, For E [p] to be a minimum it is necessary that:

59 (4] = 0, (15)
which leads to the equations:
. 1 A
hetripi = [—2V2 + Veff] Y= Z €ijj (16)
J
where ,
Verr (1) = v(r)+/ ’rp(_rr),‘dr/—i— Ve (1). (17)
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The Kohn-Sham equations Orbitals and Kohn-Sham equations

€jj is Hermitian and can be diagonalized by unitary transformation.
Such a transformation leaves invariant the Slater determinant, the
density and hence the Hamiltonian.

In this way we can obtain the Kohn-Sham equations in their
canonical form:

[—;Vz + Veff:| Vi = €iv; (18)
Verr(r) = v( / r— r/‘dr + V() (19)
Sk (20)

These equations are non-linear and must be solved iteratively.
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Then the total energy can be calculated from the energy functional:

Elo] = Talo] + 0] + Exc [o] + / v(r)p(r)dr

or in terms of the K-S eigenvalues by:

E = Ze, /Veff r)dr+ J[p] + Exc [p]+/ v(r)p(r)dr

E = Ze, - / drdr + Exc [0] — /vxc(r)p(r).(21)

Here
N 1
D <l - §v2 + Verr (1) [0 > (22)

I

Ts [0] +/Veff(r)p(r)dr (23)
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The Kohn-Sham equations Orbitals and Kohn-Sham equations

» T, can be handled exactly through the introduction of the N
orbitals.

» The KS eq have the form of Hartree equation where now v(r)
has the more general form of ves(r). KS are exact and include
all the electron correlation when the exact E. [p] is known.

» The computational cost to solve KS is not much more than to
solve the Hartree eq and less than for the Hartree-Fock eq.

» The KS theory, exact in principle, is distinguished from the
HF theory by its capacity to incorporate the exchange and
correlation potential

» KS eq are open for improvement with each successive better
approximation to Eyc [p].
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The Kohn-Sham equations Orbitals and Kohn-Sham equations

i The Nobel Prize in Chemistry 1998
b Walter Kohn, John Pople

The Nobel Prize in Chemistry 1998

MNobel Prize Awar

Walter Kohn John A. Pople

The Nobel Prize in Chemistry 1998 was divided equally between Walter Kohn “for
his development of the density-functional theory” and John A. Pople “for his
development of computational methods in quantum chemistry”.
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The Kohn-Sham equations Orbitals and Kohn-Sham equations

» So far veg(r) doesn't contain any dependence on the spin.
For each eigenvalue ¢; there are two independent solutions
sharing the same spatial part, they can be chosen as ¢;(r)a(s)

and ¢;(r)5(s).

For an even number of electrons we have:
N/2

w0 =20 =20 =23l @)

For and odd number of electrons we have:

p(r) = p*(r) + p°(r) (25)

where p®(r) and p®(r) differ only by one excess orbital.
(restricted Kohn-Sam method)

Next time we will discuss Spin-DFT which correspond to an
unrestricted approach.
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The Kohn-Sham equations Orbitals and Kohn-Sham equations

» Which N orbitals should one use to form the density in solving
the KS equations? Original proposal by KS is the N lowest
eigenstates.

» Given the auxiliary nature of the KS orbitals - they are just N
orbitals the sum of square of which add up to the true total
electron density - one should expect no simple physical
meaning for the KS orbital energies.

There is none, however one can infer that

€max = —1 (26)

Eq. 26 requires that /im, | Verr(r) = 0.
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The Dirac exchange-energy functional
Quick derivation of the scaling laws

The Local-Density Approximation Correlation functional

Local-density

An explicit form of E,. [p] is needed!

ELA o] = [ plr)esclp)ar @)

where €,c(p) is the exchange and correlation energy per particle of
a uniform electron gas of density p. the corresponding xc potential

is
LDA
AP = TS = ol )+ o 26)
and the KS orbitals read:
{_ivz +v | d +vEPAN) [ i = i (29)
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The Dirac exchange-energy functional
Quick derivation of the scaling laws
The Local-Density Approximation Correlation functional

Local-density

exc(p) can be divided into exchange and correlation contributions:

exc(p) = ex(p) +ec(p) (30)

» The exchange part is give by the Dirac (1930)
exchange-energy functional

1/3
) = =GP, = 5 () ()

» accurate values of e-(p) are available thanks to quantum-MC
calculations (Ceperly, Alder 1980), and have been interpolated
to provide an analytical form for e.(p).
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The Dirac exchange-energy functional
Quick derivation of the scaling laws
The Local-Density Approximation Correlation functional

The Dirac exchange-energy functional

Let's express HF ex in the formalism of first order density matrix:
N/2

K = dr(r)oi(r qb(r)gi) (r2)drydr. (32)
kz/:l// K () k(r2)@; (r2)dridra
N/2
= Gk(r)ox(r2) ¢(f)¢(f)dfdf (33)
klzl// k() ok(r ((r2)oi(r)drdr

N/2 N/2
= // —QZ(bk n ¢k r2 Z(b/ r (b/ rl)drldrg (34)

1 1
= *// —p1(n, n)pi(r, n)drndn (35)

= //*|pl r, r)[2dridr (36)
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The Dirac exchange-energy functional

Quick derivation of the scaling laws
The Local-Density Approximation Correlation functional

We need an approximation for the first order density matrix:
N/2

pr(ri,r) =23 ¢i(n)ow(r) (37)
k

And we will follow the derivation by Dirac(1930) of calculating the
exchange term for a uniform electron gas.

1

(ks kyy k) = Nk ker (38)
_ p%ei(kxx—&—kyy—i-kzz) (39)

where 5 5 5
ky = —ﬂ-nx;ky: —ﬂny;kzz inz (40)

/ / /

and
h? 2 2 2

E(nc,ny,n;) = amp2 [(2nx) +(2ny)" + (2n;) ] (41)
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The Dirac exchange-energy functional
Quick derivation of the scaling laws

The Local-Density Approximation Correlation functional

pi(ri, r2) VZe’k =rz) (42)
For very many occupied states the sum can be replaced by the integral
(dn—dk)
1 .
pi(r, ) = ﬁ/e'k'(”_mdk (43)
1 [+ ,
= — / k2 dk / / e* 12 sin0dfd¢p (44)
4773 0
similarly
1 [k
p(r,r) = a7 k dk//sm 0dode (45)
1 k,%
= —Fap= 46
433 371'2 (46)
from where we get an expression for kg in terms of the density
ke = (37%p)'/* (47)
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The Dirac exchange-energy functional

Quick derivation of the scaling laws
The Local-Density Approximation Correlation functional

Now if we come back to the expression

1 [k .
p(r,m) = H/0 k2 dk // e*"2 sin 0dOd b

we can introduce the new variables:

1
r o= §(r1+r2) (48)
s = n—~n (49)
( = Lo [ eak [ e sinado 50
pi(r,s) = 2327 ; e sin (50)

1 ke ) elkscos 0
= — k| —— ) |7 dk 51
22 /0 ( iks )'0 (51)

1 ke k (eiks _ efiks)

= = ——dk 2
772 0 S 2i (5 )
1 [k
= @/ ks sin ksd(ks) (53)
0
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The Dirac exchange-energy functional

Quick derivation of the scaling laws
The Local-Density Approximation Correlation functional

defining the new variable ks = t we obtain:

1 SkF
p(r,s) = @/0 tsin tdt (54)
1 sk
= =3 (tcos tlg " +/cos tdt) (55)
l 3 .
= mkF [—tcost+sint] (56)
3
= /;(;) [sint — tcost] (57)

Let's now substitute the expression for p1(r,s) into the expression for
Klpl

1 1
Klp] = 2 //*|P1("1,l’2)|2dl’1dl’2
r»

which we now express in the r and s coordinates:

Kl = ; / / L[pa(r,5)Pords (58)
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The Dirac exchange-energy functional

Quick derivation of the scaling laws
The Local-Density Approximation Correlation functional

/ / Ip1(r, ) 2drds (59)

B 1 (sint — tcost)?
_ 4/9p() k2dr4/0 (Sint = Leost” v (60)

K]

t5

The integral can be solved with a change of variable g = M

sint — tcost 1
/0 %dt: 7 (61)

3

Also recalling that p = 3’%

2
PE(;E) _ (37r2)_2/3p4/3 (62)

The final expression for K[p] is:

3 3 1/3
Klp] = G / P (r)dr, with G = 7 () —0.7386  (63)
™
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The Dirac exchange-energy functional
Quick derivation of the scaling laws
The Local-Density Approximation Correlation functional

Quick derivation of the scaling laws

» Scaling for the density
pa(r) = Xp(xr) (64)
» Scaling for the wavefunction

pa(r) = ¥i(r)wa(r) (65)
Un(r) = XN/2Y(Ar) (66)
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The Dirac exchange-energy functional
Quick derivation of the scaling laws
The Local-Density Approximation Correlation functional

Quick derivation of the scaling laws

» Scaling for the kinetic energy T

[500%300e0n) (67)

~ A2\ 20 73T () (68)

~ NT(\r) (69)

Also T[pa] = / H(pr)dr = / {3 N3P () (70)
- / A3 (03 (1)) dr (71)

equating 69 and 71 we obtain: A7 3t(\3p(r)) = Nt(p) (72)

)
t(X’p(r)) = Nt(p) (73)
t(Ao(r)) = A7 t(p)(74)
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The Dirac exchange-energy functional
Quick derivation of the scaling laws
The Local-Density Approximation Correlation functional

Quick derivation of the scaling laws

> Scaling for the exchange functional

Kl ~ [ Jorodr = 22Kl (75)
Kiosl = K[ (76)
Mo Klpa] = [ Kon)ar (77)

_ / KO3 p(A)A~3d(Ar) (78)
_ / A3k(N3p(r))dr (79)

Equating 77 and 79 we obtain: A 3k(A\3p(r)) = Xk[p] (80)
k(Xp(r)) = X(p) (81)
k(Ap) = X' k(p)(82)
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The Dirac exchange-energy functional
Quick derivation of the scaling laws
The Local-Density Approximation Correlation functional

Correlation functional

€c is a difficult problem. Only limiting cases are known in analytic form.
In the case of an homogeneous systems,

> the high density limit is:

€l°™ =0.0311Inr, — 0.048 + r; (A°Inrg + C%), forr, <1 (83)
> and the low density limit is:

lig & | &
hom __
€] 2<S+3/2++ for rg > 1 (84)

where rs is the the radius of a sphere whose volume is the effective
volume of an electron.

1
STy = ; (85)
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The Dirac exchange-energy functional
Quick derivation of the scaling laws

The Local-Density Approximation Correlation functional

0 1 2 3 4

1 Note that

> large rs means low density, small rs means high density

!The radius r, for the ground state of the carbon atom as function of the
distance from the nucleus. Dotted line: D(r)=4xr’p(r).

Marialore Sulpizi Density Functional Theory: from theory to Applications



Calculations for atoms by Tong and Sham 1966
KS-LDA for molecular systems
LDA for solid state: the Si phases

Early LDA results

Early LDA results

The LDA is applicable to systems with slow-varying densities but
cannot be formally justified for highly inhomogeneous systems,
such as atoms and molecules. The essential justification comes
from successful numerical applications.
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Calculations for atoms by Tong and
KS-LDA for molecular systems
DA for solid state: the Si phases

Early LDA results

First LDA calculations on atoms:

THE
PHyYSICAL REVIEW

oA journal of experimental and theoretical physics established by E. L. Nichols in 1893

Seconp Series, Vor. 144, No. 1 8 APRIL 1966

Application of a Self-Consistent Scheme Including Exchange and
Correlation Effects to Atoms*

B. Y. Tonet anp L. J. SHAM
University of California, San Diego, La Jolla, California
(Received 3 November 1965)

Seli-consistent schemes including imations to exch and ion proposed by Kohn and
Sham are applied to computing atomic energies and densities, These quantities, with and without the cor-
relation ion, are obtained and 1 with the results of calculations using the Slater exchange hole

or the Hartree-Fock method and with experimental values. The present method, without correlation, gives
slightly better results for energies and substantially better results for densities than Slater’s method. This was
anticipated in the general theory. The correlation corrections of the present scheme are nol very good, pre-
sumably because the electronic density in atoms has too rapid a spatial variation.
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Calculations for atoms by Tong and Sham 1966
KS-LDA for molecular systems
LDA for solid state: the Si phases

Early LDA results

Table 7.3 Total Energies of Atoms, Computed by Various Methods (atomic

units)”
Atom Xa(e=3)" Xa(a=1)" LDA Hartree-Fock  Experiment
He -2.72 -2.70 —2.83 —-2.86 —-2.90
Li -7.17 —7.18 -7.33 -7.43 —7.48
Ne -127.49 —127.38 —128.12 —128.55 —128.94
Ar —524.51 —524.35 —525.85 —526.82 —527.60

“ Atomic X and LDA calculations by Tong and Sham (1966).
® Value of a in (7.4.7). In both cases a =1 in (7.4.10).

» Electron densities are close to HF densities
» LDA exchange gives ~ 10% err in the HF exchange

» inclusion of €. is not particularly beneficial, indeed the approx used
here (Pines, 1963) is not very accurate.
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Calculations for atoms by Tong and Sham 1966

KS-LDA for molecular systems
LDA for solid state: the Si phases
Early LDA results

Table 7.4 LDA Calculations for N, and CO**

Molecule Binding energy (eV) Bond Length (a,) Vibrational
Frequency (cm™")
LDA HF Exptl. LDA HF Exptl. LDA HF Exptl

N, 7.8 5.3 9.8 2.16 2.01 2.07 2070 2730 2358
CO 9.6 7.9 11.2 222 208 213 2090 2131 2170

? Gunnarsson, Harris, and Jones (1977).
® HF designates Hartree—Fock method.

> Molecular bonding is described relatively well (in contrast with
Thomas Fermi theory)

» LDA accuracy may exceed the Hartree-Fock accuracy

2Gunnarson O, Harris J, and Jones, RO (1977) Density Functional Theory
and Molecular Bonding. |.First-row diatomic molecules. J. Chem. Phys. 67,
3970.
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Calculations for atoms by Tong and Sham 1966
KS-LDA for molecular systems
LDA for solid state: the Si phases

Early LDA results

The Si phase diagram from LDA

7.80
I si
—-7.82
C » The diamond structure is
g the ground-state phase;
®
E*?.EE
5
] [
W _7gg
r 1 piamMOND
~7.92 L 1 1 | L
086 0.7 0.8 09 1.0 1M
Volume a

*Yim MT, Cohen ML (1980)
Phys. Rev. Lett. 45: 1004
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Calculations for atoms by Tong and Sham 1966
KS-LDA for molecular systems
LDA for solid state: the Si phases

Early LDA results

The Si phase diagram from LDA

[ Si
782

- » The diamond structure is

g the ground-state phase;
é—?.sa > lattice constant predicted
g within 1-2% of the exp;

-7.88

HEXAGONAL
DIAMOND

1 DIAMOND
~7.92 1 I I I

06 07 08 09 10 11
Volume a

*Yim MT, Cohen ML (1980)
Phys. Rev. Lett. 45: 1004
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Calculations for atoms by Tong and Sham 1966
KS-LDA for molecular systems
LDA for solid state: the Si phases

Early LDA results

The Si phase diagram from LDA

[ Si
782

- » The diamond structure is

g the ground-state phase;
é—?.sa > lattice constant predicted
g within 1-2% of the exp;

-7.88

» bulk modulus within 5%
of the exp;

HEXAGONAL
DIAMOND

1 DIAMOND
~7.92 1 I I I

06 07 08 09 10 11
Volume a

*Yim MT, Cohen ML (1980)
Phys. Rev. Lett. 45: 1004
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Calculations for atoms by Tong and Sham 1966
KS-LDA for molecular systems
LDA for solid state: the Si phases

Early LDA results

The Si phase diagram from LDA

[ foc Si
782

- » The diamond structure is

N the ground-state phase;

> lattice constant predicted
within 1-2% of the exp;

» bulk modulus within 5%
of the exp;

~7.86

Energy (Ry/atom)

-7.88

HEXAGONAL
DIAMOND

1 piamMOND
702 ! ! > pressure to transform

Il |
06 0.7 0.8 09 1.0 11

Volume a diamond into white-tin
structure within 20%.

*Yim MT, Cohen ML (1980)
Phys. Rev. Lett. 45: 1004
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Calculations for atoms by Tong and Sham 1966
KS-LDA for molecular systems

LDA for solid state: the Si phases

Early LDA results

it is the first application of pseudopotential formalism in DFT. (we
discuss this next week)
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Calculations for atoms by Tong and Sham 1966
KS-LDA for molecular systems
LDA for solid state: the Si phases

Early LDA results

Gradient expansion

Among limitations of LDA there the fact that inhomogeneities in
the density are not taken into account. The can be introduced
semi-locally by expanding Exc [p] in term of density and its
gradient.

Eclpl = [ s0)esc 1)) Foc [o0). Vplr), T20(e). ] o (86)

the second order gradient expansion corresponds to:

Exclpl = [ Acclolo0)*3dr + [ Clpl V(6] P /p(e) e (57)
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Calculations for atoms by Tong and Sham 1966
KS-LDA for molecular systems
LDA for solid state: the Si phases

Early LDA results

Gradient expansion

GGAs have been obtained following two different approaches:

» Theoretical derivation of an appropriate expression with
coefficients chosen so that number of formal conditions are
fulfilled: namely sum rules, long range decay etc...

» Fit the parameters of the functional in order to reproduce a
number of experimental results in a molecular database
(structural parameters, formation energies, thermochemical
data (possible issue: transferability).
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Calculations for atoms by Tong and Sham 1966
KS-LDA for molecular systems
LDA for solid state: the Si phases

Early LDA results

BLYP functional

An example from the second category is the BLYP functional.
The exchange functional has been proposed by Becke in 19883, fitting
the parameters to experimental molecular data.

LDA <1 8 x? ) (88)
Ex = €x - T
21/3A, 1 4 6fx sinh 1(X)

where x = 21/3|Vp(r)|/p(r), Ax = (3/4)(3/7)/3, and 3 = 0.0042.
this was complemented by a correlation derived by Lee, Yang and Parr?.
1 1 -
{p+bp_2/3 |:CF/)5/3 2t + 5 <tw + 2v2p>:| e—cP 1/3}
(89)

a
T Ty dp=1/3

where t, = 1 (% - v2p),cp = 3/10(37%)*/3, a=0.04918, b=0.132,

c=0.2533 and d=0.349.

3Phys Rev A 38, 3098, number of citations from ISI 18,596
*Phys Rev B 37, 785, number of citations from 1SI 30,166
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