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The Hohenberg-Kohn theorems

The Hohenberg-Kohn theorems

For a given system described by the Hamiltonian:

Ĥ =
N∑

i=1,

(−1

2
∇2

i ) +
N∑

i=1,

v(ri ) +
N∑

i<j

1

rij
(1)

N and v(r) determines all properties of the ground state.
The first Hohenberg-Kohn theorem states:
The external potential v(r) is determined, within a trivial additive
constant, by the electron density ρ(r).
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The Hohenberg-Kohn theorems

The second Hohenberg-Kohn theorem states:
For a trial density ρ̃ (r) such that ρ̃ (r) > 0 and

∫
ρ̃ (r) dr=N, there

is a variational principle and E0 ≤ Ev [ρ̃].

Ev [ρ] = T [ρ] + Vne [ρ] + Vee [ρ] (2)

=

∫
ρ (r) v (r) dr + FHK [ρ] (3)

and

FHK [ρ] = T [ρ] + Vee [ρ] (4)

= T [ρ] + J [ρ] + nonclassical term (5)

The second HK theorem provides the justification for the
variational principle in TF, where ETF [ρ] is an approximation to
E [ρ].
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Orbitals and Kohn-Sham equations

It is quite appealing that we can get the ground-state energy of a
many-electron system as minimum of an energy functional

Ev [ρ] = T [ρ] + Vne [ρ] + Vee [ρ]

we have seen that a drastic approximation to the functional can be
obtained by the TF model:

Vee [ρ]→ J [ρ] =
1

2

∫∫
ρ(r1)ρ(r2)

|r2 − r2|
dr1dr2

T [ρ]→ uniform electron gas

I Can we do better?
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Orbitals and Kohn-Sham equations

I The main problem at this stage is the kinetic energy
functional T [ρ] because its explicit expression in term of the
density ρ is not known.

I In 1965 Kohn and Sham invented an ingenious approach to
T [ρ]. Their idea was to find a system of non-interacting
electrons that produces the same density of the interacting
system.
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Orbitals and Kohn-Sham equations

Let’s consider a noninteracting reference system in which there is
no electron electron repulsion term and for which the electron
density is exactly ρ:

Ĥs =
N∑
i

(
−1

2
∇2

i

)
+

N∑
i

vs (ri ) (6)

For this system we have an exact solution

Ψs =
1√
N!

det [ψ1ψ2...ψN ] (7)

for such a system the kinetic energy is

Ts [ρ] = < Ψs |
N∑
i

(
−1

2
∇2

i

)
|Ψs >= (8)

=
N∑
i

< Ψs | −
1

2
∇2

i |Ψs > (9)
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Orbitals and Kohn-Sham equations

Now the very clever idea by Kohn and Sham was to rewrite

Ev [ρ] = T [ρ] + Vne [ρ] + Vee [ρ]

as
Ev [ρ] = Ts [ρ] + Vne [ρ] + J [ρ] + Exc [ρ] (10)

where
Exc [ρ] = T [ρ]− Ts [ρ] + Vee [ρ]− J [ρ] (11)

The quantity Exc [ρ] is the exchange-correlation energy , which
contains the difference between T [ρ] and Ts [ρ] and the
non-classical part of Vee [ρ].
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E [ρ] = Ts [ρ] + J [ρ] + Exc [ρ] +

∫
v(r)ρ(r)dr =

=
N∑
i

∑
s

∫
ψ∗i (xi )

(
−1

2
∇2

)
ψi (xi )dr + J [ρ] + Exc [ρ] +

∫
v(r)ρ(r)dr

and the electron density

ρ(r) =
N∑
i

∑
s

|ψi (r , s)|2 (12)

The variational search for the minimum of E [ρ] can be equivalently
effected in the space of orbitals ψi , constraining the orbitals to be
orthonormal: ∫

ψ∗i (x)ψj (x)dx = δij . (13)
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Orbitals and Kohn-Sham equations

If we now define the functional

Ω [ψi ] = E [ρ]−
N∑
i

N∑
j

εij

∫
ψ∗i (x)ψj (x)dx (14)

where εij are the Lagrange multiplier for the orthonormality
constraints, For E [ρ] to be a minimum it is necessary that:

δΩ [ψi ] = 0, (15)

which leads to the equations:

ĥeff ψi =

[
−1

2
∇2 + veff

]
ψi =

N∑
j

εijψj (16)

where

veff (r) = v(r) +

∫
ρ(r ′)

|r − r ′|
dr ′ + vxc (r). (17)
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εij is Hermitian and can be diagonalized by unitary transformation.
Such a transformation leaves invariant the Slater determinant, the
density and hence the Hamiltonian.
In this way we can obtain the Kohn-Sham equations in their
canonical form: [

−1

2
∇2 + veff

]
ψi = εiψi (18)

veff (r) = v(r) +

∫
ρ(r ′)

|r − r ′|
dr ′ + vxc(r) (19)

ρ(r) =
N∑
i

∑
s

|ψi (r , s)|2 (20)

These equations are non-linear and must be solved iteratively.
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Orbitals and Kohn-Sham equations

Then the total energy can be calculated from the energy functional:

E [ρ] = Ts [ρ] + J [ρ] + Exc [ρ] +

∫
v(r)ρ(r)dr

or in terms of the K-S eigenvalues by:

E =
N∑
i

εi −
∫

veff (r)ρ(r)dr + J [ρ] + Exc [ρ] +

∫
v(r)ρ(r)dr

E =
N∑
i

εi −
1

2

∫
ρ(r)ρ(r ′)

|r − r ′|
drdr ′ + Exc [ρ]−

∫
vxc (r)ρ(r). (21)

Here
N∑
i

εi =
N∑
i

< ψi | −
1

2
∇2 + veff (r)|ψi > (22)

= Ts [ρ] +

∫
veff (r)ρ(r)dr (23)
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Orbitals and Kohn-Sham equations

I Ts can be handled exactly through the introduction of the N
orbitals.

I The KS eq have the form of Hartree equation where now v(r)
has the more general form of veff (r). KS are exact and include
all the electron correlation when the exact Exc [ρ] is known.

I The computational cost to solve KS is not much more than to
solve the Hartree eq and less than for the Hartree-Fock eq.

I The KS theory, exact in principle, is distinguished from the
HF theory by its capacity to incorporate the exchange and
correlation potential

I KS eq are open for improvement with each successive better
approximation to Exc [ρ].
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Orbitals and Kohn-Sham equations

I So far veff (r) doesn’t contain any dependence on the spin.
For each eigenvalue εi there are two independent solutions
sharing the same spatial part, they can be chosen as φi (r)α(s)
and φi (r)β(s).
For an even number of electrons we have:

ρ(r) = 2ρα(r) = 2ρβ(r) = 2

N/2∑
i

|φi (r)|2 (24)

For and odd number of electrons we have:

ρ(r) = ρα(r) + ρβ(r) (25)

where ρα(r) and ρβ(r) differ only by one excess orbital.
(restricted Kohn-Sam method)
Next time we will discuss Spin-DFT which correspond to an
unrestricted approach.
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Orbitals and Kohn-Sham equations

I Which N orbitals should one use to form the density in solving
the KS equations? Original proposal by KS is the N lowest
eigenstates.

I Given the auxiliary nature of the KS orbitals - they are just N
orbitals the sum of square of which add up to the true total
electron density - one should expect no simple physical
meaning for the KS orbital energies.
There is none, however one can infer that

εmax = −I (26)

Eq. 26 requires that lim|r |→∞veff (r) = 0.
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Local-density

An explicit form of Exc [ρ] is needed!

ELDA
xc [ρ] =

∫
ρ(r)εxc (ρ)dr (27)

where εxc (ρ) is the exchange and correlation energy per particle of
a uniform electron gas of density ρ. the corresponding xc potential
is

vLDA
xc (r) =

δELDA
xc

δρ(r)
= εxc(ρ(r)) + ρ(r)

∂εxc(ρ)

∂ρ
(28)

and the KS orbitals read:[
−1

2
∇2 + v(r) +

∫
ρ(r ′)

|r − r ′|
dr ′ + vLDA

xc (r)

]
ψi = εiψi (29)
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Local-density

εxc (ρ) can be divided into exchange and correlation contributions:

εxc (ρ) = εx (ρ) + εc (ρ) (30)

I The exchange part is give by the Dirac (1930)
exchange-energy functional

εx (ρ) = −Cxρ(r)1/3,Cx =
3

4

(
3

π

)1/3

(31)

I accurate values of εc(ρ) are available thanks to quantum-MC
calculations (Ceperly, Alder 1980), and have been interpolated
to provide an analytical form for εc (ρ).
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The Dirac exchange-energy functional

Let’s express HF ex in the formalism of first order density matrix:

K =

N/2∑
k,l=1

∫∫
φ∗k (r1)φl (r1)

1

r12
φk (r2)φ∗l (r2)dr1dr2 (32)

=

N/2∑
k,l=1

∫∫
φ∗k (r1)φk (r2)

1

r12
φ∗l (r2)φl (r1)dr1dr2 (33)

=
1

4

∫∫
1

r12
2

N/2∑
k

φ∗k (r1)φk (r2)2

N/2∑
l

φ∗l (r2)φl (r1)dr1dr2 (34)

=
1

4

∫∫
1

r12
ρ1(r1, r2)ρ1(r2, r1)dr1dr2 (35)

=
1

4

∫∫
1

r12
|ρ1(r1, r2)|2dr1dr2 (36)
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We need an approximation for the first order density matrix:

ρ1(r1, r2) = 2

N/2∑
k

φ∗k (r1)φk (r2) (37)

And we will follow the derivation by Dirac(1930) of calculating the
exchange term for a uniform electron gas.

ψ(kx , ky , kz ) =
1√
V

e ik·r (38)

=
1

l3/2
e i(kx x+ky y+kz z) (39)

where

kx =
2π

l
nx ; ky =

2π

l
ny ; kz =

2π

l
nz (40)

and

E (nx , ny , nz ) =
h2

8ml2
[
(2nx )2 + (2ny )2 + (2nz )2

]
(41)
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ρ1(r1, r2) =
2

V

∑
n

e ik·(r1−r2) (42)

For very many occupied states the sum can be replaced by the integral
(dn→dk)

ρ1(r1, r2) =
1

4π3

∫
e ik·(r1−r2)dk (43)

=
1

4π3

∫ kF

0

k2dk

∫∫
e ikr12 sin θdθdφ (44)

similarly

ρ1(r , r) =
1

4π3

∫ kF

0

k2dk

∫∫
sin θdθdφ (45)

=
1

4π3

k3
F

3
4π =

k3
F

3π2
(46)

from where we get an expression for kF in terms of the density

kF = (3π2ρ)1/3 (47)
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Now if we come back to the expression

ρ1(r1, r2) =
1

4π3

∫ kF

0

k2dk

∫∫
e ik·r12 sin θdθdφ

we can introduce the new variables:

r =
1

2
(r1 + r2) (48)

s = r1 − r2 (49)

ρ1(r , s) =
1

4π3
2π

∫ kF

0

k2dk

∫
e iks cos θ sin θdθ (50)

=
1

2π2

∫ kF

0

k2

(
−e iks cos θ

iks

)
|π0 dk (51)

=
1

π2

∫ kF

0

k

s

(e iks − e−iks)

2i
dk (52)

=
1

π2s3

∫ kF

0

ks sin ksd(ks) (53)
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defining the new variable ks = t we obtain:

ρ1(r , s) =
1

π2s3

∫ skF

0

t sin tdt (54)

=
1

π2s3

(
−t cos t|skF

0 +

∫
cos tdt

)
(55)

=
1

π2s3k3
F

k3
F [−t cos t + sin t] (56)

=
3ρ(r)

t3
[sin t − t cos t] (57)

Let’s now substitute the expression for ρ1(r , s) into the expression for
K [ρ]

K [ρ] =
1

4

∫∫
1

r12
|ρ1(r1, r2)|2dr1dr2

which we now express in the r and s coordinates:

K [ρ] =
1

4

∫∫
1

s
|ρ1(r, s)|2drds (58)
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K [ρ] =
1

4

∫∫
1

s
|ρ1(r, s)|2drds (59)

=
1

4

∫
9ρ(r)2 1

k2
F

dr4π

∫ ∞
0

(sin t − t cos t)2

t5
dt (60)

The integral can be solved with a change of variable q = sin t
t :∫ ∞

0

(sin t − t cos t)2

t5
dt =

1

4
(61)

Also recalling that ρ =
k3

F

3π2

ρ(r)2

k2
F

= (3π2)−2/3ρ4/3 (62)

The final expression for K [ρ] is:

K [ρ] = Cx

∫
ρ4/3(r)dr,with Cx =

3

4

(
3

π

)1/3

= 0.7386 (63)
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Quick derivation of the scaling laws

I Scaling for the density

ρλ(r) = λ3ρ(λr) (64)

I Scaling for the wavefunction

ρλ(r) = ψ∗λ(r)ψλ(r) (65)

ψλ(r) = λ3/2ψ(λr) (66)
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Quick derivation of the scaling laws

I Scaling for the kinetic energy T

Tλ ∼
∫
ψ∗λ(r)∇2

λψλ(r)d3(λr) (67)

∼ λ3/2∗2λ2λ−3T (λr) (68)

∼ λ2T (λr) (69)

Also T [ρλ] =

∫
t(ρλ)dr =

∫
t(λ3ρ(λr))λ−3d3(λr) (70)

=

∫
λ−3t(λ3ρ(r))dr (71)

equating 69 and 71 we obtain: λ−3t(λ3ρ(r)) = λ2t(ρ) (72)

t(λ3ρ(r)) = λ5t(ρ) (73)

t(λρ(r)) = λ5/3t(ρ) (74)
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Quick derivation of the scaling laws

I Scaling for the exchange functional

K [ρλ] ∼
∫

1

r
ψ∗ψd3r = λλ3/2·2λ−3K [ρ] (75)

K [ρλ] = λK [ρ] (76)

Also K [ρλ] =

∫
k(ρλ)dr (77)

=

∫
k(λ3ρ(λr))λ−3d(λr) (78)

=

∫
λ−3k(λ3ρ(r))dr (79)

Equating 77 and 79 we obtain: λ−3k(λ3ρ(r)) = λk[ρ] (80)

k(λ3ρ(r)) = λ4(ρ) (81)

k(λρ) = λ4/3k(ρ)(82)
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Correlation functional

εc is a difficult problem. Only limiting cases are known in analytic form.
In the case of an homogeneous systems,

I the high density limit is:

εhom
c = 0.0311 ln rs − 0.048 + rs

(
A0 ln rs + C 0

)
, for rs � 1 (83)

I and the low density limit is:

εhom
c =

1

2

(
g0

rs
+

g1

r
3/2
s

+
g2

r2
s

+ ...

)
for rs � 1 (84)

where rs is the the radius of a sphere whose volume is the effective
volume of an electron.

4

3
πr3

s =
1

ρ
(85)
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1 Note that

I large rs means low density, small rs means high density

1The radius rs for the ground state of the carbon atom as function of the
distance from the nucleus. Dotted line: D(r)=4πr 2ρ(r).
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Early LDA results

The LDA is applicable to systems with slow-varying densities but
cannot be formally justified for highly inhomogeneous systems,
such as atoms and molecules. The essential justification comes
from successful numerical applications.
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First LDA calculations on atoms:
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Calculations for atoms by Tong and Sham 1966
KS-LDA for molecular systems
LDA for solid state: the Si phases

I Electron density are close to HF density

I LDA exchange gives ∼ 10 err in the HF exchange

I inclusion of εc is not particularly beneficial, indeed the approx used
here (Pines, 1963) is not very accurate.
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Calculations for atoms by Tong and Sham 1966
KS-LDA for molecular systems
LDA for solid state: the Si phases

I Molecular bonding is described relatively well (in contrast with
Thomas Fermi theory)

I LDA accuracy may exceed the Hartree-Fock accuracy

2

2Gunnarson O, Harris J, and Jones, RO (1977) Density Functional Theory
and Molecular Bonding. I.First-row diatomic molecules. J. Chem. Phys. 67,
3970.
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The Si phase diagram from LDA

a

aYim MT, Cohen ML (1980)
Phys. Rev. Lett. 45: 1004

I The diamond structure is
the ground-state phase;

I lattice constant predicted
within 1-2% of the exp;

I bulk modulus within 5%
of the exp;

I pressure to transform
diamond into white-tin
structure within 20%.
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the ground-state phase;

I lattice constant predicted
within 1-2% of the exp;

I bulk modulus within 5%
of the exp;

I pressure to transform
diamond into white-tin
structure within 20%.
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it is the first application of pseudopotential formalism in DFT. (we
discuss this next week)
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Gradient expansion

Among limitations of LDA there the fact that inhomogeneities in
the density are not taken into account. The can be introduced
semi-locally by expanding Exc [ρ] in term of density and its
gradient.

Exc [ρ] =

∫
ρ(r)εxc [ρ(r)] Fxc

[
ρ(r),∇ρ(r),∇2ρ(r), ...

]
dr (86)

the second order gradient expansion corresponds to:

Exc [ρ] =

∫
Axc [ρ] ρ(r)4/3dr +

∫
Cxc [ρ] |∇ [ρ] |2/ρ(r)4/3dr (87)
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Gradient expansion

GGAs have been obtained following two different approaches:

I Theoretical derivation of an appropriate expression with
coefficients chosen so that number of formal conditions are
fulfilled: namely sum rules, long range decay etc...

I Fit the parameters of the functional in order to reproduce a
number of experimental results in a molecular database
(structural parameters, formation energies, thermochemical
data (possible issue: transferability).
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BLYP functional

An example from the second category is the BLYP functional.
The exchange functional has been proposed by Becke in 19883, fitting
the parameters to experimental molecular data.

εx = εLDA
x

(
1− β

21/3Ax

x2

1 + 6βx sinh−1(x)

)
(88)

where x = 21/3|∇ρ(r)|/ρ(r), Ax = (3/4)(3/π)1/3, and β = 0.0042.
this was complemented by a correlation derived by Lee, Yang and Parr4.

εc = − a

1 + dρ−1/3
{ρ+bρ−2/3

[
CFρ

5/3 − 2tw +
1

9

(
tw +

1

2
∇2ρ

)]
e−cρ−1/3

}

(89)

where tw = 1
8

“
|∇ρ|2
ρ
−∇2ρ

”
,CF = 3/10(3π2)2/3, a=0.04918, b=0.132,

c=0.2533 and d=0.349.

3Phys Rev A 38, 3098, number of citations from ISI 18,596
4Phys Rev B 37, 785, number of citations from ISI 30,166
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