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The self interaction error

In Thomas Fermi theory the electron electron interaction is:

V TF
ee [ρ] = J [ρ] =

1

2

∫∫
ρ(r1)ρ(r2)

r12
dr1dr2 (1)

If we consider the one electron system described by φ(r), we get

J
[
|φ(r)|2

]
6= 0 (2)

while the exact potential energy functional must give 0 for one
electron system:

Vee

[
|φ(r)|2

]
= 0 (3)

In 1934 Fermi and Amaldi proposed the simple self-interaction
corrected formula:

V FA
ee =

N − 1

2N

∫∫
ρ(r1)ρ(r2)

r12
dr1dr2 (4)
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No SIE in the Hartree Fock Approximation!

EHF = 〈ΨHF |Ĥ|ΨHF 〉 =
N∑

i=1

Hi +
1

2

N∑
i ,j=1

(Jij − Kij ) (5)

where

Hi =

∫
ψ∗i (x)[−1

2
∇2 + v(x)]ψi (x)dx (6)

Jij =

∫∫
ψi (x1)ψ∗i (x1)

1

r12
ψ∗j (x2)ψj (x2)dx1dx2 (7)

Kij =

∫∫
ψ∗i (x1)ψj (x1)

1

r12
ψi (x2)ψ∗j (x2)dx1dx2 (8)

Jii = Kii (9)

this explain the double sum in (5).
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I In DFT the direct (self-interacting) Coulomb energy is large,
e.g. for Hydrogen is about 8.5 eV, but about 93% is cancelled
by LSD exchange-correlation energy.

I In LSD a spurious self interaction remains as the price to be
paid for a simple, local one-electron potential. The SIE is
more severe for localized systems, while it vanishes for orbitals
delocalized over extended systems.
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Perdew and Zunger1 Self Interaction Corrections (SIC).
In approximate DFT (including LDA, the exact functional

Vee

[
ρα, ρβ

]
= J

[
ρα, ρβ

]
+ Exc

[
ρα, ρβ

]
(10)

is approximated by the functional:

Ṽee

[
ρα, ρβ

]
= J

[
ρα, ρβ

]
+ Ẽxc

[
ρα, ρβ

]
(11)

The requirement to exclude the self interaction can be written as

Vee [ραi , 0] = J [ραi ] + Exc [ραi , 0] = 0 (12)

Or in a more detailed form:

J [ραi ] + Ex [ραi , 0] = 0 (13)

Ec [ραi , 0] = 0 (14)

1Perdew and Zunger (1981) Phys Rev B 23, 5048.
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Perdew-Zunger self interaction corrected (SIC) version of a given
approximate exchange and correlation functional is

ESIC
xc = Ẽxc

[
ρα, ρβ

]
−
∑
iσ

(
J [ραi ] + Ẽx [ραi , 0]

)
(15)

The SIC one-electron equation become[
−1

2
∇2 + v(r) + βeb(r) +

∫
ρ(r′)

|r − r′|
+ v iα,SIC

xc (r)

]
φSIC

iα (r) = εSIC
iα φSIC

iα (r) (16)[
−1

2
∇2 + v(r)− βeb(r) +

∫
ρ(r′)

|r − r′|
+ v jβ,SIC

xc (r)

]
φSIC

jβ (r) = εSIC
jβ φSIC

jβ (r) (17)

NOTE: the one electron equation for SIC have different potentials
for different orbitals, which causes the orbital to be non-orthogonal.
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SIC improves the LSD approximation considerably. For the
exchange energies we have:
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The exchange-energy functional

Ex

[
ρα, ρβ

]
= −1

2

∫∫
1

r12

[
|ραα

1 (r1, r2)|2 + |ρββ
1 (r1, r2)|2

]
dr1dr2 (18)

can be explicitly written in terms of the orbitals for the system of
non-interacting electrons with density ρα and ρβ

Ts

[
ρα, ρβ

]
= Min

[∑
iσ

niσ

∫
drφ∗iσ(r)

(
−1

2
∇2

)
φiσ(r)

]
(19)

E
[
ρα, ρβ

]
=

∑
iσ

niσ

∫
drφ∗iσ(r)(−1

2
∇2)φiσ(r) + J

[
ρα + ρβ

]
− 1

2

∫∫
1

r12

[
|ραα

1 (r1, r2)|2 + |ρββ
1 (r1, r2)|2

]
dr1dr2

+

∫
dr
[
(v(r) + βeb(r))ρα(r) + (v(r)− βeb(r))ρβ(r)

]
(20)
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Minimization through the orbitals imposing the orthonormalization gives
the equations:

−1

2
∇2φiσ(r) +

∫
vσ

eff (r, r′)φiσ(r′)dr′ = εiσφiσ(r) (21)

where εiσ are the Lagrange multiplier for the constraint∫
φiσ(r)φjσ(r) = δij .

The spin-dependent effective (non local) potentials are:

vα
eff =

[
v(r) + βeb(r) +

∫
ρ(r′′)

|r − r′′|
dr′′ +

δEc

[
ρα, ρβ

]
δρα(r)

]
δ(r − r′)− ραα

1 (r, r′)

|r − r′|
(22)

vβ
eff =

[
v(r)− βeb(r) +

∫
ρ(r′′)

|r − r′′|
dr′′ +

δEc

[
ρα, ρβ

]
δρβ(r)

]
δ(r − r′)− ρββ

1 (r, r′)

|r − r′|
(23)

The spin density are: ρσ(r) =
∑

i |φiσ(r)|2 and Nσ =
∫

drρσ(r)dr and

N = Nα + Nβ .
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I The HFKS equations differs from the KS equations in having
a non-local exchange potential;

I the exchange potential is exact and explicit.

I The correlation potential is included, if we knew the exact
form of Ec

[
ρα, ρβ

]
we would have the exact solution.
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What to use for Ec

[
ρα, ρβ

]
?

One can take the local spin density:

ELSD
c

[
ρα, ρβ

]
=

∫
ρεc(ρ, ζ)dr (24)

but it overestimate the the true value by a great deal.
Stoll, Pavlidou, and Preuss2 suggested to use LSD only for electron
with different spin.

ESPP
c

[
ρα, ρβ

]
= ELSD

c

[
ρα, ρβ

]
− ELSD

c [ρα, 0]− ELSD
c

[
ρβ, 0

]
(25)

=

∫
ρεc (ρ, ζ)dr −

∫
ραεc(ρα, 1)dr −

∫
ρβεc(ρβ, 1)dr (26)

NOTE: ESPP
c

[
|φi (r)|2, 0

]
= 0. This approximation excludes the SI

2Theor. Chem. Acta 49 143 (1978).
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Vosko and Wilk3 proposed a another improvement over LSD.

EVW
c

[
ρα, ρβ

]
= ELSD

c

[
ρα, ρβ

]
(27)

−
(
NαELSD

c [ρα/Nα, 0] + NβELSD
c

[
ρβ/Nβ, 0

])
(28)

=

∫
ρεc(ρ, ζ)dr (29)

−
∫
ραεc (ρα/Nα, 1)dr −

∫
ρβεc (ρβ/Nβ, 1)dr (30)

I For N = 1, EVW
c = 0

I For N →∞ and slowly-varying densities, EVW
c = ELSD

c .

3J. Phys. B 16, 3687 (1983)
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The exchange and correlation hole

Let’s recall the expression for the Exc :

Exc [ρ] = T [ρ]− Ts [ρ] + Vee [ρ]− J [ρ]

Exc is the sum of two unrelated contributions:

I T [ρ]− Ts [ρ] is associated to first order reduced density
matrix

I Vee [ρ]− J [ρ] is associated with second order reduced density
matrix
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The diabatic connection was introduced by Langreth and Perdew4

switch on the electron-electron interaction throght the parameter
λ, so that the density ρ is unchanged along the path.

Fλ [ρ(r)] = MinΨ→ρ〈Ψ|T̂ + λV̂ee |Ψ〉 (31)

= 〈Ψλ
ρ |T̂ + λV̂ee |Ψλ

ρ〉 (32)

where Ψλ
ρ is the N-electron wave function that minimize

〈T̂ + λV̂ee〉 and yields the density ρ.

4Phys. Rev. B 15 2884 (1977).
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The parameter λ characterize the strength of the electron-electron
interaction.

F1 [ρ] = F [ρ] = T [ρ] + Vee [ρ] (33)

F0 [ρ] = Ts [ρ] (34)

Exc [ρ] = T [ρ]− Ts [ρ] + Vee [ρ]− J [ρ]

= F1 [ρ]− F0 [ρ]− J [ρ] (35)

=

∫ 1

0

dλ
∂Fλ [ρ]

∂λ
− J [ρ] (36)

We want to evaluate Exc from (36).
The condition that ψ → ρ(r) can be expressed as:

ρ(r) = 〈Ψ|ρ̂(r)|Ψ〉 = 〈Ψ|
n∑
i

δ(r − ri)|Ψ〉 (37)
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It is necessary that Ψλ
ρ make stationary the functional:

〈Ψ|T̂ + λV̂ee |Ψ〉+

∫ (
vλ(r)− Eλ

N

)
〈Ψ|ρ̂(r)|Ψ〉dr (38)

= 〈Ψ|T̂ + λV̂ee +
N∑
i

vλ(ri)− Eλ|Ψ〉 (39)

where vλ(r)− Eλ
N is the Lagrangian multiplier for the constraint

(37).
Ψλ
ρ has to be an eigenstate of an Hamiltonian Ĥλ

Ĥλ|Ψλ
ρ〉 =

(
T̂ + λV̂ee +

N∑
i

vλ(ri)

)
|Ψλ

ρ〉 = Eλ|Ψλ
ρ〉 (40)

with eigenvalue Eλ.
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∂Eλ
∂λ

= 〈Ψλ
ρ |
∂Ĥλ
∂λ
|Ψλ

ρ〉 (41)

= 〈Ψλ
ρ |V̂ee |Ψλ

ρ〉+ 〈Ψλ
ρ |
∂

∂λ

N∑
i

vλ(ri)|Ψλ
ρ〉 (42)

= 〈Ψλ
ρ |V̂ee |Ψλ

ρ〉+

∫
ρ(r)

∂

∂λ
vλ(r)dr. (43)

Considering that:

Eλ = 〈Ψλ
ρ |T̂ + λV̂ee +

N∑
i

vλ(ri)|Ψλ
ρ〉 = Fλ [ρ] +

N∑
i

vλ(ri) (44)

We obtain:
∂Fλ [ρ]

∂λ
= 〈Ψλ

ρ |V̂ee |Ψλ
ρ〉 (45)
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Finally we can now use

∂Fλ [ρ]

∂λ
= 〈Ψλ

ρ |V̂ee |Ψλ
ρ〉

into the exchange and correlation functional:

Exc [ρ] =

∫ 1

0

dλ
∂Fλ [ρ]

∂λ
− J [ρ] (46)

=

∫ 1

0

dλ〈Ψλ
ρ |V̂ee |Ψλ

ρ〉 − J [ρ] (47)

=

∫∫
1

r12
ρ̄2(r1, r2)dr1dr2 − J [ρ] (48)

=
1

2

∫∫
1

r12
ρ(r1)ρ(r2)h̄(r1, r2)dr1dr2 (49)

=
1

2

∫∫
1

r12
ρ(r1)ρ̄xc (r1, r2)dr1dr2 (50)

where
∫ λ

0
dλρλ

2 (r1, r2 = ρ̄2(r1, r2) = 1
2ρ(r1)ρ(r2)[1 + h̄(r1, r2)].
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where the average exchange and correlation hole

ρ̄xc (r1, r2) = ρ(r2)h̄(r1, r2) (51)

and the average pair correlation functional is given by:∫ 1

0
dλρλ2 (r1, r2) = ρ̄2(r1, r2) =

1

2
ρ(r1)ρ(r2)

[
1 + h̄(r1, r2)

]
(52)

The exchange and correlation energy can be viewed as the classical
Coulomb interaction between the electron density ρ(r) and a
charge ρ̄xc , the exchange and correlation hole, averaged over λ

Marialore Sulpizi Density Functional Theory: from theory to Applications
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The sum rule for the exchange and correlation hole is:∫
ρ̄xc (r1, r2)dr2 =

∫
ρ(r2)h̄(r1, r2)dr2 = −1 (53)

This can be obtained from

ρ(r1) =
2

N − 1

∫
ρ2(r1, r2)dr2 (54)

N − 1

2
ρ(r1) =

∫
ρ2(r1, r2)dr2 (55)

Inserting ρ2(r1, r2) =
1

2
ρ(r1)ρ(r2) [1 + h(r1, r2)] (56)

into eq.55 we obtain:

N − 1

2
ρ(r1) =

∫
1

2
ρ(r1)ρ(r2) [1 + h(r1, r2)] dr2 (57)

N − 1

2
ρ(r1) =

1

2
ρ(r1)

[
N +

∫
ρ(r2)h(r1, r2)dr2

]
(58)

−1 =

∫
ρ(r2)h(r1, r2)dr2 (59)
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∫
ρ̄xc(r1, r2)dr2 =

∫
ρ(r2)h̄(r1, r2)dr2 = −1

From here we see that ρ̄xc(r1, r2) represent a hole around r1 with
unit positive charge.
Such condition can be a test for DFT where an approximation of
ρ̄xc(r1, r2) is given in term of electron density.

Marialore Sulpizi Density Functional Theory: from theory to Applications



Outline
Recap of Previous lecture

The Hartree-Fock-Kohn-Sham method
The exchange and correlation hole

Solving the electronic problem in practice

Average-density approximation
Weighted density approximation

The second consequence of

Exc [ρ] =

∫∫
1

r12
ρ(r1)ρ̄xc (r1, r2)dr1dr2

is that Exc only depends on certain spherically averaged behavior
of ρxc , namely

Exc [ρ] =
1

2

∫
drρ(r)

∫ ∞
0

4πsdsρSA
xc (r, s) (60)

where

ρSA
xc (r, s) =

1

4π

∫
ρ̄xc (r, r′)dr′ (61)

The sum rule can be written as:

4π

∫
s2dsρSA

xc (r, s) = −1 (62)
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We can decompose ρxc into exchange and correlation contribution.
We can define the exchange hole (for spin-compensated) as:

ρx (r1, r2) = −1

2

|ρ1(r1, r2)|2

ρ(r1)
. (63)

thus the exchange energy is given by

Ex [ρ] =
1

2

∫∫
1

r12
ρ(r1)ρx (r1, r2)dr1dr2 (64)

The exchange hole satisfies∫
ρx (r1, r2)dr2 = −1; (65)

We define the correlation hole:

ρ̄xc = ρx (r1, r2) + ρc (r1, r2). (66)

As consequence of the sum rule and of eq.65 we have that∫
ρc (r1, r2)dr2 = 0. (67)
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I The exchange energy equals the Coulomb interaction energy
of the electrons with a charge distribution contains one unit
charge

I The correlation energy comes from the interaction of the
electrons with a neutral charge distribution

For the local density approximation

ELDA
xc [ρ] =

∫
ρ(r)εxc (ρ(r))dr (68)

Recalling:

Exc =

∫∫
1

r12
ρ(r1)ρ(r2)h̄(r1, r2)dr1dr2 (69)

The LDA formula corresponds to:

ρLDA
xc = ρ(r1)h̄0(|r1 − r2|; ρ(r1)) (70)

Note the difference with the exact formula:

ρ̄xc (r1, r2) = ρ(r2)h̄(r1, r2)
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The ρLDA
xc obeys the sum rule:∫

ρLDA
xc (r1, r2)dr2 = −1 (71)

Indeed for every r1, ρLDA
xc is the exact exchange-correlation hole of

a homogeneous electron gas with density ρ(r1).
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Average-density approximation

Average-density (AD) approximation5

ρAD
xc = ρ̄(r1)h̄0(|r1 − r2|; ρ̄(r1)) (72)

where the average density is given by

ρ̄(r) =

∫
w(r − r′; ρ̄(r))ρ(r′)dr′ (73)

The corresponding exchange and correlation energy is equal to

EAD
xc [ρ] =

∫
ρ(r)εxc (ρ̄(r))dr (74)

LDA correspond to a weighting factor w(r − r′; ρ̄) that is a Dirac delta

function.
5Gunnarsson, Jonson, and Lundqvist, Phys Lett 59 A177 (1976)
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Weighted density approximation

Other approximations include: weighted density (WD)

ρWD
xc (r1, r2) = ρ(r2)h̄0(|r1 − r2|; ρ̃(r1)) (75)

where ρ̃(r1) is determined by the sum rule:∫
ρWD

xc (r1, r2)dr2 =

∫
ρ(r2)h̄0(|r1 − r2|; ρ̃(r1))dr2 = −1 (76)

Marialore Sulpizi Density Functional Theory: from theory to Applications



Outline
Recap of Previous lecture

The Hartree-Fock-Kohn-Sham method
The exchange and correlation hole

Solving the electronic problem in practice

All electrons vs pseudopotentials
Classes of Basis-set
Condensed phase: Bloch’s th and PBC

Solving the electronic problem in practice

Marialore Sulpizi Density Functional Theory: from theory to Applications



Outline
Recap of Previous lecture

The Hartree-Fock-Kohn-Sham method
The exchange and correlation hole

Solving the electronic problem in practice

All electrons vs pseudopotentials
Classes of Basis-set
Condensed phase: Bloch’s th and PBC

All electrons vs pseudopotentials

There are two classes of electrons: valence electrons (participate to
chemical bonds) and core electrons (tightly bound to the nuclei).
Eventually semi-core electrons (close in energy to valence states to
feel the presence of the environment)
All-electron methods

I fixed orbital basis set: core electron minimal number of basis
function to reproduce atomic features, valence and semi-core
more complete basis set to describe the chemical bond.

I augmented basis set. Divide the space into spherical regions
around the atoms and interstitial regions and requesting that
the basis functions are continuous and differentiable across
the boundaries.
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Pseudopotential methods

I Core electrons are eliminated. Nuclei effective charge
ZV = Z − Zcore .

I Number of electron treated explicitly is reduced

I The bare Coulomb potential is replaced by a screened
Coulomb potential

I Inner solution, inside the core radius, is replaced with a
smooth, node-less pseudo-wave function

I Pseudopotentials are usually chosen to be dependent on the
angular momentum.
E.g. for Pt 6p orbitals are quite external and peaked at
around 3.9Å, the 6s peak at around 2.4 Åand the main peak
of 5d is located ate 1.3 Å.
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Classes of Basis-set

I Extended basis set: delocalized, such as plane waves, useful
for condensed phase systems. Tends to be inefficient for
molecular systems.

I Localized basis set: mainly centered at the atomic positions
(but also at position of ”ghost” atoms). Mainly used for
molecular systems

I Mixed basis set: designed to take best of the two worlds
(delocalized + localized). There can be some technical issues
(over-completeness).

I Augmented basis set: where an extended or atom centered
basis set is augmented with atomic like wf in spherical regions
around the nuclei.
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Condensed phase: Bloch’s th and PBC

Condensed phase: problem of choosing the size of the simulation cell.
For periodic system: unit of Wigner-Seitz cell, the minimal choice that
contains the whole symmetry of the system. Sometimes it is convenient
to choose a larger cell to simplify description of symmetry properties.
In an external periodic potential v(r) = v(r + ai ) the wf can be written
as:

ψk (r) = e ik·ruk (r) (77)

with uk (r) = uk (r + ai ).

ψk (r + ai ) = e ik·aiψk (r) (78)

So that the probability density is |ψk (r)|2 is exactly the same.
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Looking at
ψk (r + ai ) = e ik·aiψk (r)

we notice that there is a a class of vectors k such that

e ik·ai = 1 (79)

The reciprocal lattice vectors are defined by

ai · bj = 2πδij (80)

and

b1 = 2π
a2 × a3

Ω
; b2 = 2π

a3 × a1

Ω
; b3 = 2π

a1 × a2

Ω
(81)

The reciprocal lattice vectors define the first Brillouin Zone (BZ).
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Bloch’s theorem indicates that it is not necessary to determine the
electronic wavefunction everywhere in space. It is sufficient to
know the solution in the unit cell.
Using the fact that a periodic function can be represented by a
Fourier series:

ψk (r) = e ik·r
∑
G

Ck+Ge iG·r (82)

where the sum is over G = n1b1 + n2b2 + n3b3, the reciprocal
lattice vectors.
k is restricted to all the vectors in the first Brillouin zone. In
practice calculations are done only for a finite number of k.
The number of k points depends on the systems we want to study.
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Aperiodic systems: molecules, surfaces and defects

I supercell approach with PBC, making sure that required
physical and chemical properties are converged with respect to
the size of the supercell.

I For surfaces and molecules, e.g., introduce a a vacuum region
large enough that there so interaction between images.

I For charged systems difficulties due to the electrostatic
interactions (long range). A uniform neutralizing background
is introduced.
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