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Hamann-Schlüter-Chiang pseudopotentials
Bachelet, Kerker, Martin-Troulliers

I Only the chemically active electrons are considered explicitly.

I The core electrons are eliminated within the frozen-core
approximation and are considered together with the nuclei as
rigid non-polarizable ion cores.

I The Pauli repulsion largely cancels the attractive parts of the
true potential in the core region, and is built into the therefore
rather weak pseudopotentials.
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Why Pseudopotentials?

I Reduction of the number of electron in the systems, faster
calculation for large systems

I Relativistic effects depending on the core electrons treated
incorporated indirectly in the pseudopotentials

I In the frame of plane wave basis set: reduction of the basis
set size introducing smoother functions which requires a lower
cutoff

I The number of plane waves needed for a certain accuracy
increases with the square of the nuclear charge.
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Norm-conserving pseudopotentials

Norm-conserving pseudopotentials conserves the normalization of
the pseudo wf in the core region so that the wf outside resembles
that of the all-electrons as closely as possible.

Valence and pseudo wf of a Si
atom, generated according to
Martin-Troullier scheme.
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Ground state core density (dashed line) and pseudo valence density
(solid line) for a Si atom.
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Note: The pseudopotentials converge to the limit −Z/r outside
the core radius.
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Hamann-Schlüter-Chiang conditions1

Norm-conserving pseudos are derived from atomic reference state:

(T + V AE )|Ψl >= εl |Ψl > . (1)

This is replaced by the ”valence electrons only”

(T + V val)|Φl >= ε̃l |Φl > . (2)

Imposing the following:

I εl = ε̃l for a chosen prototype atomic configuration.

I Ψl(r) = Φl(r) for r ≥ rc .

I Norm conservation, < Φl |Φl >R=< Ψl |Ψl >R for R ≥ rc .

I Log derivative of Φl equal to that of Ψl .

1Hamann-Schlüter-Chiang, Phys. Rev. Lett., 43, 1494 (1979)
Marialore Sulpizi Density Functional Theory: from theory to Applications
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Hamann-Schlüter-Chiang recipe

I First step: the all-electron wf is multiplied by a smoothing function
f1 to remove strongly attractive and singular part of the potential:

V
(1)
l (r) = V AE (r)

[
1− f1

(
r

rc,l

)]
(3)

I Then a function f2 is added in order to obtain εl = ε̃l

V
(2)
l (r) = V

(1)
l (r) + cl f2

(
r

rc,l

)
(4)(

T + V
(2)
l (r)

)
w

(2)
l (r) = ε̃lw

(2)
l (r) (5)

I The valence wf is defined as

Φl(r) = −γl

[
w

(2)
l (r) + δl r

l+1f3

(
r

rc,l

)]
(6)

where γl and δl are chosen such that Φl(r)→ Ψl(r) for R ≥ rc .
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Hamann-Schlüter-Chiang recipe

I Given Φl and ε̃l the equation:

(T + V val)|Φl >= ε̃l |Φl > .

is inverted to get V val(r).

Hamann-Schlüter-Chiang chose f1(x) = f2(x) = f3(x) = exp[−x4].

V PP
l (r) = V val

l (r)− VH(nV )− Vxc(nV ) (7)

The total atomic pseudopotential then takes the form of a sum over all
angular momentum channels:

V PP(r) =
∑

L

V PP
L (r)PL(ω) (8)

where PL(ω) is the projector on the angular momentum state L, defined

by {l ,m} and ω are angular variables.
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Bachelet-Hamann-Schlüter pseudopotentials

Bachelet et proposed an analytic form to fit the pseudos generated
by Hamann-Schlüter-Chiang of the form:

V PP(r) = V core(r) +
∑
L

∆V ion
L (r) (9)

V core(r) = −ZV

r

[
2∑

i=1

ccore
i erf (

√
αcore

i r)

]
(10)

V ion
L (r) =

3∑
i=1

(Ai + r2Ai+3)exp[−αi r
2] (11)

the advantage here is that this form allow an easy implementation
in plane-wave code, since the Fourier transform can be also written
analytically.
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Kerker pseudopotentials

In the Kerker approach2 psedupotentials are constructed to satisfy
HSC conditions, but replacing the AE wf inside rc with a smooth
analytic function that matches the AE wf at rc .

I rc is generally larger than that used in HSC

The analytic form proposed by Kerker is

Φl(r) = r l+1exp[p(r)] for r < rc,l (12)

with l-dependent cut-off radii rc,l and

p(r) = αr4 + βr3 + γr2 + δ (13)

The method of Kerker was generalized by Troullier and Martins to
polynomials of higher order3

2Kerker, J. of Phys. C 13; L189 (1980)
3Phys. rev. B, 43: 1993. (1991).
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Hamann-Schlüter-Chiang pseudopotentials
Bachelet, Kerker, Martin-Troulliers

An Example: pseudos for carbon

Martin-Troulliers
pseudopotential for carbon in
the LDA.
reference configuration:
1s22s22p2
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Convergence of the kinetic energy for carbon atom as function of
the cutoff.
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Convergence of the total energy of diamond as function of the
cutoff.
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Unifying molecular dynamics and electronic structure

Starting point: the non-relativistic Schrödinger equation for electron and
nuclei.

i~
∂

∂t
Φ({ri}, {Ri}; t) = HΦ({ri}, {Ri}; t) (14)

where H is the standard Hamiltonian:

H = −
∑

I

~2

2MI
∇2

I −
∑

i

~2

2me
∇2

i (15)

+
1

4πε0

∑
i<j

e2

|ri − rj |
− 1

4πε0

∑
I ,i

e2ZI

|Ri − ri |
+

1

4πε0

∑
I<J

e2ZI ZJ

|Ri − Rj |
(16)

= −
∑

I

~2

2MI
∇2

I −
∑

i

~2

2me
∇2

i + Vn−e({ri}, {Ri}) (17)

= −
∑

I

~2

2MI
∇2

I + He({ri}, {Ri}) (18)
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I Route 1:
1) The electronic problem is solved in the time-independent
Schrodinger eq.
2) from here the adiabatic approximation for the nuclei is
derived, and as a special case the Born-Oppenheimer
dynamics.
3) The classical limit leads then to the classical molecular
dynamics for the nuclei.
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Goal: derive the classical molecular dynamics. As intermediate two
variant of ab initio molecular dynamics are derived.

I Solve the electronic part for fixed nuclei

He({ri}, {Ri})Ψk = Ek({Ri})Ψk({ri}, {Ri}) (19)

where Ψk({ri}, {Ri}) are a set of orthonormal solutions, satisphying:∫
Ψ∗k({ri}, {Ri})Ψl({ri}, {Ri})dr = δkl (20)

Knowing the adiabatic solutions to the electronic problem, the total
wavefunction can be expanded as:

Φ({ri}, {Ri}, t) =
∞∑
l=0

Ψl({ri}, {Ri})χl({Ri}, t) (21)

Eq.21 is the ansatz introduced by Born in 1951.

Marialore Sulpizi Density Functional Theory: from theory to Applications
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Inserting (21) into Eq.(14) we obtain:[
−
∑

I

~2

2MI
∇2

I + Ek({Ri})

]
χk +

∑
l

Cklχl = i~
∂

∂t
χk (22)

where:

Ckl =

∫
Ψ∗k

[
−
∑

I

~2

2MI
∇2

I

]
Ψldr + (23)

+
1

MI

∑
I

{
∫

Ψ∗k [−i~∇I ]Ψldr}[−i~∇I ] (24)

is the exact non-adiabatic coupling operator.

I The adiabatic approximation to the full problem Eq.22 is obtained
considering only the diagonal terms:

Ckk = −
∑

I

~2

2MI

∫
Ψ∗k∇2

I Ψkdr (25)
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[
−
∑

I

~2

2MI
∇2

I + Ek({Ri}) + Ckk({Ri})

]
χk = i~

∂

∂t
χk (26)

The motion of the nuclei proceed without changing the quantum state,
k , of the electronic subsystem during the evolution. The coupled
wavefunction can be simplified as:

Φ({ri}, {Ri}, t) ≈ Ψk({ri}, {Ri})χk({Ri}, t) (27)

the ultimate simplification consist in neglecting also the correction term
Ckk({Ri}), so that[

−
∑

I

~2

2MI
∇2

I + Ek({Ri})

]
χk = i~

∂

∂t
χk (28)

This is the Born-Oppenheimer approximation.
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On each Born-Oppenheimer surface, the nuclear eigenvalue problem can

be solved, which yields a set of levels (rotational and vibrational in the

nuclear motion) as illustrated in the figure.
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The next step is to derive the classical molecular dynamics for the nuclei.
The route we take is the following:

χk({Ri}, t) = Ak({Ri}, t)exp[iSk({Ri}, t)/~] (29)

the amplitude Ak and the phase Sk are both real and Ak > 0. Next we
subistutute the expression for χk into eq. 28."

−
X

I

~2

2MI
∇2

I + Ek({Ri})

#
Ak({Ri}, t)exp[iSk({Ri}, t)/~] = (30)

i~ ∂

∂t
(Ak({Ri}, t)exp[iSk({Ri}, t)/~]) (31)

−
X

I

~2

2MI
∇I (∇I (Akexp[iSk/~])) + EkAkexp[iSk/~] = (32)

i~∂Ak

∂t
exp[iSk/~] + i~ i

~
∂Sk

∂t
Akexp[iSk/~] (33)

−
X

I

~2

2MI
∇I

„
∇IAkexp[iSk/~] + Ak

i

~
∇Skexp[iSk/~]

«
+ EkAkexp[iSk/~] = (34)

i~∂Ak

∂t
exp[iSk/~]− ∂Sk

∂t
Akexp[iSk/~] (35)
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−
X

I

~2

2MI
∇2

I Ak−
X

I

~2

2MI
∇IAk

i

~
∇ISk−

X
I

~2

2MI
∇IAk

i

~
∇ISk (36)

−
X

I

~2

2MI
Ak

„
i

~

«2

(∇Sk)
2−
X

I

~2

2MI
Ak

i

~
∇2Sk + EkAk = (37)

i~∂Ak

∂t
− ∂Sk

∂t
Ak (38)

Separating the real and the imaginary parts, we obtain:

∂Sk

∂t
+
∑

I

1

2MI
(∇Sk)2 + Ek = −

∑
I

~2

2MI

∇2
I Ak

Ak
(39)

∂Ak

∂t
+
∑

I

1

MI
∇I Ak∇I Sk +

∑
I

1

2MI
Ak∇2Sk = 0 (40)
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If we consider the equation for the phase:

∂Sk

∂t
+
∑

I

1

2MI
(∇Sk)2 + Ek = −

∑
I

~2

2MI

∇2
I Ak

Ak
(41)

it is possible to take the classical limit ~→ 0 which gives the equation:

∂Sk

∂t
+
∑

I

1

2MI
(∇Sk)2 + Ek = 0 (42)

which is isomorphic to Hamilton-Jacobi of classical mechanics:

∂Sk

∂t
+ Hk({RI}, {∇I Sk}) = 0 (43)

with the classical Hamiltonian function

Hk({RI}, {PI}) = T ({PI}) + Vk({RI}) (44)

With the connecting transformation: PI = ∇I Sk .

Marialore Sulpizi Density Functional Theory: from theory to Applications
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I Route 2:
1) Maintain the quantum-mechanical time evolution for the
electrons introducing the separation for the electronic and
nuclear wf function in a time-dependent way
2) Time-dependent self consistent field (TDSCF) approach is
obtained.
3) Ehrenfest dynamics (and as special case Born-Oppenheimer
dynamics)
4) The classical limit leads then to the classical molecular
dynamics for the nuclei.

Marialore Sulpizi Density Functional Theory: from theory to Applications
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It is possible to follow an alternative route in order to maintain the
dynamics of the electron.

Φ({ri}, {RI}, t) ≈ Ψ({ri}, t)χ({RI}, t)exp[
i

~

∫ t

t0

Ẽe(t ′)dt ′] (45)

where:

Ẽe =

∫
Ψ∗({ri}, t)χ∗({RI}, t)HeΨ({ri}, t)χ({RI}, t)drdR (46)

Inserting this separation ansatz into
i~ ∂

∂t Φ({ri}, {Ri}; t) = HΦ({ri}, {Ri}; t)
and multiplying from the left by Ψ∗ and by χ∗ we obtain

Marialore Sulpizi Density Functional Theory: from theory to Applications
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i~
∂Ψ

∂t
= −

∑
i

~2

2me
∇2

i Ψ (47)

+{
∫
χ∗({RI}, t)Vne({ri}, {RI})χ({RI}, t)dR}Ψ (48)

~
∂χ

∂t
= −

∑
I

~2

2MI
∇2

i χ (49)

+{
∫

Ψ∗({ri}, t)He({ri}, {RI})Ψ({ri}, t)dr}χ (50)

This set of time-dependent Schrodinger equations define the basis
of time-dependent self-consistent field (TDSCF) method.
Both electrons and nuclei moves quantum-mechanically in
time-dependent effective potentials.
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Using the same trick as before of writing

χk({Ri}, t) = Ak({Ri}, t)exp[iSk({Ri}, t)/~] (51)

we obtain

∂Sk

∂t
+
∑

I

1

2MI
(∇Sk)2 +

∫
Ψ∗HeΨdr = −

∑
I

~2

2MI

∇2
I Ak

Ak
(52)

∂Ak

∂t
+
∑

I

1

MI
∇I Ak∇I Sk +

∑
I

1

2MI
Ak∇2Sk = 0 (53)

And in the classical limit ~→∞

∂Sk

∂t
+
∑

I

1

2MI
(∇Sk)2 +

∫
Ψ∗HeΨdr = 0. (54)
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I The nuclei move according to classical mechanics in an
effective potential (Ehrenfest potential) given by the quantum
dynamics of the electrons obtained by solving the
time-dependent Schrodinger equation for the electrons.

i~
∂Ψ

∂t
= −

∑
i

~2

2me
∇2

i Ψ

+{
∫
χ∗({RI}, t)Vne({ri}, {RI})χ({RI}, t)dR}Ψ (55)

Note: the equation (54) still contains the full quantum-mechanics
nuclear wavefunction χ({RI}, t). The classical reduction is
obtained by: ∫

χ∗({RI}, t)RIχ({RI}, t)dR→ RI (t) (56)

for ~→ 0.
Marialore Sulpizi Density Functional Theory: from theory to Applications
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The classical limits leads to a time-dependent wave equation for
the electrons

i~
∂Ψ

∂t
= −

∑
i

~2

2me
∇2

i Ψ + Vne({ri}, {RI})χ({RI}, t)Ψ (57)

i~
∂Ψ

∂t
= He({ri}, {RI})χ({RI}, t)Ψ({ri}, {RI})χ({RI}, t) (58)

I Feedback between the classical and quantum degrees of
freedom is incorporated in both direction, even though in a
mean field sense.

I These equations are called Ehrenfest dynamics in honor to
Paul Ehrenfest who was the first to address the problem of
how Newtonian classical dynamics of point particles can be
derived from Schrodinger time-dependent wave equation.

Marialore Sulpizi Density Functional Theory: from theory to Applications
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Difference between Ehrenfest dynamics and Born-Oppenheimer
molecular dynamics:

I In ED the electronic subsystem evolves explicitly in time,
according to a time-dependent Schrodinger equation

I In ED transition between electronic states are possible.
This can be showed expressing the electronic wavefunction in
a basis of electronic states

Ψ({ri}, {RI}, t) =
∞∑
l=0

cl(t)Ψl({ri}, {RI}, t) (59)

where
∞∑
l=0

|cl(t)|2 = 1 (60)

and one possible choice for the basis functions {Ψk} is obtained
solving the time-independent Schrodinger equation:

He({ri}, {RI})Ψk({ri}, {RI}) = Ek({RI})Ψk({ri}, {RI}). (61)

Marialore Sulpizi Density Functional Theory: from theory to Applications
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The Ehrenfest dynamics reduces to the Born-Oppenheimer
molecular dynamics if only one term is considered in the sum:

Ψ({ri}, {RI}, t) =
∞∑
l=0

cl(t)Ψl({ri}, {RI}, t)

namely:

Ψ({ri}, {RI}, t) = Ψ0ground state adiabatic wavefunction (62)

This should be a good approximation if the energy difference
between Ψ0 and the first excited state Ψ1 is large everywhere
compared to the thermal energy scale KBT .
In this approximation the nuclei move on a single adiabatic
potential energy surface, E0({RI}).

Marialore Sulpizi Density Functional Theory: from theory to Applications
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Classical trajectory calculations on global potential energy
surfaces

In BO one can think to fully decouple the task of generating classical
nuclear dynamics from the task of computing the quantum potential
energy surface.

I E0 is computed for many different {RI}
I data points fitted to analytical function

I Newton equation of motion solved on the computed surfaces for
different initial conditions

Problem: dimensionality bottleneck. It has been used for scattering and
chemical reactions of small systems in vacuum, but is not doable when
nuclear degrees of freedom increase.

Marialore Sulpizi Density Functional Theory: from theory to Applications
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Force Field - based molecular dynamics

One possible solution to the dimensionality bottleneck is the force
field based MD.

V E
e ≈ V FF

e =
N∑

I=1

v1(RI ) +
N∑

I<J

v2(RI ,RJ) + (63)

N∑
I<J<K

v3(RI ,RJ ,RK ) + ... (64)

The equation of motion for the nuclei are:

MI R̈I (t) = −∇I V
FF
e ({RI (t)}). (65)

The electrons follow adiabatically the classical nuclear motion and
can be integrated out. The nuclei evolve on a single BO potential
energy surface, approximated by a few body interactions.

Marialore Sulpizi Density Functional Theory: from theory to Applications
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Ehrenfest molecular dynamics

To avoid the dimensionality bottleneck the coupled equations:

MI R̈I (t) = −∇I 〈He〉 (66)

i~
∂Ψ

∂t
=

[
−
∑

i

~2

2me
∇2

i + Vne({ri}, {RI})χ({RI}, t)

]
Ψ (67)

can be solved simultaneously.
The time-dependent Schrodinger equation is solved on the fly as
the nuclei are propagated using classical mechanics.
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Using

Ψ({ri}, {RI}, t) =
∞∑
l=0

cl(t)Ψl({ri}, {RI}, t)

the Ehrenfest equations reads:

MI R̈I (t) = −∇I

∑
k

|ck(t)|2Ek (68)

= −
∑
k

|ck(t)|2∇I Ek +
∑
k,l

c∗k cl(Ek − El)d
kl
I (69)

i~ċk(t) = ck(t)Ek − i~
∑

I

ck(t)Dkl (70)

where the non-adiabatic coupling elements are given by

Dkl =

∫
Ψ∗k

∂

∂t
Ψldr =

∑
I

Ṙl

∫
Ψ∗k∇lΨl =

∑
I

Ṙld
kl . (71)
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