
Outline
Recap of previous lecture

Car-Parrinello molecular dynamics

Density Functional Theory: from theory to
Applications

Marialore Sulpizi

Uni Mainz

December 13, 2010

Marialore Sulpizi Density Functional Theory: from theory to Applications



Outline
Recap of previous lecture

Car-Parrinello molecular dynamics

Recap of previous lecture
Route 2

Car-Parrinello molecular dynamics
Car-Parrinello Lagrangian and equations of motion
Thermostat on the electrons
Analytic and numerical error estimates
CP vs BO

Marialore Sulpizi Density Functional Theory: from theory to Applications



Outline
Recap of previous lecture

Car-Parrinello molecular dynamics
Route 2

I Route 2:
1) Maintain the quantum-mechanical time evolution for the
electrons introducing the separation for the electronic and
nuclear wf function in a time-dependent way
2) Time-dependent self consistent field (TDSCF) approach is
obtained.
3) Ehrenfest dynamics (and as special case Born-Oppenheimer
dynamics)
4) The classical limit leads then to the classical molecular
dynamics for the nuclei.
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It is possible to follow an alternative route in order to maintain the
dynamics of the electron.

Φ({ri}, {RI}, t) ≈ Ψ({ri}, t)χ({RI}, t)exp[
i

~

∫ t

t0

Ẽe(t ′)dt ′] (1)

where:

Ẽe =

∫
Ψ∗({ri}, t)χ∗({RI}, t)HeΨ({ri}, t)χ({RI}, t)drdR (2)

Inserting this separation ansatz into
i~ ∂
∂t Φ({ri}, {Ri}; t) = HΦ({ri}, {Ri}; t)

and multiplying from the left by Ψ∗ and by χ∗ we obtain
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i~
∂Ψ

∂t
= −

∑
i

~2

2me
∇2

i Ψ (3)

+{
∫
χ∗({RI}, t)Vne({ri}, {RI})χ({RI}, t)dR}Ψ (4)

~
∂χ

∂t
= −

∑
I

~2

2MI
∇2

i χ (5)

+{
∫

Ψ∗({ri}, t)He({ri}, {RI})Ψ({ri}, t)dr}χ (6)

This set of time-dependent Schrodinger equations define the basis
of time-dependent self-consistent field (TDSCF) method.
Both electrons and nuclei moves quantum-mechanically in
time-dependent effective potentials.
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The classical limit leads to a time-dependent wave equation for the
electrons

i~
∂Ψ

∂t
= −

∑
i

~2

2me
∇2

i Ψ + Vne({ri}, {RI})χ({RI}, t)Ψ (7)

i~
∂Ψ

∂t
= He({ri}, {RI})χ({RI}, t)Ψ({ri}, {RI})χ({RI}, t) (8)

I Feedback between the classical and quantum degrees of
freedom is incorporated in both direction, even though in a
mean field sense.

I These equations are called Ehrenfest dynamics in honor to
Paul Ehrenfest who was the first to address the problem of
how Newtonian classical dynamics of point particles can be
derived from Schrodinger time-dependent wave equation.
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Difference between Ehrenfest dynamics and Born-Oppenheimer
molecular dynamics:

I In ED the electronic subsystem evolves explicitly in time,
according to a time-dependent Schrodinger equation

I In ED transitions between electronic states are possible.
This can be showed expressing the electronic wavefunction in
a basis of electronic states

Ψ({ri}, {RI}, t) =
∞∑
l=0

cl(t)Ψl({ri}, {RI}, t) (9)

where
∞∑
l=0

|cl(t)|2 = 1 (10)

and one possible choice for the basis functions {Ψk} is obtained
solving the time-independent Schrodinger equation:

He({ri}, {RI})Ψk({ri}, {RI}) = Ek({RI})Ψk({ri}, {RI}). (11)
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The Ehrenfest dynamics reduces to the Born-Oppenheimer
molecular dynamics if only one term is considered in the sum:

Ψ({ri}, {RI}, t) =
∞∑
l=0

cl(t)Ψl({ri}, {RI}, t)

namely:

Ψ({ri}, {RI}, t) = Ψ0 ground state adiabatic wavefunction (12)

This should be a good approximation if the energy difference
between Ψ0 and the first excited state Ψ1 is large everywhere
compared to the thermal energy scale KBT .
In this approximation the nuclei move on a single adiabatic
potential energy surface, E0({RI}).
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Surface hopping

The system is propagated in a pure electronic quantum state, transitions

between electronic states are allowed. The probability for a nonadiabatic

surface switch depends on the strength of the nonadiabatic coupling. Small

gaps generally result in high transition probabilities. Surface hops tend to occur

mainly in the vicinity of (avoided) surface crossings.
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Classical trajectory calculations on global potential energy
surfaces

In BO one can think to fully decouple the task of generating classical
nuclear dynamics from the task of computing the quantum potential
energy surface.

I E0 is computed for many different {RI}
I data points fitted to analytical function

I Newton equation of motion solved on the computed surfaces for
different initial conditions

Problem: dimensionality bottleneck. It has been used for scattering and
chemical reactions of small systems in vacuum, but is not doable when
nuclear degrees of freedom increase.
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Force Field - based molecular dynamics

One possible solution to the dimensionality bottleneck is the force
field based MD.

V E
e ≈ V FF

e =
N∑

I=1

v1(RI ) +
N∑

I<J

v2(RI ,RJ) + (13)

N∑
I<J<K

v3(RI ,RJ ,RK ) + ... (14)

The equation of motion for the nuclei are:

MI R̈I (t) = −∇I V
FF
e ({RI (t)}). (15)

The electrons follow adiabatically the classical nuclear motion and
can be integrated out. The nuclei evolve on a single BO potential
energy surface, approximated by a few body interactions.
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Ehrenfest molecular dynamics

To avoid the dimensionality bottleneck the coupled equations:

MI R̈I (t) = −∇I 〈He〉 (16)

i~
∂Ψ

∂t
=

[
−

∑
i

~2

2me
∇2

i + Vne({ri}, {RI})χ({RI}, t)

]
Ψ (17)

can be solved simultaneously.
The time-dependent Schrodinger equation is solved on the fly as
the nuclei are propagated using classical mechanics.
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Using

Ψ({ri}, {RI}, t) =
∞∑
l=0

cl(t)Ψl({ri}, {RI}, t)

the Ehrenfest equations reads:

MI R̈I (t) = −∇I

∑
k

|ck(t)|2Ek (18)

= −
∑
k

|ck(t)|2∇I Ek +
∑
k,l

c∗k cl(Ek − El)d
kl
I (19)

i~ċk(t) = ck(t)Ek − i~
∑

I

ck(t)Dkl (20)

where the non-adiabatic coupling elements are given by

Dkl =

∫
Ψ∗k

∂

∂t
Ψldr =

∑
I

Ṙl

∫
Ψ∗k∇lΨl =

∑
I

Ṙld
kl . (21)
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Car-Parrinello molecular dynamics

I Combine the advantages of Ehrenfest and BO dynamics

I Integrate the equation of motion on a longer time-step than in
Ehrenfest, but at the same time

I take advantage of the smooth time evolution of the dynamically
evolving electronic subsystem
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Car-Parrinello method just turned 25!
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Car-Parrinello Lagrangian and equations of motion

CP dynamics is based on the adiabatic separation between fast
electronic (quantum) and slow (classical) nuclear motion.
They introduced the following Lagrangian

LCP =
∑

I

1

2
MI Ṙ

2
I +

∑
i

µ < φ̇i |φ̇i > − < Ψ0|He |Ψ0 > +constraints

(22)
where Ψ0 = 1/

√
N!det{φi}

and µ is the fictious mass of the electrons.
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the associated Euler-Lagrange equations are:

d

dt

∂L
∂ṘI

=
∂L
∂RI

(23)

d

dt

∂L
∂φ̇∗i

=
∂L
∂φ∗i

(24)

from which the Car-Parrinello equations of motion:

MI R̈I (t) = − ∂

∂RI
< Ψ0|He |Ψ0 > +

∂

∂RI
{constraints} (25)

µφ̈i (t) = − δ

δφ∗i
< Ψ0|He |Ψ0 > +

δ

δφ∗i
{constraints} (26)
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For the specific case of the Kohn-Sham Theory the CP Lagrangian is:

LCP =
∑

I

1

2
MI Ṙ

2
I +

∑
i

µ < φ̇i |φ̇i > − < Ψ0|HKS
e |Ψ0 >

+
∑
i,j

Λij(< φi |φj > −δij) (27)

and the Car-Parrinello equations of motion:

MI R̈I (t) = − ∂

∂RI
< Ψ0|HKS

e |Ψ0 > (28)

µφ̈i (t) = −HKS
e φi +

∑
j

Λijφj (29)

The nuclei evolve in time with temperature ∝
∑

I MI Ṙ2
I ;

the electrons have a fictitious temperature ∝
∑

i µ < φ̇i |φ̇i >.
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Why does the CP method work?

I Separate in practice nuclear and ionic motion so that
I electrons keep cold, remaining close to

min{φi} < Ψ0|He |Ψ0 >, namely close to the
Born-Oppenheimer surface

f (ω) =

Z ∞
0

cos(ωt)
X

i

< φ̇i ; t|φ̇i ; 0 > dt (30)
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Energy Conservation

Econs =
∑

I

1

2
MI Ṙ

2
I +

∑
i

µ < φ̇i |φ̇i > + < Ψ0|HKS
e |Ψ0 > (31)

Ephys =
∑

I

1

2
MI Ṙ

2
I + < Ψ0|HKS

e |Ψ0 >= Econs − Te (32)

Ve = < Ψ0|HKS
e |Ψ0 > (33)

Te =
∑

i

µ < φ̇i |φ̇i > (34)
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Energy Conservation

I Electrons do not heat-up, but fluctuate with same frequency as Ve

I Nuclei drag the electrons

I Ephys is essentially constant
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Deviation from Born-Oppenheimer surface

Deviation of forces in CP dynamics from the true BO forces small
and/but oscillating.
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How to control of adiabaticity?

In a simple harmonic analysis of the frequency spectrum yields

ωij =

√
2(εi − εj)

µ
(35)

where εi and εj are the eigenvalues of the occupied/unoccupied orbitals of
the Kohn-Sham Hamiltonian. The lowest possible electronic frequency is:

ωmin
e ∝

√
Egap

µ
. (36)

The highest frequency

ωmax
e ∝

√
Ecut

µ
. (37)

Thus maximum possible time step

∆tmax ∝
√

µ

Ecut
. (38)
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In order to guarantee adiabatic separation between electrons and
nuclei we should have

I large ωmin
e − ωmax

n .

ωmax
n and Egap depend on the physical system, so the parameter to

control adiabaticity is the mass µ.
However the mass cannot be reduced arbitrarily otherwise the
timestep becomes too small.

Alternatively if ∆t is fixed and µ is chosen

I µ too small: Electrons too light and adiabacity will be lost

I µ too large: Time step eventually large and electronic degrees
of freedom evolve too fast for the Verlet algorithm
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Loss of adiabaticity: the bad cases

Due to the presence of the vacancy there is a small gap in the
system.
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Loss of adiabaticity: the bad cases

In this system the gap is periodically opened (up to 0.3 eV) and
nearly closed at short distances. The electrons gain kinetic energy
in phase with the ionic oscillations.
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Zero or small electronic gaps: thermostatted electrons

I One way to (try to) overcome the problem in coupling of
electronic and ionic dynamics is to thermostat also the
electrons (Blöchl & Parrinello, PRB 1992)

I Thus electrons cannot heat up; if they try to, thermostat will
adsorb the excess heat

I Target fictitious kinetic energy Ekin,0 instead of temperature

I Mass of thermostat to be selected appropriately:
Too light: Adiabacity violated (electrons may heat up)
Too heavy: Ions dragged excessively

I Note: Introducing the thermostat the conserved quantity
changes
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MI R̈I (t) = − ∂

∂RI
< Ψ0|HKS

e |Ψ0 > −MI ṘI ẋR (39)

µφ̈i (t) = −HKS
e φi +

∑
j

Λijφj−µφ̇i ẋe (40)

in blue are the frictious terms governed by the following equations:

Qe ẍe = 2

[∑
i

µφ̇2 − Ekin,0

]
(41)

QR ẍR = 2

[∑
I

1

2
MI Ṙ

2 − 1

2
gKBT

]
(42)

The masses Qe and QR determines the time scale for the thermal
fluctuations. The conserved quantity is now:

Etot =
∑

I

1

2
MI Ṙ

2
I +

∑
i

µ < φ̇i |φ̇i > + < Ψ0|HKS
e |Ψ0 >

+
1

2
Qe ẋ2

e + 2Ekin,0xe +
1

2
QR ẋ2

R + gKBTxR (43)
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Thermostat on the electrons: examples
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Thermostat on the electrons: examples
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Analytic and numerical error estimates

I The CP forces necessarily deviate from the BO

I The primary effect of µ makes the ions ”heavier”

I No effect on the thermodynamical and structural properties, but
affect the dynamical quantities in a systematic way (vibrational
spectra)

φi (t) = φ0
i (t) + δφi (t) (44)

Inserting this expression into the CP equations of motions:

FCP
I ,α(t) = FBO

I ,α(t) +
∑

i

µ{< φ̈i |
∂|φ0

i >

∂RI ,α

∂ < φ0
i |

∂RI ,α
|φ̈i >}+O(δφ2

i ) (45)

the additional force is linear in the mass µ so that it vanishes properly as

µ→ 0.
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The new equations of motion:

(MI + ∆µMI )R̈I = FI (46)

where, in the isolated atom approximation,

∆µMI =
2

3
µE I

kin =
2

3

me

~2

∑
j

< φI
j | −

~2

2me
∇2

j |φI
j >> 0 (47)

is an unphysical mass, or drag, due to the fictitious kinetics of the
electrons

I for a system where electrons are strongly localized close to the
nuclei there more pronounced renormalization effect
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Example: Vibrations in water molecule

To correct for finite-µ effects:

I Perform simulation for different µ-values and extrapolate for
µ→ 0.

I use mass renormalization according to:

ωBO = ωCP

√
1 +

∆µM

M
(48)
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Car-Parrinello vs Born-Oppenheimer dynamics
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CP vs BO: energy conservation
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CP vs BO: timing

Timing in CPU seconds and energy conservation in a.u./ps for

Car-Parrinello (CP) and Born-Oppenheimer (BO) molecular dynamics

simulations of a model system (8 Si atoms) for 1ps of trajectory on a

IBM RS6000/Model 390 (Power2) workstation using the CPMD package

(www.cpmd.org).
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CP of liquid water: Energy conservation

CPMD-800-NVE-64
CPMD-400-NVE-128
CPMD-800-NVT-64 J. Phys. Chem. B 2004, 108, 12990.
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CP of liquid water: structure

Oxygen-oxygen radial
distribution

BOMD-NVE (solid line)
CPMD-NVE

CPMD-NVE-400-64
CPMD-NVE-400-128

CPMD-NVT-400
CPMD-NVT-800
CP2K-MC-NVT

The radial distribution functions are correct and independent of
the method used.
J. Phys. Chem. B 2004, 108, 12990.
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Car-Parrinello method: Summary

I Molecular dynamics can be used to perform real-time dynamics in
atomistic systems

I Verlet algorithm yields stable dynamics (in CPMD implemented
algorithm velocity Verlet)

I Born-Oppenheimer dynamics: Max time step 1 fs (highest ionic
frequency 2000-3000 cm−1)
Car-Parrinello dynamics: Max time step 0.1 fs

I Car-Parrinello method can yield very stable dynamical trajectories,
provided the electrons and ions are adiabatically decoupled

I The method is best suited for e. g. liquids and large molecules with
a wide electronic gap

I The speed of the method is comparable or faster than using
Born-Oppenheimer dynamics and still more accurate (i. e. stable)

I One has to be careful with the choice of µ!
Marialore Sulpizi Density Functional Theory: from theory to Applications
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