# Writing posters in $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ 

T. Morales de Luna

Email morales@anamat.cie.uma.es<br>Address Dpto. Análisis Matemático<br>Facultad de Ciencias<br>Universidad de Málaga<br>Málaga 29071<br>Spain

Abstract $\quad \mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ is an excellent editor for the creation of poster presentations. When writing a poster with $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$, several options are available. Here we would like to present some of these options and in particular the a0poster class and Brian Amberg's poster template. We shall introduce the basics as well as some useful packages and techniques to make your poster look nice. You can even choose to write your poster sequentially or up from different text blocks positioned absolutely or relatively within the page

## Contents

1 The a0poster class ..... 2
1.1 Learning the basics ..... 2
1.2 Adding some eye candy to your poster ..... 3
1.2.1 Dividing the poster into columns ..... 3
1.2.2 Adding some color ..... 5
1.3 Obtaining smaller size posters ..... 7
2 Using text blocks with absolute positioning ..... 10
3 Brian Amberg's poster template ..... 12
4 Making big posters from smaller pages ..... 15
5 Conclusion ..... 18

## 1 The a0poster class

### 1.1 Learning the basics

The a0poster package [1] has been developed by Gerlinde Kettl and Matthias Weiser and allows to write posters in different sizes in an easy way. The package is composed of the following files:
a0poster.cls Defines the class file
a0size.sty Defines the font sizes
a0_eng.tex Manual in English
a0.tex Manual in German
In theory it allows you to define posters of size A4 to A0b, but it practice there is some problem with scaling when we define posters of size A4 to A1. To my knowledge, this problem still exists so we are going to use just the A0 size and a workaround will be shown in section 1.3 to obtain smaller sizes.
a0poster is a class like article, book and many others in $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ and is used in a similar way. Therefore, the beginning of a $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ file would be something like

```
\documentclass[portrait,a0,final]{a0poster}
\begin{document}
Write poster here
\end{document}
```

Now, you can write the content of your poster as you would write any other document in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$. If you prefer your poster to be in landscape mode, just replace the option portrait with landscape.

All that remains to be done is to compile your document in the usual way using $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ and dvips.

```
latex your_doc.tex
dvips your_doc
```

Although pdfLATEX can also be used, we prefer ${ }^{[A T} T_{E} X$ here in order to use some nice effects of the package PStricks described in next section.

The only disadvantage of the a0poster class is that you have to think carefully the position of text and graphics because the poster is written sequentially. We will learn how to make posters from different text blocks that are absolutely or relatively positioned on the main page in sections 2 and 3.

### 1.2 Adding some eye candy to your poster

Now that we know how to write a poster, we would like to add some colors and other effects so that the final poster looks nice.

### 1.2.1 Dividing the poster into columns

First, let us divide the page in several columns. This could be done using the package multicol but we prefer here to use the minipage environment instead, as this will be more versatile and really useful in many situations. The environment minipage allows to virtually include a small page inside your document. You can think of it as a small text box placed in your document. The syntax of the minipage environment is as follows

```
\begin{minipage}{length}
    Write here
\end{minipage}
```

where length is a given length. One suitable way to define the length of the minipage is to use a fraction of the text width. Thus, suppose that you want to define a minipage of size equal to the half of the available line width, just write
\begin\{minipage\}\{0.5\linewidth\} }
Write text here
\end\{minipage\} }
So, to make a two-column poster (which makes each column of size 1/2 $=0.5$ the available text width), we write

```
\begin{minipage}{0.49\linewidth}
    First column
\end{minipage}
\begin{minipage}{0.49\linewidth}
    Second column
\end{minipage}
```

Take care not to add extra blank lines between the end of one minipage and the beginning of the following or you will not obtain the desired effect. Usually
it is better not to use all the line space available otherwise we obtain one minipage under the other one. That's the reason we use 0.49 times the line width.

You can include a minipage environment within another minipage environment so that the possibilities are endless. For instance, the following text

```
\begin{center}
\begin{minipage}{0.8\linewidth}
    \hrule
    ******************Writing two columns*****************
    \begin{minipage}{0.3\linewidth}
        This is the first column
    \end{minipage}
    \hspace{0.09\linewidth}
    \begin{minipage}{0.6\linewidth}
        This is the second column and it is subdivided into three columns
        \begin{minipage}{0.3\linewidth}
            One
        \end{minipage}
        \begin{minipage}{0.3\linewidth}
            Two
        \end{minipage}
        \begin{minipage}{0.3\linewidth}
            Three
        \end{minipage}
    \end{minipage}
    \hrule
\end{minipage}
\end{center}
produces
****************** Writing two columns *****************
                This is the second column and it is sub-
```

This is the first column

``` divided into three columns One
``` \(\qquad\)
``` Two
``` \(\qquad\)
``` Three
``` \(\qquad\)

\subsection*{1.2.2 Adding some color}

Previous sections should allow you to already obtain a suitable poster for your needs, but we would like our poster to have some nice colors and other effects. We are going to include two new packages by writing
\usepackage\{pstricks, pst-grad\} before the \begin\{document\} line. }
PStricks is a set of macros that allows the inclusion of PostScript drawings directly and pst-grad is used to fill with colour gradients, using PStricks.

With the aid of this package, we can now define any color we want using the RGB scale, just use in the preamble the folowing syntax
\newrgbcolor\{colorname\}\{r g b\}
where \(r, g, b\) are numbers between 0 and 1 that express the quantity of red, green and blue we add to create our color. For example
\newrgbcolor\{lightviolet\}\{0.8 0.30 .7\(\}\)
We can now obtain any word by writing \(\{\backslash\) lightviolet any word\}. The gray-scales black, darkgray, gray, lightgray, and white, and the colors red, green, blue, cyan, magenta, and yellow are predefined in PStricks.

You may also want to have a look to the package xcolor which provides easy driver-independent access to several kinds of colors, tints, shades, tones, and mixes of arbitrary colors already predefined in the package. The add-on package dvips with the option dvipscolor defines also some extra colors and may be useful as well.

Once we have defined our favourite colors, let as introduce a fancy way to include titles. For this purpose we may define in the preamble the new command fancytitle
```

\newcommand{\fancytitle}[1]{

\psshadowbox[linewidth=2mm,framearc=0.1,linecolor=blue,
fillstyle=gradient,gradangle=0,gradbegin=white,
gradend=lightviolet,gradmidpoint=1.0,framesep=1em]
{\#1}

    \vspace{0.015\textheight}
    }

```

This will allow to use the command \fancytitle\{My title\} anywhere within the body of the document, which will give

My title

You can try changing the options passed to psshadowbox in the command definition in order to obtain different results. In particular, linewidth Gives the width of the line that surrounds the box
framearc Increase in order to have the edges more rounded linecolor This is the color of the edges of the box gradbegin, gradend These are the colors used to fill the box
The command psshadowbox can also be used to write some text inside a box. For example,
```

\psshadowbox[linewidth=1mm,framearc=0.1,linecolor=red,framesep=1em]{
\begin{minipage}[h]{0.5\linewidth}
{\bf Fermat's last theorem}
If an integer $n$ is greater than $2$, then the equation

$$
a^n+b^n=c^n
$$
has no solutions in non-zero integers $a$, $b$, and $c$.
\end{minipage}
}
```
will give

## Fermat's last theorem

If an integer $n$ is greater than 2 , then the equation

$$
a^{n}+b^{n}=c^{n}
$$

has no solutions in non-zero integers $a$, $b$, and $c$.

You can even define a background color for the poster. Just write the following after \begin\{document\} }
\psframe[fillstyle=gradient,framearc=0.05,linewidth=1mm,gradmidpoint=0, gradbegin=cgradbegin,gradend=cgradend] (0,0)(1.\textwidth,-1.\textheight)
where the colors cgradbegin, cgradend are colors already defined.
Combining all these techniques, we can obtain posters like the one shown in Figure 1

PStricks allows many other possibilities. We refer to [2] for more information.

### 1.3 Obtaining smaller size posters

As we have said, the option for making posters from A4 to A1 does not seem to work properly. Nevertheless, we can always rescale the poster to smaller size when printing.

There is also a workaround to exactly obtain the desired size.
First you have to know that when you generate your poster.dvi with the command latex poster, you also generate a file called a0header.ps with the content:
\%\%BeginFeature *PageSize ISOAO/ISO AO
2 dict dup /PageSize [2380 3368] put dup /ImagingBBox null put
setpagedevice
\%\%EndFeature
This file (aOheader.ps) is linked to poster.dvi and contains information related to the size of the poster. Now, suppose we want a A1 size poster. Before rescaling our poster, modify the a0header.ps file into:
\%\%BeginFeature *PageSize ISOA1/ISO A1
2 dict dup /PageSize [1684 2380] put dup /ImagingBBox null put
setpagedevice
\%\%EndFeature
Where we have changed the size of the page in bp (big points). See Table 1. Then, we can proceed with the scaling step:




We may uppy the proximg theoreme

References



Figure 1: A poster Example
dvips -0 '-6bp,-6bp' -T595mm,841mm -x694 poster.dvi -o poster.a1.ps
Where:
-T595mm,841mm : the new poster dimension in mm. Here the poster is in portrait mode. To rescale a landscape poster, use: $-\mathrm{T} 841 \mathrm{~mm}, 595 \mathrm{~mm}$.
-x694 : the scaling factor. 1000 is a scaling factor of 1 (no change). From A0 to A1, the scaling factor is $1 / \sqrt{ }(2)=0.707$ (See Table 2). To avoid to create new set of fonts (and to save space), it is recommended to use the closest standard LaTeX magnification factor (694 here). Note that from A1 to A0, use 1440. Have a look at Table 3. Read also [3] for more information.
$-\mathrm{O}^{\prime}$ '-6bp,-6bp' : the ps file obtained with dvips includes a margin of $1 \mathrm{in}=$ 72 bp by default. In order to center the poster, we change the paper offset with the corresponding value given by Table 4.
poster.dvi : the input file (in A0 size)
-o poster.a1.ps : the output file
To obtain the PDF file, just run ps2pdf:
ps2pdf poster.a1.ps poster.a1.pdf

Table 1: Paper Size

|  | $\mathbf{w}$ bp | h bp | $\mathbf{w}$ in | h in | $\mathbf{w}$ mm | h mm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A0b | 2594 | 3370 | 36,03 | 46,81 | 915 | 1189 |
| A0 | 2380 | 3368 | 33,06 | 46,78 | 840 | 1188 |
| A1 | 1684 | 2380 | 23,39 | 33,06 | 594 | 840 |
| A2 | 1190 | 1684 | 16,53 | 23,39 | 420 | 594 |
| A3 | 842 | 1190 | 11,69 | 16,53 | 297 | 420 |
| A4 | 595 | 842 | 8,26 | 11,69 | 210 | 297 |
| A5 | 421 | 595 | 5,85 | 8,26 | 149 | 210 |
| A6 | 298 | 421 | 4,14 | 5,85 | 105 | 149 |
| A7 | 211 | 298 | 2,93 | 4,14 | 74 | 105 |
| A8 | 149 | 211 | 2,07 | 2,93 | 53 | 74 |
| A9 | 106 | 149 | 1,47 | 2,07 | 37 | 53 |
| A10 | 75 | 106 | 1,04 | 1,47 | 26 | 37 |

Table 2: Scaling factors

| to <br> from | A0b | A0 | A1 | A2 | A3 | A4 | A5 | A6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A0b | 1 | 0,92 | 0,65 | 0,46 | 0,32 | 0,23 | 0,16 | 0,11 |
| A0 | 1,09 | 1 | 0,71 | 0,5 | 0,35 | 0,25 | 0,18 | 0,13 |
| A1 | 1,54 | 1,41 | 1 | 0,71 | 0,5 | 0,35 | 0,25 | 0,18 |
| A2 | 2,18 | 2 | 1,42 | 1 | 0,71 | 0,5 | 0,35 | 0,25 |
| A3 | 3,08 | 2,83 | 2 | 1,41 | 1 | 0,71 | 0,5 | 0,35 |
| A4 | 4,36 | 4 | 2,83 | 2 | 1,42 | 1 | 0,71 | 0,5 |
| $\mathbf{A 5}$ | 6,16 | 5,65 | 4 | 2,83 | 2 | 1,41 | 1 | 0,71 |
| A6 | 8,7 | 7,99 | 5,65 | 3,99 | 2,83 | 2 | 1,41 | 1 |

Table 3: $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ magnification factor

| to | A0b | A0 | A1 | A2 | A3 | A4 | A5 | A6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A0b | 1000 | 913 | 634 | 440 | 335 | 233 | 162 | 112 |
| A0 | 1095 | 1000 | 694 | 482 | 367 | 255 | 177 | 123 |
| A1 | 1577 | 1440 | 1000 | 694 | 482 | 367 | 255 | 177 |
| A2 | 2272 | 2074 | 1440 | 1000 | 694 | 482 | 367 | 255 |
| A3 | 2986 | 2726 | 2074 | 1440 | 1000 | 694 | 482 | 367 |
| A4 | 4300 | 3925 | 2726 | 2074 | 1440 | 1000 | 694 | 482 |
| A5 | 6192 | 5652 | 3925 | 2726 | 2074 | 1440 | 1000 | 694 |
| A6 | 8916 | 8139 | 5652 | 3925 | 2726 | 2074 | 1440 | 1000 |

## 2 Using text blocks with absolute positioning

When writing a poster with the a0poster class, one has to have in mind the final distribution of the different parts we have written and sometimes it may be difficult to obtain the text exactly where we want. In this section we would like to introduce another philosophy for composing the poster. Instead of composing the poster sequentially, we are going to write a poster by composing small pieces of text boxes that are pasted over the big poster sheet exactly where we want. This will be possible by using the textpos package.

Just write in the preamble of the document

Table 4: Offset correction

| to |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| from | A0b | A0 | A1 | A2 | A3 | A4 | A5 | A6 |
| A0b | 0 | 0 | -7 | -16 | -61 | -60 | -60 | -60 |
| A0 | 1 | 0 | -6 | -16 | -61 | -60 | -59 | -61 |
| A1 | 11 | 9 | 0 | -11 | -22 | -57 | -58 | -59 |
| A2 | 37 | 33 | 17 | 0 | -14 | -27 | -53 | -56 |
| A3 | 183 | 167 | 46 | 20 | 0 | -17 | -30 | -51 |
| A4 | 255 | 233 | 155 | 55 | 24 | 0 | -18 | -32 |
| A5 | 367 | 335 | 226 | 145 | 62 | 26 | 0 | -19 |
| A6 | 538 | 491 | 335 | 221 | 139 | 66 | 28 | 0 |

\usepackage[absolute,overlay]\{textpos\}Thetextpospackagewillallowtoplacetextboxesatagivenabsolutepostitionbycreatingavirtualgridoverthepage.Theabsoluteoptionmakestheoriginofthegridonwhichtextblocksarepositionedtheupperlefthandcorner.overlaygivesthetextblocksopaquebackgrounds.Withouttheoverlayoption,thebackgroundofthetextblocksaretransparent.Youcanchangethebackgroundcolorofagiventextblockbywriting\textblockcolour\{color_name\}.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

It is also useful to add the option showboxes when you are writing the poster. This will draw a rectangle around your text block making much easier to correctly place the block.

The package defines the environment textblock which is used as follows

```
\begin{textblock}{hsize}(hpos, vpos)
    Some text
\end{textblock}
```

The hsize and hpos arguments are given in units of a module \TPHorizModule and $v p o s$ is given in units of a module $\backslash T P V e r t M o d u l e . ~ F o r ~ e x a m p l e, ~$

```
\begin{textblock}{20.5}(1.5, 2.5)
    Some text
\end{textblock}
```

will place a text box of width $20.5 \times$ TPHorizModule so that its left upper corner is placed $1.5 \times$ TPHorizModule to the right and $2.5 \times$ TPVertModule to the bottom from the left upper corner of the poster.

We are going to set these units to 1 cm by placing the following code in the preamble
izModule\}\{1cm\}\setlength\{\TPVertModule\}\{1cm\}Alittletrickthathelpsplacingthetextblocksistodefineagridoverthepage.Youcandosobyloadingthepackageeso-pic[5]\usepackage[colorgrid,texcoord]\{eso-pic\}ThiswillproducesomethingsimilartoFigure2.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

Figure 2: Zoom of poster page with a grid

## 3 Brian Amberg's poster template

Brian Amberg has created another class for posters in $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$. This class presents the advantage of creating the poster directly from small blocks with relative positioning. While it presents an easy way of creating posters, it leaves you less
choice to customise what your poster looks like, and sometimes you will have to edit the class file directly (always remembering to save it under a different name!) in order to make changes. This class has to be used with pdfLATE ${ }_{E} X$.

You can use it as usual

```
\documentclass[portrait,final]{baposter}
\begin{document}
\background{}
    \begin{poster}{
        <poster options>
    }
    Boxes definitions\ldots
    \end{poster}
\end{document}
```

The command \background\{\} has to be defined just after the \begin\{document\} } and it lets you define a background for the poster. You can have a look at some of the templates provided by Brian Amberg to see some examples.

Then you have to write down the poster environment where you select the options for your poster. A typical example would be

```
    \begin{poster}{
grid=no,
colspacing=0.7em,
color=orange,
colortwo=white,
textborder=roundedleft,
eyecatcher=no,
headerborder=none,
headershape=roundedright,
}
```

The possible options you can select are given in Table 5.
Once we have set the options for the poster, we begin writing the poster by composing different text blocks that are introduce with the command headerbox

| Option <br> grid <br> colspacing <br> color | Values <br> yes Ino <br> numeric <br> color value | Meaning <br> colortwo |
| :--- | :--- | :--- |
| color value | Shows a grid to help you place text boxes <br> Dextborder the spacing between columns <br> Color definition used as the main color <br> of the poster <br> The other color for gradient based lay- <br> outs |  |
| headerborder | none, rectangle, <br> rounded, ... <br> none, closed, <br> open <br> headershape of the box around the text area |  |
| rectangle, | No extra border, full border around or <br> border that is open below for box header <br> rounded, <br> roundedleft, <br> roundedright | Shape of the box-header region |

Table 5: Options for poster command

## \headerbox\{title\}\{name and position\}\{content\}

This command takes three arguments. The first and the third are respectively the title and the content of the text block. In order to specify where the box will be placed, we shall use the second argument.

Each box has a name and can be placed absolutely or relatively. To specify the name we just write name=custom_name inside the second argument. This name has to be unique.

Then, if you want to place the box in an absolute position, you will have give the row and column number. By default, your poster will be divided into three columns (this option can be changed by editing the class file). Thus,

```
\headerbox{Contribution}{name=contribution,column=0,row=0}{
    content...
}
```

will place the text box named contribution in first column and first row. Remark that first row and first column correspond to 0 .

But, you can also define a relative position. For example, to place a box just under the one named contribution, write

```
\headerbox{Model}{name=model, column=0,below=contribution}{
    some other text...
}
```

The possible choices for relative positioning are:
below= name of other node
above= name of other node
aligned= name of other node
bottomaligned= name of other node
You can even make the boxes to span several columns. For example

```
\headerbox{Results}{name=results, column=1, span=2,
        below=results neutralization,above=funding}{
    text...
}
```

will place a box named results that begins on second column and span to the third, placed under the box results neutralization and above the box funding. Remark that the referenced boxes have to be defined before.

By using this class, you can get pretty sofisticated posters like the one shown in Figure 3.

## 4 Making big posters from smaller pages

One can decompose a big paper size poster into smaller ones. For example, we could decompose one A3 poster into two A4 pages that may be printed normally and then stick them together.

The idea is to use the package pdfpages and pdflatex. As an example, say that we have one A3 poster of size $842 \times 1190$ in $b p$, and we would like to print it in two pages A4 of size $596 \times 842$. See Figure 4 .

To do so, we first save the A3 poster into the file input.pdf and then we write into a file named, for example, make-a4-from-a3.tex the following

Expression Invariant Face Recognition with a 3DMM


Figure 3: A poster created by Brian Amberg


Figure 4: Dividing one A3 into two A4

```
\documentclass[landscape,a4paper]{article}
\usepackage{pdfpages}
\begin{document}
\includepdf[viewport= 0 595 842 1190]{input.pdf}
\includepdf[viewport= 0 0 842 595]{input.pdf}
\end{document}
```

We run pdfLAT ${ }_{E} X$ and we obtain the desired result in the file make-a4-from-a3.pdf In a similar way, we can decompose one sheet of A0 into 16 sheets of A4, using a file named, for example, make-a4-from-a0.tex, containing the following code:

```
\documentclass[a4paper]{article}
```

```
\usepackage{pdfpages}
\begin{document}
% top row, left to right
\includepdf[viewport= 0 2526 596 3368]{input.pdf}
\includepdf[viewport= 595 2526 1192 3368]{input.pdf}
\includepdf[viewport=1190 2526 1788 3368]{input.pdf}
\includepdf[viewport=1785 2526 2384 3368]{input.pdf}
% 2nd row, left to right
\includepdf[viewport= 0 1684 596 2526]{input.pdf}
\includepdf[viewport= 595 1684 1192 2526]{input.pdf}
\includepdf[viewport=1190 1684 1788 2526]{input.pdf}
\includepdf[viewport=1785 1684 2384 2526]{input.pdf}
% 3rd row, left to right
\includepdf[viewport= 0 842 596 1684]{input.pdf}
\includepdf[viewport= 595 842 1192 1684]{input.pdf}
\includepdf[viewport=1190 842 1788 1684]{input.pdf}
\includepdf[viewport=1785 842 2384 1684]{input.pdf}
% bottom row, left to right
\includepdf[viewport= 0 0 596 842]{input.pdf}
\includepdf[viewport= 595 0 1192 842]{input.pdf}
\includepdf[viewport=1190 0 1788 842]{input.pdf}
\includepdf[viewport=1785 0 2384 842]{input.pdf}
\end{document}
```


## 5 Conclusion

We have now seen some of the many options available to write posters in $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$. It is now up to you to decide which ones adjusts better to your needs. My advice would be would be to play a bit with the a0poster class first as this is the simplest
one and nearest to other classes like article. This class is especially suitable when you have a rather fixed distribution of your poster in mind, combined or not with the textpos package. Brian Amberg's poster class is suitable when you are not sure of the final distribution or when you want to easily modify the position of the text boxes. But of course, the final choice is up to you.

## References

[1] The a0poster class and manual.
http://www.ctan.org/tex-archive/macros/latex/contrib/a0poster/
[2] The PStricks package. http://www.ctan.org/tex-archive/graphics/pstricks/
[3] Pierre Poulain. How to make a $L^{A} T_{E} X ~ A 0 / A 1$ poster
http://pierrepoulain.free.fr/poster/poster.php
[4] The textpos package http://www.ctan.org/tex-archive/macros/latex/contrib/textpos/
[5] The eso-pic package. http://www.ctan.org/tex-archive/macros/latex/contrib/eso-pic/
[6] Brian Amberg. $L^{A T} T_{E}$ Xposter template.
http://www.brian-amberg.de/uni/poster/
[7] The pdfpages package http://www.ctan.org/tex-archive/macros/latex/contrib/pdfpages/

