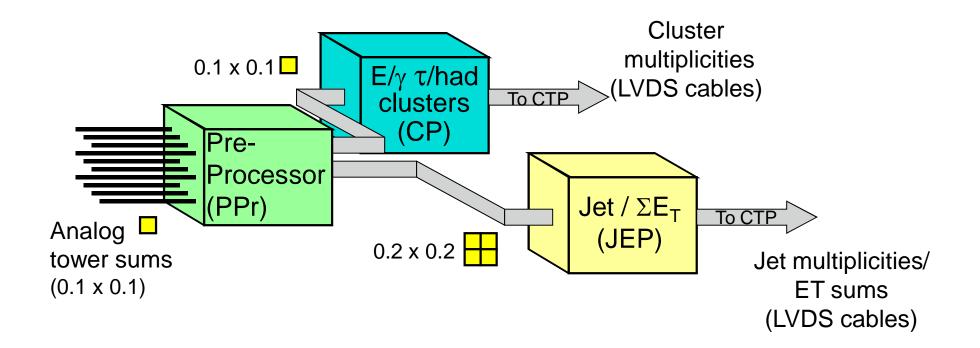
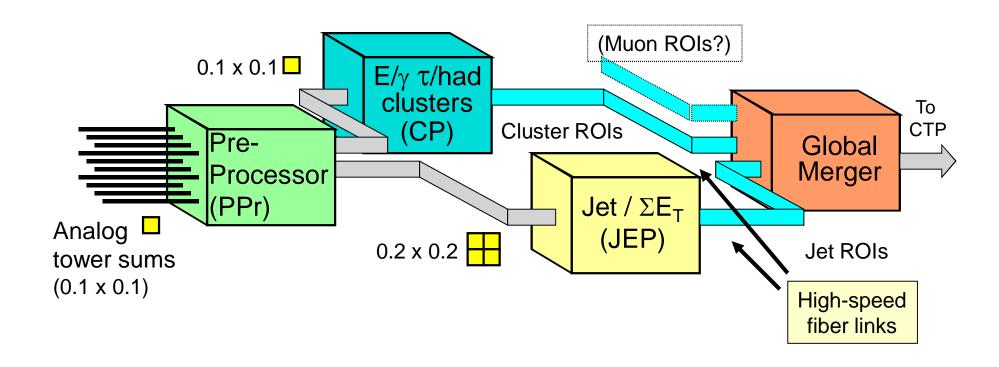


Level-1 Trigger updates for Phase 1

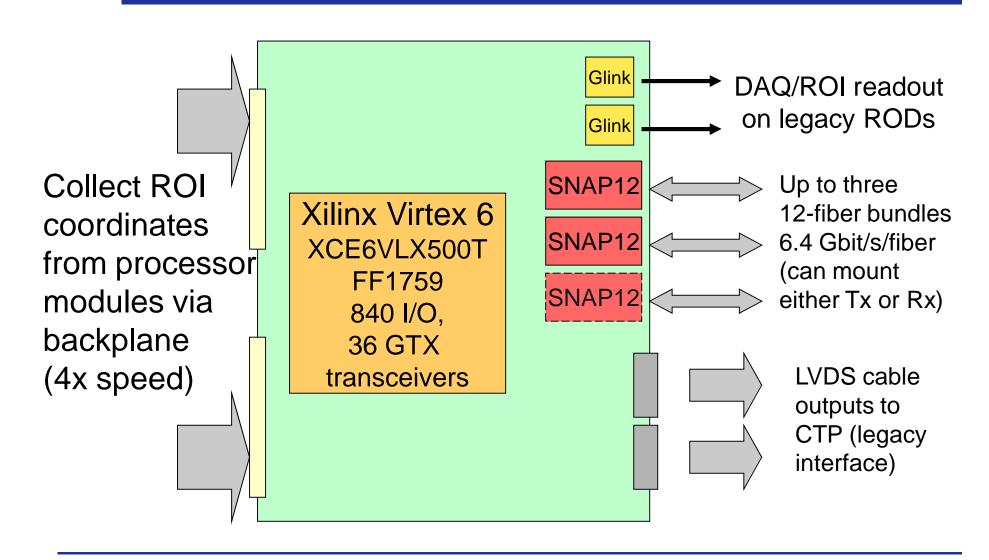
S. Silverstein For ATLAS TDAQ


Phase-1 upgrade strategy

- Keep much of current infrastructure
 - Trigger front ends
 - Identification of Jet/em/hadron/muon objects (ROIs)
 - Continue using current multiplicity-based algorithms, ∑E_T triggers.
- Add topological trigger algorithms
 - Use coordinates of ROIs seen in Level-1
 - Combine ROI maps from L1Calo cluster, Jet (and muon) subsystems in a global topological algorithm processor


L1Calo Upgrade

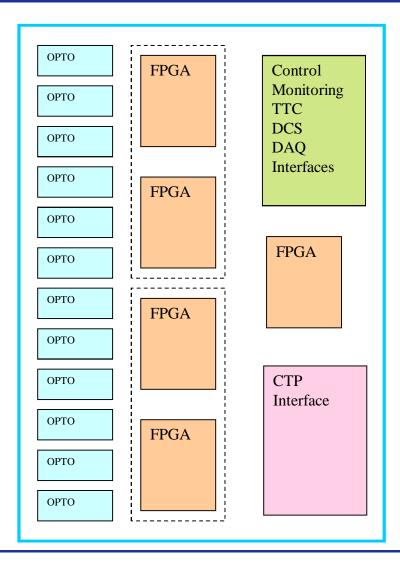
- Upgrade processor module firmware to report ROI bits and coordinates on real-time data path
- Collect and transmit ROI maps to a global topological processor crate
 - Can we include muon ROIs?
- Report multiplicity-based and topological trigger results to CTP


Current L1Calo system

Phase-1 upgrade



CMM++ design concept



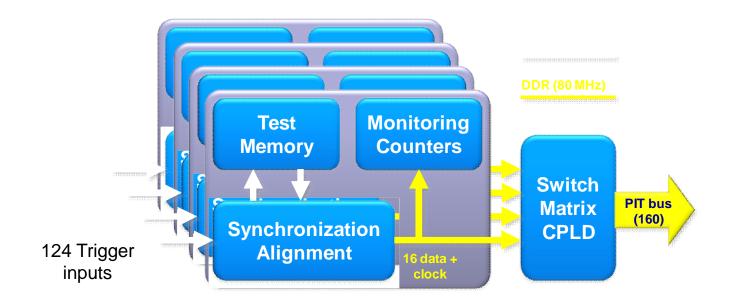
Ribbon Fiber

- Simple transmitter/receiver pair
- 12 parallel channels at up to 6.4 Gb/s each.
- Low added latency

Topological processor module

- Optical ribbon links bring all L1 ROI data to each TP module
- Four FPGAs receive and pre-process one quadrant of data each. Global processing of selected data on additional FPGA(s)
- Scalability: use upstream replication of input signals → multiple modules can run in parallel, each with access to full data.

Topol. algorithm candidates


- Overlapping features
 - Identify electrons/hadrons also seen as jets..."clean up" double counting
- Rapidity gaps
 - delta-phi, delta eta
- Back-to-back features
- Etc....

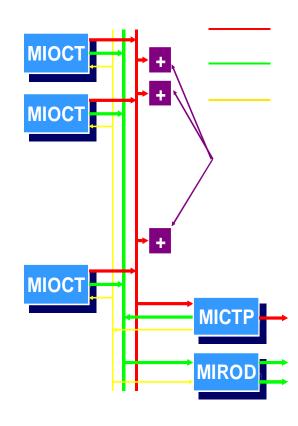
CTP upgrade

- Additional algorithms will require more inputs to CTP
- CTP can modify firmware to run at higher speed, multiplex inputs to accomodate more bits
- Possibility to extract ROI information from MUCTPI to include muons in topological triggers
- Described in TDAQ week talk by Stefan Haas

CTP upgrade Status (S. Haas)

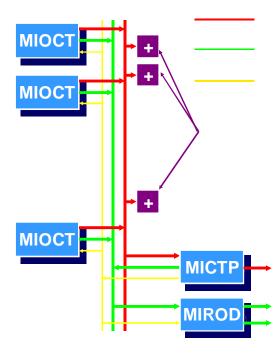
- Modified firmware tested successfully on one of the CTP reference systems
 - Inject arbitrary data patterns from the CTPIN test memories
 - Check monitoring buffers and counters on CTPIN, CTPMON and CTPCORE
- Clock phase scan shows good timing margins
 - Valid data window 65-70% (8-9 ns) of the bit period (12.5 ns)

CTP upgrade Status (S. Haas)

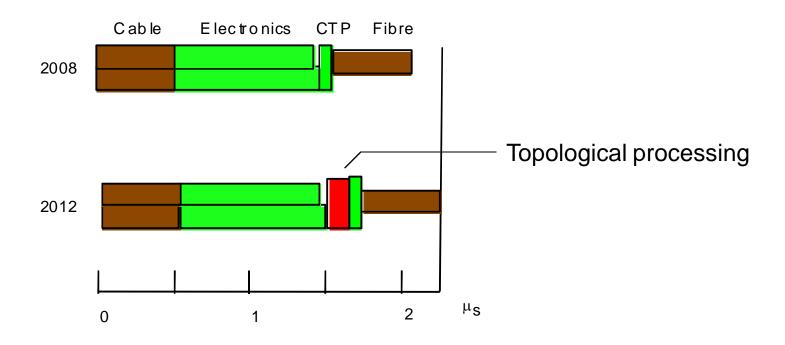

- Basic CTP functionality maintained with a few limitations:
 - Bunch-by bunch monitoring only for 160 PIT signals
 - Limited FPGA memory resources on the CTPMON module
 - Reduced flexibility in mapping trigger signals to LUT inputs
 - Trigger signals always allocated in pairs
 - Latency increased from 4 to 7 BC (6 BC probably feasible)
- Most of the software development still to be done
 - This is the limit of what can be done without changing the current CTP hardware
 - Any other significant modifications will require (partial) redesign

Muon upgrade

- No plans to upgrade muon detector hardware for additional Phase-1 trigger functionality
- Discussion to add third TileCal layer to muon trigger, but don't believe this will improve p_T resolution (limiting factor in trigger).
- Possibility to modify MUCTPI to include some ROI topological information to L1 data path


MUCTPI (S. Haas)

- MUCPTI receives muon candidates from 208 trigger sectors
 - Up to 2 muon candidates/sector/BC
 - Muon candidate data consists of p_T and location information (Rol)
 - MUCTPI calculates and sends multiplicity per p_T to the CTP
 - Sends detailed muon candidate data to LVL2 and DAQ at L1A rate
- Topological trigger processing could potentially profit from detailed muon candidate information



MUCTPI (S. Haas)

- MIOCT modules have 2 local trigger outputs
 - Could only be used for very coarse topological information (~4 bit per octant)
 - Extracting full p_T and RoI information for a subset of muon candidates at 40 MHz requires redesign of the system
 - Feasible for phase-I if required
- May have to modify MIOCTs for additional RPC chambers in the ATLAS feet region
 - Requires 14 inputs per octant

Latency implications

What is our latency budget?

Current latency budget

- L1Calo latency in USA15 and CERN test rig measured, with good agreement between them.
- We are only slightly over original 2 μs budget
 - perhaps 0.45 μs available for phase-1 upgrade without impacting LAr dead time
 - Corresponds to about 18 BCs in L1Calo

Sources of added latency for L1Calo Phase-1 upgrade

- ROI data transfer from processor modules to CMM++ over backplane
 - ca. 1 BCs
- Fiber optic transfer of ROI data to algorithm processor
 - ca. 5 BCs
- Latency of the topological algorithms
 - _ ???
- But it's not all bad news....

Potential latency <u>savings</u> in L1Calo Phase-1 upgrade

- Skip multiplicity summation in processor modules
 - ca. 0.5 BCs
- Data merging now takes 8-9 BCs in current CMMs
 - Can skip crate-to-crate merging of data in system
 - ca 1 BC
 - Virtex-E ⇒ Virtex 6 FPGAs: much faster!
 - Topological algorithms can run in parallel with multiplicity based, "day-1" algorithms
 - Can start before end of current latency envelope
- Savings may balance much or all of the additional latency costs

Current activities

L1Calo:

- simulation and prototype VHDL designs for Phase-1 topological algorithms
- Various hardware/firmware prototyping and feasibility studies

CTP

- Studies of firmware upgrades/modifications to accomodate topological algorithms
- Discussions with L1Calo on providing Muon ROIs to topological processor