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Abstract

It is known that metadata operations, such as file creation, do not scale well in
modern parallel file systems with an increasing number of nodes in High Performance
Computing (HPC) clusters. Specifically, many scientific applications require fast
concurrent file creation in a single directory, which will become more important in
the future when used with larger environments. The aim of this study is to investigate
file create performance in IBM’s Spectrum Scale parallel file system, formerly known
as General Parallel File System (GPFS), in order to understand its complex file create
process and the corresponding bottlenecks. We investigate the process by modifying
the popular mdtest metadata benchmark to reveal the per-process create performance
at any time during concurrent file creation and by investigating Spectrum Scale’s
source code and trace records. This allowed us to understand the impact of various
internal mechanisms and to divide the file create process into logical tasks. The
generated latency distributions showed the percentage of time consumed by each
task in respect to the total time. Overall, we are able to locate those tasks that
consume the most time during concurrent file creation on our test cluster. However,
with different hardware available, such as a faster network, a task’s contribution to
the total time may differ. Therefore, file creation should be further investigated for
different hardware with the tools provided by this study which will be continuously
developed in the future.
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German abstract

Es ist bekannt, dass Metadaten-Operationen wie z.B. Dateierstellungen, nicht mit der
Anzahl der Knoten in Hochleistungsrechnern skalieren. Viele wissenschaftliche
Anwendungen benötigen jedoch schnelle parallele Dateierstellungen in einem
einzigen Verzeichnis – ein Fakt, der in den kommenden Jahren, hinsichtlich
der steigenden Knotenanzahl in Großrechnern, immer mehr an Bedeutung
erlangen wird. In dieser Arbeit wird die Erstellung einer Datei in Spectrum
Scale, einem parallelen Dateisystem von IBM, das ehemals unter dem Namen
General Parallel File System (GPFS) bekannt war, untersucht, um den komplexen
Ablauf und die Skalierungsprobleme nachvollziehen zu können. Zunächst einmal
wurde die bekannte Metadaten-Benchmark-Anwendung mdtest modifiziert, um
einen Einblick in das Verhalten jedes Prozesses zu jedem beliebigen Zeitpunkt
während einer parallelen Dateierstellung zu erhalten. Ferner wurde der Quellcode
von Spectrum Scale und die dazugehörigen Trace-Einträge analysiert. Diese
wurden dazu verwendet die Auswirkungen verschiedener interner Mechanismen zu
untersuchen und den Dateierstellungsablauf in mehrere Abschnitte zu unterteilen.
Für jeden Abschnitt wurden Latenzverteilungen erstellt, die darstellen welcher
Abschnitt die meiste Zeit benötigt. Insgesamt sind wir dazu in der Lage, jene
Abschnitte aufzuzeigen, die im parallelen Dateierstellungsprozess in unserem Test-
Hochleistungsrechner für den Hauptzeitverbrauch verantwortlich sind. Allerdings
können diese Abschnitte abhängig von der Hardware, z.B. bei einem schnelleren
Netzwerk, in unterschiedlichen Zeiten differieren. Der Dateierstellungsablauf sollte
somit mit den vorgestellten Werkzeugen, die in Zukunft weiterentwickelt werden,
für abweichende Hardware wiederholt werden.
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1Introduction

In High Performance Computing (HPC) many scientific applications create a large
number of files simultaneously in a single directory. One example from the structural
bioinformatics field is the process of writing the current state of an entire simulated
system to disk, such as the 64 million atom coordinates of a HIV capsid [1, 2]. This
process is commonly known as checkpointing and finds frequent usage in HPC clusters
where (long-running) applications protect themselves from component failure by
saving their progress to persistent storage [3]. With growing HPC clusters, this use
case will be even more important in the coming exascale era as component failure
becomes the rule rather than the exception [4, 5, 6]. Nowadays, checkpointing
already represents the most important I/O workload in supercomputers [7].

Metadata operations, such as file creation, are generally problematic if the file system
must handle many of them concurrently. As a result, modern parallel file systems
distribute metadata across multiple metadata servers to achieve better performance.
However, directories with a large number of files still share a single metadata server,
which has to perform many metadata operations during concurrent file creation [3].
It has been shown that file creates do not scale well with an increasing number of
compute nodes [8, 9, 10]. Therefore, file creates account for a non-negligible part of
an application’s runtime [8]. One possible contributor to slow metadata performance
is the Portable Operating Systems Interface (POSIX) [11] standard which introduces
a set of guidelines for operating systems to ease cross-platform development of
systems and applications. For example, it requires created files to be immediately
accessible to all nodes in the cluster, implying a large amount of overhead that may
heavily degrade the file create performance. Consequently, a number of parallel file
systems do not implement particular guidelines to improve various aspects of the
file system [12]. However, because many applications depend on a POSIX compliant
file system, relaxing the standard is often not desirable.

One such POSIX compliant parallel file system is IBM Spectrum Scale, formerly
known as General Parallel File System (GPFS), which is widely used in HPC and data-
intensive applications and is also available for Linux [13]. Spectrum Scale utilizes
distributed locking to allow concurrent shared disk access while still maintaining
consistency. Furthermore, it reaches scalability by distributing data and metadata
across all disks [13]. However, for more than two decades parallel file systems
have focused on providing scalable performance for large files instead of large
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directories [7]. Despite optimizations, the scalability of concurrent file creation with
an increasing number of nodes still has to be improved [8].

Since file creation is a complex process with a large portion of network communi-
cation and I/O operations it is hard to understand where potential bottlenecks are
located. Furthermore, a file create does not only consist of the creation itself: To
maintain consistency the parallel file system has to verify whether a file with the
same name does not already exist in the directory beforehand, involving an addi-
tional lookup operation. In this thesis, we aim on building an accurate understanding
of the file create process in Spectrum Scale. To achieve this goal, we divide the file
create process into logical tasks to generate a time distribution for each task. In this
way, we can reveal potential bottlenecks that degrade file create performance.

As a first step, we gain a general understanding of Spectrum Scale’s file create
behavior which can be achieved with the well-known mdtest metadata benchmark
tool [14]. However, in its current state it only provides the creates per second at the
end of each benchmark run. This is unsuitable for such an investigation since it may
hide potential differences in create performance during the experiment. Therefore,
we modify the mdtest benchmark, providing us with the fine-grained per-process
performance at any user specified interval. This approach allowed us to show the
impact of internal mechanisms on the file create performance in Spectrum Scale,
such as directory block splits and inode pre-allocation. Moreover, we investigated
the influence of different storage hardware.

In the second step, we analyze the source code and trace records of Spectrum Scale
to generate a call graph of its file create process. This enables us to split it into
logical tasks whereas a corresponding latency distribution can be generated for each
task via trace analysis. With this fine-grained investigation, we were able to locate
those tasks that are responsible for the scaling problem in concurrent file creation.
Additionally, we identified a particular Spectrum Scale configuration setting that
was causing some files to consume significantly more time than others. Disabling
this configuration increased the file create performance by the factor of two on our
test system.

The subsequent chapters of the thesis are structured as follows: Chapter 2 introduces
the theoretical background of our work. Specifically, we give detailed information
about POSIX, metadata, and Spectrum Scale, including its internal mechanisms that
might have an impact on the file create process. Next, we give an overview of the
related work and other parallel file systems, exemplified by Lustre and CephFS. In
Chapter 3 we describe the used methodology and present the modifications of the
mdtest benchmark and how the trace records were analyzed. Chapter 4 discusses
the results, starting with a black box investigation of mdtest’s output. This includes
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the evaluation of client scalability as well as the impact of internal mechanism and
different storage on the file create process. Additionally, we present Spectrum Scale’s
file create protocol and the evaluation of the trace analysis which shows the time
distribution of all tasks. Based on these results, we discuss possible improvements.
In Chapter 5 we conclude this thesis with an outlook on the future work.
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2Theoretical background

This chapter provides background information that is required to understand parallel
file systems and the issues arising in the case of parallel file creation. First, we
provide basic knowledge about POSIX, file systems, and metadata, followed by an
overview and deeper elaboration on specific components of IBM Spectrum Scale.
Finally, we discuss the related work on the topic and describe the architecture of
other parallel file systems.

2.1 POSIX
The Portable Operating System Interface (POSIX) is a set of standards which is
developed by the Institute of Electrical and Electronics Engineers (IEEE) [15] and The
Open Group [16]. It was originally released in 1988 by the IEEE. Its intent is to
introduce guidelines for operating systems to ease cross-platform development of
systems and applications. This is achieved by defining a common operating system
interface and environment, including a command interpreter (shell) [11]. In the
most recent release POSIX.1-2008, POSIX is divided into four major components,
each described in a separate volume (c.f. [11] for details):

1. The Base Definitions volume describes general terms, concepts and interfaces.

2. The System Interfaces volume gives definitions for system service functions,
portability, and error handling for the C programming language.

3. The Shell and Utilities volume explains the standard source code-level interface
to command interpretation services (shell).

4. The Rational (Informative) volume contains information about features that
were discarded or included during iterations of the POSIX standard by its
developers.

Next, we discuss POSIX I/O, included in The System Interfaces volume, that defines
the I/O interface and is especially interesting in the case of distributed storage
systems.
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2.1.1 POSIX I/O

POSIX I/O describes the set of standards that define the Input/Output (I/O) interface
for POSIX compliant applications, such as read() and write() functions, including
their error messages. When POSIX was defined in 1988, a single computer, incapable
of any concurrency, always owned its file system. Consequently, POSIX I/O was
created with local file systems in mind, requiring write operations to be done
sequentially consistent. The latter requires all instructions to be executed in order
and that every write operations becomes immediately visible throughout the system.
In addition, all write operations must appear atomic to any reader and from any
location [11]. This guarantees consistent results from the I/O system in case multiple
processes write to overlapping data regions.

On a single system, the disadvantages of these semantics are not apparent since all
files are accessed through the same machine. Consequently, a locking mechanism
that only allows one process to write to the same data region can be efficiently used
to coordinate atomic access. On the other hand, maintaining consistency in any
distributed environment where multiple computers may access the same resource
concurrently is a communication-intensive and difficult process. Thus, parallel file
systems commonly maintain consistency with one of the following locking subsystem
approaches1 [17]:

Centralized Management
All client requests go to a single node (broker server) that serializes access to
the same data region and performs isolation if necessary.

Distributed Locking
A dedicated Distributed Lock Manager (DLM) hands out locks to clients that
request exclusive access to a particular data region. Therefore, only one client
can access a memory address at the same time.

2.2 File system
On the basic input/output (I/O) system level, disk partitions use equally sized,
numbered sectors2 to refer to the bytes of the physical storage. Each sector is a
group of consecutive bytes and represents the minimum addressable unit of the
storage. In this kind of representation each partition is one big dataset without
any definition of files or a directory structure. The file system forms sectors into
files and can be associated with a name while also providing a directory structure

1Section 2.5.4 describes Spectrum Scale’s locking subsystem.
2Today, the sector size for most used block devices is usually 512 bytes, while it is 4096 bytes for

modern devices.
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and methods to organize the file system. Commonly, file systems use an additional
abstraction, chaining sectors together to form a file system block. Advantages of
blocks are, for example, faster disk reads due to sequential reads, resulting in less
disk seeks, or less metadata (see Section 2.3) which also requires disk space.

However, file systems never provide physical memory addresses to a user application.
The obvious reason is security, because processes would not be restricted to an
exclusive address space. Another reason is that applications would need to manage
memory by themselves, i.e., moving data from disk to memory, that would change
their physical address, for instance. Instead, applications use virtual addresses, which
are mapped to their physical counterparts by the memory management unit (MMU),
an independent part of the CPU. This saves applications from managing a shared
address space while also preventing applications from accessing the virtual address
space of other running processes. The virtual address space appears continuous to
the process, while, in reality, the data can be scattered among physical addresses on
disk or memory.

In practice, there exists a wide variety of file systems for different operating systems
and use cases. For the user, they differ in the maximum usable length of the file
name, the maximum file size, supported folder encryption etc. However, internally,
they vary greatly in data structures or features, such as extents [18]. Common
consumer local file systems for Windows and Linux are the New Technology File
System (NTFS) and the Fourth Extended File System (EXT4), respectively3.

2.3 Metadata and inodes
In Unix or Linux file systems, information about a file, e.g., its owner and permissions,
size, or last modification time (mtime) are referred to as metadata and are stored
in a so-called inode. In addition, it stores the block addresses to the data of the
file. Commonly, the default block and inode sizes are 4 KiB, as it is in EXT4, for
example. In EXT4 and other Linux file systems, the inode can store up to 12 direct
data block pointers that can store a total of 48 KiB and 3 indirect pointers that
link to so-called indirect blocks. They may have the same size as regular blocks
and contain pointers to the actual data blocks but can also refer to another indirect
block (double indirect block) or to an additional indirect block (triple indirect block),
which contains pointers to more indirect blocks before pointing to the actual data
block. Each of the mentioned 3 pointers link to a single, double, and triple indirect
block, respectively. With this structure, the file size can grow up to 16 TiB for a 4

3In this thesis, we will only talk about Linux file systems, since we use IBM Spectrum Scale with
Linux.
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Data blocks
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indirect block

Indirect block Indirect block Indirect block
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Indirect pointer
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indirect blocks

Data blocks Data blocks Data blocks

File inode

Fig. 2.1. – An example file inode structure where a double indirect block is in use.

KiB block file system. Figure 2.1 visualizes an inode in an example with a single and
double indirect block structure.

Since data is stored in blocks, many processes are able to efficiently write to different
data regions of a file in parallel as long as two processes do not write to the same
block. If multiple processes had write access to the same block and they updated the
block without coordination in their cache and flush (write) it back to the disk, the
result would be undefined. This is due to the fact that only one process succeeds
while the changes of other processes are discarded without their knowledge. This
is known as false sharing and has to be avoided in order to maintain file system
consistency. Furthermore, every change to the data of a file modifies its metadata
as well. Attributes like the mtime or file size need to be updated on every write to
the same file. Since this information is only stored in a single block, the inode, only
one process is allowed to access this block at the same time. To serialize write access
locks can be efficiently used in local environments. On the other hand, using locks in
a similar fashion in parallel environments can significantly decrease performance due
to lock conflicts if multiple clients and their processes access one inode concurrently.
This is especially true when many files are created in a single directory at the same
time, because the inode of the created file has to be inserted into the directory’s data
blocks as a new dentry, short for directory entry. The dentry essentially associates
the inode of the file represented with its filename. Directory blocks are similar to
indirect blocks except that they contain directory entries instead of pointers to data
blocks. Therefore, concurrent creation of files in the same directory is not possible
and they are essentially serialized as a result of the locking mechanism. Section 2.7
describes how parallel file systems, specifically Spectrum Scale (see Section 2.5.4),
try to solve this problem.

8 Chapter 2 Theoretical background



2.4 File creation
When a file needs to be created the file system has to ensure that a file with the same
name does not already exist within the directory with a lookup operation. Hence, the
file create process can be logically split into two steps: The lookup and the creation
of the file. Both steps are briefly explained in the following paragraphs.

In Linux the lookup operation searches for a file with a given name (in its path) in
a directory and will return the corresponding dentry with the associated inode of
the file if it exists. If possible, this process is performed in the dcache where looked
up dentries are cached for quick access. The first step is to traverse the namespace
either from the root directory (for absolute paths) or from the current working
directory (for relative paths). The first component of the path is looked up in the
starting dentry which yields to the next dentry in the path [19]. This process, called
path walking, is continued until the end of the path is reached. However, not all
path components might be present in the dcache, requiring the file system to do a
more expensive lookup operation via the parent’s inode. If the lookup succeeds, the
resulting dentry with its associated inode pointer will be put into the dcache. If the
dentry cannot be found, the file system will also add the dentry to the dcache with a
NULL inode pointer – the so-called negative dentry. Negative dentries can improve
performance as repeated lookup operations do not need to invoke the underlying
file system [20].

When the lookup operation returns a negative dentry the file can be created. Then,
the file system allocates a new inode for the new file and initializes its metadata.
Next, the NULL inode pointer in the dentry is replaced by a pointer to the new inode.
Finally, the dentry is added to the parent directory and the file is created.

2.5 IBM Spectrum Scale
In this section, we give an introduction into clustered environments and IBM’s
Spectrum Scale and describe general components as well as pointing out which are
important for file creation.

2.5.1 Overview

Clustered environments consist of a number of nodes which are connected in a
network. Every node can run an application on its own or in conjunction with
multiple nodes. Further, each node is connected to a shared storage system that
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stores all data and metadata and is generally accessible from any cluster node4.
Notably, a hardware device in a shared storage system can refer to any kind of
storage technology, such as solid state drives (SSD), hard disk drives (HDD), or non-
volatile random-access memory (NVRAM) [21]. Henceforward, we will use the term
disk if the storage type is unimportant in the given context. However, many disks on
their own, or as a combined array, cannot be used effectively without an appropriate
file system which exploits and combines the I/O bandwidth of all disks equally. After
all, I/O speeds are still an issue in parallel computing as I/O-bound applications are
easily limited by the speed of the underlying storage hardware, regardless of the
CPU performance of combined nodes. To solve this issue, parallel/distributed file
systems were created to utilize the I/O speed of all available disks in a cluster as
best as possible.

Spectrum Scale, formerly know as General Parallel File System (GPFS), is a closed
source parallel, shared-disk file system developed by IBM and is used in High Perfor-
mance Computing (HPC) and data-intensive applications in clustered environments.
The parallel file system started as a research project in the early 1990s, called Tiger-
Shark on IBM’s proprietary operating system AIX. In 2002, GPFS was first introduced
for Linux by Schmuck et al. [13]. Since then, advanced features, such as GPFS Na-
tive RAID, information lifecycle management, or wide-area caching and replication
are continuously introduced. Nowadays, it also supports heterogeneous clusters,
including AIX, Windows, and Linux. In order to satisfy today’s requirements of de-
manding scientific and commercial applications, Spectrum Scale utilizes parallelism
and efficient data sharing between nodes in clustered environments, while being
completely POSIX [11] compliant with minimal overhead [21].

Spectrum Scale is based on the shared storage model – a framework for describ-
ing storage architectures, defined by the Storage Networking Industry Association
(SNIA) [22] in 2003, that captures the functional layers and properties of a storage
system, regardless of the underlying design, product, or installation. The shared
storage model itself does not define a specific structure but rather describes archi-
tectures which also make them comparable with each other [23]. The three typical
shared storage models are the Storage Area Network (SAN), the Network Shared
Disk (NSD), and the Shared-Nothing Cluster (SNC) models (see Figure 2.2). Today,
the NSD model is the most common because it avoids the cost and administrative
overhead of maintaining two separate networks [21]. In this model, a node is called
a NSD server when it provides disk access to other nodes in the cluster, while NSD
clients access data through an NSD server. Hence, the NSD servers accept requests
from clients to read and write data from and to disk, respectively, and reply to them
with the desired data. However, in the case of multiple NSD servers, it would not be
a good idea if each server could only access a subset of the total number of disks

4Some cluster hierarchies only allow specific nodes to access the file system to handle the I/O requests.
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Fig. 2.2. – Typical shared storage models [21]. [High Performance Parallel I/O, D. Hildebrand
and F. Schmuck, 2014, p. 33–43]

available as some data cannot be accessed in the case of a NSD server node failure.
Thus, a common scheme is to use redundant connections between the NSD servers
and the disks, known as multipathing, which allows the data to be accessed through
different NSD servers. This has two advantages: Node failures do not introduce data
unavailability and load balancing between the NSD servers can be efficiently used to
avoid network congestion at one of the servers. As we will see in Section 3.1, we
use the NSD server model in our experiments.

Spectrum Scale provides concurrent shared disk access to a single global namespace
to all nodes of a cluster. The file system achieves scalability by distributing data
and metadata evenly across all available disks to maximize I/O bandwidth. This
process is referred to as wide striping. Specifically, large files are divided into
equally sized blocks and are distributed across all disks in a round-robin fashion.
In addition, distributed locking (see Section 2.5.4) guarantees the consistency of
the file system without the need of a centralized server, and maintaining cache
coherency while allowing local caching of data and metadata. Data loss is prevented
with traditional hardware RAID solutions or GPFS Native RAID [24], while recovery
logs are implemented for metadata consistency and heartbeats check for node
failures [21]. Finally, Spectrum Scale uses inodes and indirect blocks to store a
file’s metadata and data block addresses [13] similar to other file systems, such as
EXT4.
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2.5.2 Basic Spectrum Scale structure

Each node of the Spectrum Scale cluster needs to have the Spectrum Scale software
installed. It consists of three basic components: administration commands, a kernel
extension, and a multithreaded daemon. To enable the daemon to communicate
with the Linux kernel, Spectrum Scale uses a loadable open source kernel module,
the portability layer, which can be build for a wide variety of Linux kernel versions
and configurations to ensure Spectrum Scale’s portability [24] with most Linux
distributions. We briefly describe the three components in the following sections.

Administration commands

Administrative commands are executed by any node in the cluster that is part of
the file system. They control configurations and the Spectrum Scale’s operation by
providing commands to add or remove nodes from the file system, for example. In
general, any command can be executed on any node, as the user specifies which
nodes a command should affect. Spectrum Scale ensures that it is propagated
appropriately across the cluster.

Kernel extension

Linux provides a virtual file system (VFS) layer that is used to register any Linux file
system. This modular structure allows any application running outside the kernel,
i.e., in user space, to use the same system calls, regardless of the underlying file
system. Internally, the kernel maps a system call to the file system’s kernel extension.
Spectrum Scale also implements this standard mechanism and, thus, appears to all
applications just as another file system. Spectrum Scale either satisfies a system call
by the resources available in the kernel extension or sends a request to the daemon
to complete the request [24]. Moreover, the VFS provides facilities, such as the
earlier mentioned dcache (see Section 2.4), that can be used by file systems.

Daemon

The multithreaded Spectrum Scale daemon runs on every node and is responsible
for all I/O operations and buffer management, such as read-ahead for sequential
reads and asynchronous writes. All I/O operations have to follow the rules set by
Spectrum Scale’s locking management (see Section 2.5.4), toward ensuring file
system consistency. In addition, the daemon sends requests to other nodes (such
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as manager nodes) and propagates configuration changes by communicating with
other daemons in the cluster.

2.5.3 Directory blocks and directory entries

Similar to other file systems, Spectrum Scale uses directory entries which are stored
in directory blocks to store the association between a directory and its files. The
parallel file system uses extensible hashing [25] to organize directory entries within
a directory that define the connection to the inode of the corresponding file. As
soon as a directory block is full Spectrum Scale splits a block in two whereas each
block holds half of the entries of the initial block. In Section 2.5.4, we will discuss
the difficulties that arise with directory splitting and locking. To determine the
corresponding directory block (bucket) of a file, Spectrum Scale uses extendible
hashing [26] on the filename. Extendible hashing is dynamic as it allows insertions
and bucket splitting as well as deletions and bucket combination without resulting
in poor performance after many of these operations [27]. Each split of the same
directory block increases the hash tree level. Current versions of Spectrum Scale
allow a hash tree level of 20 with a maximum of 220 directory blocks [28].

2.5.4 Distributed locking and metadata management

With respect to maintaining POSIX semantics and file system consistency, Spectrum
Scale is based on distributed locking to efficiently synchronize access to data and
metadata. Therefore, a lock is required for every file system operation that updates
data or metadata in order to preserve read and write atomicity, as defined by
POSIX [11]. Distributed locking is achieved by using a centralized server, referred
to as the token manager, that hands out tokens to local lock managers that run
on every file system node. Tokens are provided for directories, files, or other file
system objects. When a node holds a token for a resource, no additional network
communication is required as long as no other node wants to access the same object.
However, tokens are not only used for maintaining POSIX semantics and consistency,
but also for introducing a cache coherency mechanism. For instance, a node can
request an exclusive write token, which only one node is allowed to hold at a time,
and update the locked object in its cache. Other nodes that need to modify an
already locked object have to wait until the lock holder is finished and releases its
token. Furthermore, exclusive write tokens can also be downgraded to read-only
tokens. This type of token can be held by multiple nodes simultaneously and allows
them to cache the read-only object until one node requires exclusive access.

Nonetheless, in the common scenario where many nodes need to modify the same
file, exclusive write locks per file would result in a lock conflict on every write

2.5 IBM Spectrum Scale 13



operation. Spectrum Scale solves this issue by utilizing a shared write lock to allow
multiple writers access to one file simultaneously. The following example describes
how multiple nodes are writing to non-conflicting regions of a file: When writing
to a file, the first node initially receives a token for the complete file. As soon as
another node also requires access to some region of the same file, the first node is
contacted by the token manager to give up the exclusive write lock for the conflicting
region. If the first node does not require access to the conflicting region, it releases
parts of its token. Both nodes now hold non-conflicting tokens for different regions
of the file and are allowed to write to the same file concurrently, while maintaining
consistency and POSIX semantics. Locking a specific region of a file is known as
byte-range locking5 and enables Spectrum Scale to perform simultaneous writes to
the same object, maximizing the I/O bandwidth. A byte-range token allows the
holder to lock one or multiple consecutive blocks. One important constraint is that a
byte-range token cannot be smaller than one block and it is always rounded to block
boundaries. This is because every node allocates disk space independently when
creating a new file [13]. In addition, byte-range tokens ensure that only one data
block is allocated by a single node.

When the data of a file is updated new data needs to be written to the inode as
well, changing metadata attributes, such as file size, mtime, and indirect blocks,
which hold pointers to the data blocks of the file. Consequently, byte-range locks
cannot be efficiently used for metadata and indirect blocks as every write would
result in a lock-conflict, essentially serializing writing to a file. In other words, a
different solution is needed to handle metadata updates. Similar to other parallel file
systems, Spectrum Scale uses a so-called metanode to solve this issue by collecting
updates to the inode from other nodes. However, defining a single metanode for
the whole file system could easily introduce a bottleneck for the file system while
being under heavy load. Instead, Spectrum Scale specifies one metanode per file,
while any client that accesses this file can act as its metanode. In the example of two
nodes writing concurrently to the same file, the first accessing node will become the
metanode. The second node will send all updates concerning the file’s metadata to
the metanode while independently writing to the data region for which it holds a
byte-range token. Note that the metanode for a file can change in case it does not
require access to the file anymore. This allows great scaling, regardless of metadata
activity throughout the file system.

On the other hand, directory write sharing is much more common in the scenario
of parallel file creation in a single directory [21]. Additionally, creating a file in a
directory requires much finer grained locking than writing to an existing file, since
every create inserts only a new single entry into a directory block. As mentioned

5To achieve almost near raw disk performance, distributed locking can also be bypassed completely if
applications support their own locking mechanism [21].
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earlier, the smallest unit of a byte-range lock is one block, while a single directory
block can contain thousands of entries. Hence, locking the whole block by one node
will introduce many token conflicts if other nodes need to insert entries into the same
directory block. This issue gets worse with bigger block sizes6. To allow more fine
grained locking, Spectrum Scale uses a technique called fine-grained directory locking
(FGDL) [29]. FGDL allows nodes to obtain a token only for a specific filename. In
other words, if a node needs to insert an entry into the directory block, it is able
to lock the filename hash in the directory block separately instead of locking the
whole block. This guarantees that two nodes cannot create a file with the same
name while still allowing other nodes to obtain a token for a different filename in
the same block. This is done by using a byte-range offset that is computed from
the filename hash. However, as mentioned before, it is not possible to write parts
of a block to disk. Instead, the metanode of the directory collects all updates to
the directory block and writes the changes to disk on behalf of the actual creating
nodes. Note that the creating nodes are still allowed to write the created inode of
the new file to disk, as it does not influence the directory’s metadata. This method
allows the metanode to cache directory blocks and reserve space in a directory
block for pending creates. Non-metanodes are able to cache entries covered by
FGDL tokens and to insert entries locally before sending them to the metanode [29].
However, despite the advantages of using FGDL, it is incompatible with byte-range
locking. Thus, a directory can either be in byte-range locking or in FGDL mode.
Switching between these modes can be expensive because it involves invalidating
all associated tokens, possibly introducing heavy token traffic across the network.
Another scenario, which involves invalidating the FGDL tokens of a directory block,
is when a directory split occurs in the case of a full directory block. Since only the
metanode is allowed to write directory blocks to disk, it is convenient that it is also
responsible for splitting a full directory block whereas each block will contain half of
the entries of the pre-splitted directory block. During the split, exdentible hashing
determines which files are put into the appropriate block. Additionally, in the case of
concurrent file creation, directory blocks tend to get full at the same time which can
result in heavy token traffic at the time of directory splitting due to invalidations.
This may lead to metanode contention if a large number of blocks needs to be split
simultaneously.

2.5.5 Logging

Comparable to other journaled file systems, Spectrum Scale uses a log to provide
atomic updates to the metadata on disk.7. Usually, operations such as creating or
removing a file require a series of separate write operations. If a system is interrupted

6By default, Spectrum Scale uses a block size of 256 KiB.
7Each node manages its own journal.
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during these operations due to a power outage or a system crash, for example, it
may be left in an intermediate, invalid state which is much more time consuming
to restore. Instead, journaling file systems utilize a write-ahead log, recording all
changes that are to be written at a later point in time. In the case of a crash the file
system can recover easily by reading the log and replaying the journaled operations
until the system is back in a consistent state. Depending on the implementation, a
file system may log data as well as metadata. Spectrum Scale, on the other hand,
only records metadata updates since they affect the file system’s consistency, while
user data are not logged [13].

2.5.6 Tracing

In general, tracing allows users to retrieve event logging information about an
application’s execution. Traces, in contrast to event logging, are mostly read and
analyzed by developers because they contain intricate information about file system
internals that only developers can interpret. Therefore, traces are often fairly
technical and low-level. Trace messages are defined in the source code and can be
enabled at runtime or compile time. However, enabling tracing usually slows down
the application severely, mainly owing to a large amount of trace messages.

The Spectrum Scale source code contains over 20,000 trace points which are sep-
arated into subsystems and can be enabled or disabled by the root user per node
while the file system is running. Traces of such a set can contain all messages of
the NSD server or the metanode, for example. Yet, the number of trace messages
of a subsystem may still be too large. For this reason and because different traces
of a subsystem may be more important than others, the user is able to limit the
number of messages by providing a level of details in form of an integer, whereas
1 enables the most important traces within a subsystem. A bigger integer provides
additional messages, while still including the traces from all higher levels of detail.
Trace analysis does not only help for debugging purposes but also helps studying
bottlenecks of an application and is the most useful tool in understanding various
components of Spectrum Scale and specifically, in this thesis, the process of file
creation.

2.6 Related work
For over two decades, research on file systems was focusing on delivering scalable
performance for large files rather than for directories with a large number of files [7].
Although most directories contain less than 8,000 files [30], the majority of files are
located in big directories [29, 31] involved in a number of use cases for data-intensive
applications [7].
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One example is checkpointing in clustered environments [3, 10, 8, 9, 29] where
the application’s state is written into files in a single directory per-process. This use
case will become even more important in the coming exascale era, with applications
that run on up to a billion CPU cores [3]. However, scaling metadata performance
still poses a challenge in local and parallel file systems. Literature has shown that
metadata operations, including single directory file creation, do not scale well with
an increasing number of nodes [8, 10, 32] on parallel file systems. Alam et al. [8]
describe this effect as the metadata wall, spoiling the file system’s performance
potential.

As a result, software solutions were developed focusing on metadata scalability
and have shown performance improvements for metadata operations [7, 33, 34].
However, these solutions are not available in architectures of current parallel file
systems, such as Spectrum Scale [13] or Lustre [35]. Alternatively, Frings et al. [9]
built an additional software layer between an application and the underlying parallel
file system to avoid contention on metadata servers during file creation without
decreasing the I/O bandwidth. In this thesis, our goal is to provide information about
Spectrum Scale’s file create behavior to help the developer team to optimize those
mechanisms which consume the most time in the process. In the end, applications
should be able to rely on the underlying file system that supports fast concurrent file
creation without the need of additional software.

2.7 Related parallel file systems
This section presents a brief overview of two other parallel file systems, Ceph [12]
and Lustre [35], which also support the distribution of metadata in single large
directories.

2.7.1 Lustre

Lustre is an open-souce8, POSIX-compliant parallel file system, initially designed at
Carnegie Mellon University, PA, USA, in 1999 and is based on Linux. It is currently
mainly developed by Intel’s High Performance Data Division (Intel HPDD) [36, 35]
whereas many other companies, such as Fujitsu [37] or NASA [38], also contribute to
Lustre’s codebase [39]. Its development is primarily sponsored by the Open Scalable
File Systems Inc. (OpenSFS) [40] and the European Open File System (EOFS) [41].

Lustre is based on separating metadata operations from actual data I/O operations.
As visualized in Figure 2.3, the main components in Lustre’s architecture are: the

8Lustre is licensed under the GPL 2.0 license.
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Fig. 2.3. – Sample architecture of the Lustre file system

client, the metadata servers (MDS)9, and the object storage servers (OSS). The clients
run applications, while the MDSs are responsible for managing all the metadata
operations of the entire file system. The OSSs are handling the I/O data transfer.
The metadata for all clients is stored on the metadata targets (MDTs) which act as
the storage component of the MDSs. Similarly, the object storage targets (OSTs) store
all data which is segmented logically to different storage devices, i.e., striped over
all disks [42].

To achieve parallelism, each MDS and OSS is running an instance of the Lustre
Distributed Lock Manager (LDLM) which utilize so-called intents for the better locking
decisions [43]. For example, if a client wants to read an existing file in the file system,
it contacts the MDS with a read intent. The MDS checks the users permissions and
sends back a list of OSTs where its stripes are located. For a read operation no
locking is required on the MDS, since all content is provided by the OSTs. Then, the
client enqueues a lock request with a read intent to the corresponding OSTs. The
client now holds a lock for each stripe on each OST, while the LDLM on the OSSs
are managing the locks. When the client is finished, it issues the OSSs to release
the locks [43]. For a file create, the client sends an open and create intent to the
MDS with the corresponding path and name of the file. The MDS locks the parent
directory and creates the file on the clients behalf. Eventually, the MDS responds
to the client that the file was created, including a lock on the file so that it can be
opened by the client afterwards [43]. This is dissimilar to Spectrum Scale’s file create
behavior in which Spectrum Scale clients only forward directory block updates to
the metanode while they still create the file themselves.

9Multiple metadata servers are only possible in Lustre 2.4 and beyond for better metadata scaling.
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2.7.2 Ceph

CephFS is an open-source10, nearly POSIX-compliant [44] parallel file system. It
began as an PhD research project by Sage Weil at the University of California, Santa
Cruz, CA, USA, in 2010, who is now working for Red Hat [45] as the chief architect
of the Ceph project. CephFS is one component of the Ceph ecosystem which is build
on top of the Reliable, Autonomic Distributed Object Store (RADOS), responsible for
all the data in a Ceph cluster [46].

Figure 2.4 shows the conceptual architecture of CephFS, divided into four compo-
nents: The clients, the metadata servers (MDSs; handles caching and synchronization
of distributed metadata), the object storage cluster (OSDs; responsible for storing data
and metadata), and the cluster monitors (implement monitoring functionality) [47].
From the client’s point of view, metadata operations, such as open and rename, are
performed by the MDSs while OSDs provide direct file I/O (reads and writes) to
the underlying storage without additional MDS communication [12]. In contrast to
other file systems, CephFS does not rely on mappings between the metadata and the
blocks on a disk to a given file (allocation lists). Instead, the file system depends on
a pseudo-random mapping algorithm called Controlled Replication Under Scalable
Hashing (CRUSH) [48] to assign objects to storage devices, simplifying the design of
the system and reducing the metadata workload [12, 47].

Contrary to Spectrum Scale and Lustre, CephFS does not utilize a distributed lock
manager and rather issues RADOS locks which are enforced by the OSDs. The read
(shared) and write (exclusive) locks are implemented as object attributes, behaving
like any other object update for lock acquisition and release. For consistency and
safety reasons, the locks are replicated across all OSDs [49]. This is in contrast to
Spectrum Scale which uses distributed locking to synchronize access to data and

10CephFS is licensed under the LGPL 2.1 license.
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metadata on a shared disk [21]. For concurrent file creation in a single directory,
Ceph hashes the shared parent directory and relaxes the directory’s mtime coherence
to scatter the workload over all MDS nodes [12]. However, CephFS is not yet
recommended to be used for storing important data as it is lacking robust disaster
recovery tools, which are under development [50].
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3Methodology

This chapter provides information about the methodology to analyze file creation in
Spectrum Scale. First, we illustrate our experimental setup followed by a discussion
about both the data acquisition and processing, including a description of the used
tools.

3.1 Experimental setup and file system configuration
Running metadata benchmarks in a productive environment is usually not feasible
and difficult to control as they should not interfere with the system that may even
need to be restarted during the benchmark. Instead, all experiments were run on a
small test cluster which consists of six compute nodes. All of them have the Spectrum
Scale software installed in version 4.1.1.0. Two of the nodes (Dell R710) are directly
connected to the storage and act as Spectrum Scale NSD servers, named argon and
kalium. The Dell R710 machines are equipped with two quadcore E5620 CPUs
@ 2.4 GHz and 24 GB of memory. A Dell MD3200 array is used for storage with two
controllers whereas each RAID controller provides 2 GB of cache for a total of 4 GB.
They are used in a dual controller configuration which is mirrored with the other
controller’s cache for high availability. Furthermore, the controllers are protected
with a battery assisted persistent cache backup to non-volatile media in the case of
a power failure [51]. The MD3200 uses three MD1200 expansion shelves with a
total of 48 2 TB 7,200 RPM SAS connected hard drives (HDDs). They are formatted
into four dynamic disk pools of 11 disks and 4 hot spares. For improved rebuild
performance, a 8+2 RAID6 setup distributes its stripes over all 11 disks of each pool.
In addition, the disk pools are split into four partitions, each associated with a logical
unit number (LUN) which is then used in Spectrum Scale. All HDDs are accessible
through both NSD servers redundantly since the MD3200 is shared. Alternatively,
each NSD server can utilize a single solid state drive (SSD; Intel SSD 520 Series 240
GB), connected via SATA, or a RAMDisk of 8 GB. A RAMDisk describes a portion
of the system memory that is treated as if it were a disk drive. However, the Dell
MD3200 is not controlling the SSDs and RAMDisks. Thus, they are only accessible
by the corresponding NSD server.

The remaining four nodes act as Spectrum Scale clients, named boron, chlorine,
lithium, and neon. Each of them is equipped with an eight core E3-1230 @ 3.3 GHz
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CPU and 16 GB of memory. All machines, i.e., clients and NSD servers, are connected
through a 10 Gbit ethernet via a SuperMicro SSE-X24S 24 port 10 Gbit switch.

In all our experiments, we use similar Spectrum Scale file system configurations
with 44 HDDs, unless indicated otherwise. Table 3.1 lists those configurations that
might impact metadata performance. Moreover, three of the above presented storage
subsystems hold data and metadata alike1.

Storage

11	
HDDs

11	
HDDs

11	
HDDs

11	
HDDs

10Gb	Ethernet

Spectrum	Scale	Clients

NSD	Servers

boron chlorine lithium neon

argon kaliumRAM	
Disk

SSDSSD

RAM	
Disk

Fig. 3.1. – Simplified test cluster rep-
resentation without facilities,
such as the controllers.

Configuration Value

Block size 256 KiB
Inode size 4 KiB
Log size 16 MiB
Inode limit 2,200,000
Pre-allocated inodes 2,200,000
Metadata replicas 1
Max. metadata replicas 3
Exact mtime yes

Tab. 3.1. – The used Spectrum Scale file
system configuration parame-
ters.

3.2 Data acquisition
The process of data acquisition consists of two steps: Firstly, the file create process is
benchmarked in a black box approach to investigate the overall performance which
is visible to the user. The second step requires a deeper analysis of Spectrum Scale’s
internal behavior with the help of the source code and the trace records. These two
steps are discussed in the following sections.

1It is possible to assign disks for only keeping storage metadata or data.
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3.2.1 Mdtest metadata benchmark

We use the metadata benchmark mdtest, developed to evaluate file create perfor-
mance. In the following, we discuss its functionality, usage, issues, and modifica-
tions.

Overview

Mdtest is a popular micro benchmarking tool, developed by the Lawrence Livermore
National Laboratory [14] and used by many large HPC sites [32]. The mdtest in
version 1.9.3, henceforth called original mdtest, was used in this work and was
released in December 2013. It measures metadata performance of the operations
create, stat, read, and remove on files and directories, called items. The Message
Passing Interface (MPI) coordinates the operations on multiple compute nodes and to
consolidate the results, which are given in operations per second. Mdtest measures
each operation sequentially and calculates its results afterwards. For that, the
benchmark divides the number of items (workload) by the elapsed time for each
operation at the end of an experiment, that is, one execution of the program. Each
operation is embedded in two MPI_Barriers. This ensures that faster processes do
not continue until all processes have finished their workloads. The duration of an
operation is measured between the two barriers to calculate the operations per
second for the workload of all processes. In addition, mdtest is able to run multiple
consecutive experiments and compute the mean and standard deviations over all
executions. Figure 3.2 shows a sample excerpt of the output, whereas 32 total tasks,
distributed on four nodes, were utilized to create 4,096 files over 20 iterations. Each
row and column in the result table represent an operation and its operations per
second, respectively. For files, the user can also define the size of the created files.
Nonetheless, metadata performance for file creation can be best evaluated when
zero-byte files are created. Writing additional data would introduce a delay between
two created files, relaxing the workload on the metanode. Therefore, we exclusively
create zero-byte files in all benchmark runs.

Naturally, there are other metadata benchmarks available, e.g., Filebench [52] or
Bonnie++ [53]. Besides the metadata evaluation, those benchmark suites also offer
additional functionality. We decided to use mdtest due to its focus on metadata and
easy-to-modify source code as its whole functionality is consolidated in a single C
file.
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mdtest ≠1.9.3 was launched with 32 t o t a l t a sk ( s ) on 4 node( s )
Path : / gpfs / c r e a t e t e s t
FS : 14.2 TiB Used FS : 0.0% Inodes : 14.2 Mi Used Inodes : 0.0%

32 tasks , 4096 f i l e s

SUMMARY: ( of 20 i t e r a t i o n s )
Operation Max Min Mean Std Dev

≠≠≠≠≠≠≠≠≠ ≠≠≠ ≠≠≠ ≠≠≠≠ ≠≠≠≠≠≠≠
F i l e c r ea t i o n : 398.583 177.422 305.453 93.658
F i l e s t a t : 12688234.257 259260.080 4178164.927 5207511.648
F i l e read : 4039470.770 408169.855 2396671.658 1232374.203
F i l e removal : 392.336 156.385 291.746 98.000

Fig. 3.2. – Sample excerpt of mdtest’s output. 32 tasks, distributed over 4 nodes, a were
used to create 4096 files. Each row in the result table represents the operation
and its operations per second.

Usage

Mdtest is used on the command line while MPI defines the number of processes that
are started on each assigned node. The benchmark tool itself utilizes a variety of
arguments that can be combined almost arbitrarily. The following configurations
are mandatory for executing mdtest: Before each experiment, the program creates a
so-called directory tree (user defined by its depth and branches), which is always
generated in case the user needs to create files or directories in multiple independent
directories. The number of files or directories to be created is specified per node. In
addition, the user has to provide the working directory on which the benchmark will
take place, for instance, a parallel file system’s mount point.

Issues

Unfortunately, mdtest suffers from a set of issues that are not immediately apparent
to the user. The most problematic ones include non-functional arguments and flawed
results. The intransparency of false results can potentially compromise research
results. Moreover, the project experiences a sparse release cycle with gaps of up to 20
month between releases (e.g., from version 1.9.3 to 1.9.4). The most recent version
of the benchmark was released in July 2015 to support the restful S3 interface2.
However, no changes were made to solve the discussed issues.

2The mdtest project was continued on Github [54].
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Modifications and scripts

A single data point per run and operation of the original mdtest output is challenging
since the operations per second might differ on a per-process basis during the
benchmark. Therefore, we modified the benchmark to provide us with the creates
per second at any point in time, called periodic output. The periodic output is a user
defined interval and can be set to a number of files or seconds. Each point in the
interval contains the per-process information about its number, the node’s identity,
the elapsed time in seconds, and the number of created files. Furthermore, it is
important that the data collection does not induce any overhead, for example, due
to disk I/O which would disrupt the benchmark and falsifies the results. Therefore,
all data points are collected in memory and written to disk after the total workload
is finished. Henceforward, the term modified mdtest refers to the version of mdtest
that was modified with the abovementioned functionality. The modified mdtest will
be further maintained on GitHub3 [55] while the periodic output will be extended
to all other operations in the future.

The periodic output of the modified mdtest allows the fine-grained investigation
of the create performance of Spectrum Scale whose findings will be discussed in
Section 4.1. In addition, this information is not only useful for visualizing the
per-process performance, but more importantly, for pointing out time frames that
require a deeper analysis of the corresponding trace records. Without the modified
mdtest, these time frames would remain unnoticed. Lastly, a Python [56] wrapper
script automates the execution of multiple benchmark runs with varying clients
and numbers of processes. They introduce functionality, for example, enabling
trace collection, restarting Spectrum Scale, or remounting the file system after each
benchmark while providing a user friendly command line interface (CLI).

3.2.2 Tracing and source code

Trace records give insight into the internal mechanisms of Spectrum Scale, e.g., its
file creation protocol, which the modified mdtest is unable to provide. However, due
to the large number of available trace points in the parallel file system, it is difficult
to filter those records that are the most relevant in the create process. In addition,
traces are ineligible to give reasons for specific design decisions or Spectrum Scale’s
implementation, that can only be answered with its source code. With the source
code available, we are able to investigate every step of the file create process by
enabling the corresponding submodules with the least required level of details of the
relevant trace records. Collecting the correct traces in the right context is crucial for

3
https://github.com/marcvef/mdtest
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understanding which part in the file create process is consuming most of the time
and for analyzing potential bottlenecks.

3.3 Data processing
The following sections present the processing of the acquired data, which includes
the periodic output of the modified mdtest and trace records as well as its usage.

3.3.1 Plotting

The previously mentioned wrapper script of the modified mdtest (see Section 3.2.1)
does not only provide an improved user interface and automation but also contains
additional functionality for post-processing the acquired data. The periodic output
files of a modified mdtest run, executed through the wrapper, are automatically
processed and generate four different types of graphs with the Gnuplot [57] ap-
plication. They show the combined and per-process performance in regard to the
accumulated creates per second and the current creates per second between the set
interval for all data points. Moreover, the script generates comparable graphs of all
its executed benchmark runs with reference to node and process scalability. These
features allow the user to get a general idea of how a file system performs in the
scenario of concurrent file creation.

3.3.2 Trace analysis

The trace analysis consists of two parts: Firstly, with the help of the source code
the file create protocol is investigated to retrieve the relevant trace records with
their corresponding subsystems and their level of details. Secondly, the achieved
knowledge about the trace points is used to generate latency distributions of defined
parts of the create process. The two steps are discussed in the following two
sections.

File create protocol and call graphs

Based on the source code and the traces, we manually built call graphs of the file
create process in Spectrum Scale. The call graphs do not only contain information
about the arguments and mechanisms of the called functions but also about the
particular location of the trace records in the file create process. Next, we divided
the call graph into several tasks while each step accounts for a particular logically
connected segment. However, even with the large number of trace points in the
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file system, not every function contains trace points in its beginning and end which
would ease the determination of the elapsed time. Thus, an additional requirement
for the segment is that it gives us the ability to compute its time contribution to the
total file create process, resulting in the merging of some tasks.

Latency distribution

As outlined in Section 1, the goal of this thesis is to understand in which parts of
Spectrum Scale the time is spent during parallel file creation. Because mdtest only
gives an overview of the create performance, we utilize the previously achieved
trace points to measure each task’s time consumption. However, one cannot make
a general statement about the time consumption of each segment of the file create
process. In other words, some files might be created faster while others require
significantly more time due to token traffic or metanode communication.

In order to achieve this goal, we generated latency distributions4 from all tasks of
the create process. In such a distribution the elapsed time of a function is measured
in multiple cases (files in our case) and scattered on the corresponding bins which
represent the latency of the function. We defined 50 bins that range non-linearly from
1 microsecond to 500 milliseconds. As seen in Section 4.4, this range captures all file
creates in a sufficient granularity while still being able to visualize the distribution in
a graph. Furthermore, it is important to understand that latency distributions do not
allow conclusions of the parallel behavior of an application as each file is measured
individually. With this definition, we can easily observe if and how many files take
longer for each segment of the file create process. Moreover, if a time consuming
segment is found, the methodology can be reused for a deeper investigation. In this
case, the acquired call graphs prove useful as they contain further information about
a suspicious segment as well as its trace points.

Generating the latency distributions of all create tasks requires trace analyses. More
specifically, the trace records need to be filtered for the determined trace points. This
is done by a set of interactive Python [56] scripts, which initially parse given trace
files for a number of chosen trace points. Trace files contain the trace records of all
processes of a single node with timestamps relative to the time the trace collection
was enabled. Therefore, the scripts filter all traces per process and cache them for
further processing. Next, the user can choose a particular task that consists of a
beginning and an end trace point. The scripts search for matching pairs through all
filtered traces while computing their latency. Finally, the latency distributions will
be created for a user chosen time frame for which the created graphs from wrapper

4Latency distributions are typically represented as a histogram.
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scripts of the modified mdtest are helpful. In addition, the latency distributions are
automatically plotted by Matplotlib [58].
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4Results and discussion

In this chapter we take a closer look at the file create process. More specifically, we
analyze and discuss the results obtained using the tools presented in Chapter 3. First,
we evaluate the output of the modified mdtest and interpret the created graphs.
Next, we show general aspects of tracing Spectrum Scale in addition to interesting
traces that were collected during the file create experiments. Then, we present the
complete file create protocol, i.e., the logical steps which are required to create a file
in the successful case, including the initial lookup. Finally, we discuss the latency
distribution for the logical steps and some important internal functions called in the
file create process.

4.1 Mdtest metadata benchmark
In Section 3.2.1, we described the modifications of mdtest which allow the analysis
of fine-grained per-process performance at any specific time frame during an experi-
ment. As a result, we discard mdtest’s original output while only using the periodic
output which the modified mdtest version provides. As a post-processing step, the
periodic output, which describes the create performance at any point during the
experiment, is used to generate multiple graphs. The modified mdtest will not only
help with a preliminary investigation into file creates but is also a useful tool for
the subsequent trace analysis (see Section 4.2). In this section, we will present
the modified mdtest evaluation and discuss the corresponding graphs in detail. We
will explain how different storage hardware influences the create performance and
explore the impact of byte-range locking mode and FGDL. In addition, we will
investigate internal mechanisms, influencing file create performance, e.g., directory
block splits, inode pre-allocation, or metanode activity.

4.1.1 Workload and test sets

Before starting the mdtest evaluations it is important to define an appropriate work-
load, i.e., the total number of files that are to be created in a single benchmark run
in a single directory. At the time of writing this thesis the Spectrum Scale developer
team investigated and optimized the burst create performance. However, since
redundant work is not desirable and burst performance cannot be maintained for an
arbitrary workload, we focused on the sustained case which, among others, involves
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disk I/O and potentially more network communication. Both are, in distributed
environments, the most expensive operations and can easily introduce a bottleneck
for an application. We found that the creation of two million zero-byte files is suffi-
cient for investigating the sustained performance on our test cluster. This workload
requires more than 10 minutes to execute while the system is measurably doing
I/O and constantly sending messages through the network. However, as further
elaborated in Section 4.2.1, we will use a smaller workload later as two million files
introduce problems during trace collection.

In a single run mdtest creates a number of zero-byte files a single directory, defined
by a given workload, while measuring the current creates per second for a defined
interval of files or seconds. When the benchmark is finished it removes all files and
their corresponding parent test directory it generated earlier. A test set defines a
single execution of the script which involves a number of mdtest runs that differ
only in the number of clients as well as the number of processes used per client.
In all those variations, the problem size remains fixed and is distributed onto all
participating processes of all clients. This allows to evaluate Spectrum Scale’s ability
to exploit parallelism whenever additional nodes are used for the same workload. In
HPC this methodology is also called strong scaling and it defines how the solution time
varies with the number of processors for a fixed total problem size. We deliberately
decided against weak scaling, i.e., keeping the number of files fixed per process as it
would change the total workload in every benchmark execution, making the results
incomparable for investigating parallelism.

At the start of every mdtest run, it is also important that the parallel file system
remains in a similar state in each benchmark execution within a test set. Therefore,
Spectrum Scale is restarted prior to each run. However, a scenario whereby an
application is only executed after a file system restart is far from reality. In practice,
many applications are accessing the file system simultaneously and rely on its avail-
ability. Furthermore, caching mechanisms, which increase the overall performance
of the file system, could not be effectively used. In order to simulate a scenario in
which applications are executed on a running system while also using a warm cache,
the same mdtest run is executed prior to the actual measured mdtest execution.
Henceforth, to avoid ambiguous terms we call the former the warm up and the latter
the experiment. The pseudo code in Figure 4.1 shows a sample execution of a single
test set, which executes a total of 12 experiments with a varying number of clients
and processes. Note that the numbers of clients, processes, and files are multiples
of two in order to evenly distribute the total number of files onto the participating
processes.

We also evaluated the possibility of dropping various caches in addition to the
Spectrum Scale restart. Generally, file systems utilize a so-called page cache, which is
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1 c l i e n t s := [1 , 2 , 4] ;
2 p roces se s := [1 , 8 , 16 , 32];
3 workload := 2097152;
4 f o r c in c l i e n t s do :
5 f o r p in proces se s do :
6 unmount_f i lesystem () ;
7 r e s t a r t _ s p e c t r u m _ s c a l e () ;
8 mount_f i lesystem () ;
9 execute_mdtest ( c , p , workload ) ; //warm up

10 execute_mdtest ( c , p , workload ) ; // experiment
11 od
12 od

Fig. 4.1. – The above pseudo code shows the workflow of an executed test set. Spectrum
Scale is restarted prior to the warm up, whereas the measured experiment follows
after the warm up.

stored in memory and used, for example, to cache dirty pages, i.e., modified pages
that need to be flushed to the disk. However, file systems can also exist without a
cache, though their performance might decrease. Linux also allows file systems to
implement their own cache if the operating system’s default file system cache is not
feasible. Spectrum Scale is one example for implementing its own page cache. The
so-called page pool is similar to the page cache but, among others, allows Spectrum
Scale to have control over its size, contrary to the Linux page cache. Moreover, the
page pool is part of the shared space for the kernel and user space. For entering a
similar file system state before starting an experiment we also considered clearing
Spectrum Scale’s page pool. Yet, to the best of our knowledge, the parallel file
system does not provide a mechanism for dropping the cache other than restarting
the daemon. There is also the possibility to clear the Linux caches which include the
page or dentry cache1. However, invalidating caches results in undefined behavior
and may not even impact Spectrum Scale directly but applications that are used in
conjunction with parallel file system. In this case, possible performance degradation
may not be introduced by Spectrum Scale but rather by the programs which rely
on cached information. In the end, dropping all caches is a scenario inapplicable in
practice. Hence, we decided not to explicitly drop caches.

4.1.2 Benchmark strategy

With the workload described above, we ran dozens of test sets on our test cluster
(defined in Section 3.1) with a varying numbers of clients and processes per client
for different file system configurations and storage hardware. Each test set ran a
total of 12 experiments where the workload was distributed on one, two, and four

1Clearing the Linux caches can be done with the command
“sync && echo 3 > /proc/sys/vm/drop_caches”.
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clients, each with 1, 8, 16, and 32 processes per client. For every experiment, we
decided to use an interval of five seconds for the periodic output of the modified
mdtest. In other words, every data point contains information about the creates per
second for the last five seconds per process (running performance) as well as creates
per second since the start of the experiment (accumulated performance). In contrast
to the total runtime, it is not meaningful to provide a standard deviation for each
data point of an experiment. The create performance that is shown at those points is
generally differing heavily in each experiment, depending on current and previous
token traffic or metanode activity. For this reason, we do not present the standard
deviation for the data points of the periodic output of a single experiment. However,
it is noteworthy that different executions of the same experiment express very similar
create performance with a standard deviation of ~2% for 10 experiment iterations
with 4 participating clients (see Section 4.1.10). Nonetheless, we do not focus on
the total runtime but on understanding the create behavior at any point during the
experiment, which will implicitly explain fluctuations in the total runtime.

4.1.3 The warm up

As mentioned earlier, the warm up is used to provide a more realistic scenario for
the experiments. We also compared the create performance of the warm ups with
their consecutive experiments briefly. Commonly, the experiment is slightly faster
than the warm up by up to 5% runtime. However, in some cases we could observe
an unusually increased performance by up to 20% as compared to its usual runtime
that also made them faster than the following experiment. This can be explained by
undefined behavior due to the dropping of caches during a Spectrum Scale restart
because subsequent experiments do not express a similar behavior and show a great
consistency in their runtime. Nonetheless, we did not further analyze the above
described performance of the warm up since it almost never is an issue in practice.
In addition, understanding the influence of multiple caches requires a more complex
investigation that was not within the scope of this study.

4.1.4 Client and process scalability

To investigate the scalability of file creates for a different number of clients, we first
compared the accumulated performance for 1, 2, and 4 clients with 16 processes
per client in each experiment, visualized in Figure 4.2. 16 processes should provide
optimal parallelism for 16 cores with enabled hyper-threading per client. The
workload amounts to 2,097,152 files that are created in each experiment on 44
HDDs. Every line shows the combined performance of all processes in a single
experiment. The x-axis represents the time elapsed since the start of the experiment.
The y-axis shows the accumulated average of creates per second since the beginning
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# of clients # of processes in total creates/second runtime in seconds

1 16 ~4693 446
2 32 ~3144 667
4 64 ~2657 789

Tab. 4.1. – Original mdtest output: Average creates per second and runtime for three
experiments with equal workload but different numbers of used clients and 16
processes per client.
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Fig. 4.2. – Investigation of client scalability: Comparison of the average accumulated creates
per second in 3 experiments for 1, 2, and 4 participating clients with 16 processes
per client with a workload of 2 million files.

of the experiment. Evidently, there seems to be a drastic difference in performance
and runtime between one and multiple clients. A single client is able to create the
given workload between a third to half of the time faster than multiple clients. In
addition, four clients require significantly more time than two clients, even though
four clients seem to achieve a higher create performance during the middle of the
experiment. The graph indicates that multiple clients start off remarkably slowly
for the first minute of the experiment in which only approximately 8,000 files are
created. Therefore, ~0.4% of the workload accounts for ~9% and ~7.6% of the total
runtime for two and four clients, respectively. In contrary, a single client does not
show a similar behavior in the beginning with mostly stable performance throughout
the experiment. Notably, the original mdtest can only provide one value for each
experiment, that is, the respective last data point (c.f. Table 4.1), leaving the user
without knowledge of the mid-experiment performance. In the following sections,
we will investigate every aspect of the observed behavior to understand the cause of
this performance while also suggesting possible solutions.
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Fig. 4.3. – Investigation of process scalability: Comparison of the average accumulated
creates per second in 4 experiments for 1 participating client with 1, 8, 16, and
32 processes per experiment with a workload of 2 million files.

Figures 4.3 and 4.4 demonstrate the process scalability examplarily for one and two
clients, whereby each figure compares the average accumulated create performance
for 1, 8, 16, and 32 processes per client to investigate the above assumption that 16
processes per client are optimal. Similar to Figure 4.2, the x-axis and y-axis show
the elapsed time and the creates per second, respectively. Both figures show that 1
process per client is not able to provide the same create performance as 8, 16, and
32 processes per client which exhibit a similar create behavior consistently in all our
executed test sets. However, we can observe a slight performance advantage (~2%)
in favor of 16 processes per client against 8 and 32 processes. This supports the
assumption that the number of used processes per compute node should be equal to
the number of available cores to maximize parallelism. Due to this observation, we
will only present results of experiments in which 16 processes per client are used. In
the case of one process per client we assume that the slightly worse performance is
caused by missing parallelism that Spectrum Scale will exploit if multiple clients are
utilized in an application.

4.1.5 Running per-process performance

Investigating combined-process accumulated create performance is only a prelimi-
nary attempt to explain the previously shown scaling problem with multiple clients.
Clearly, it does not allow us to understand smaller differences in creates per second at
a specific time frame, nor can it provide information about the individual per-process
behavior. In Figure 4.5 we present the data gathered by the modified mdtest. In
contrast to the previous figures in which multiple experiments were compared, it
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Fig. 4.4. – Investigation of process scalability: Comparison of the average accumulated
creates per second in 4 experiments for 2 participating clients with 1, 8, 16, and
32 processes per experiment with a workload of 2 million files.

displays the per-process performance for a single experiment whereas a total of 2
million files are created by 4 clients, each of them utilizing 16 processes. The y-axis
represents the creates per second for each process. The x-axis shows the elapsed
time since the beginning of the experiment and, in addition, the number of created
files by all processes at a specific point in time, shown in parentheses. Each data
point of any process contains information about the measured creates per second for
the last five seconds. For simple distinguishability, each process per line of the same
color specifies the affiliation to the same client. At first glance, we observe that the
create performance of one client is occasionally significantly higher than of the other
clients. Consequently, a faster client finishes its workload sooner since every process
is assigned a fixed number of files to create. In other words, client lithium, shown in
blue, created all its files in roughly 385 seconds and then idled until the other three
clients finished their workloads, essentially wasting parallelism.

In Section 2.5.4 we described that Spectrum Scale designates one cluster node as
the metanode for each file or directory. In particular, the metanode role is assigned
based on the first-touch policy, i.e., the first node who accesses the file will act as its
metanode, defined by a specific (metanode) token. Other clients that access a file
or directory with an active metanode initially request a metanode token from the
token manager, receiving the active metanode’s identity instead for future requests.
When the metanode is inactive for 30 seconds a new metanode is selected from the
accessing clients. Therefore, all metanode processes can locally read and update the
directory’s metadata, including directory blocks. On the other hand, non-metanodes
have to send requests over the network for the same tasks. This advantage of the
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Fig. 4.5. – Investigation of the running per-process create performance in a single experi-
ment with 4 clients and 16 processes per clients where 2 million files are created
in total. Each line represents a single process while its color visualizes its client
affinity: Lithium (purple), neon (red), chlorine (orange), and boron (blue). Every
data point shows the create performance per-process for the last five seconds.

metanode suggests that exactly one client should outperform all of the others at any
time and, in fact, this can be seen in Figure 4.5.

Second 385 shows the first acting metanode (lithium) finishing its workload. After a
grace period of 30 seconds, a new metanode is selected out of the remaining clients,
called a metanode transition. While the metanode’s create performance does not
seem to influence the other clients, it conversely improves the fewer clients that are
actively creating files. This is especially visible in the last seconds of the experiment
where a single client is left to finish its workload. The above assumption can be
confirmed by investigating the traces. In Section 4.4, we will further investigate
metanode performance with trace analysis and point out what is causing the above
described behavior.

What is left to explain is the poor performance of all clients during the first 60
seconds of the experiment in which only approximately 8,000 files are created (refer
to Figure 4.5). We can explain this behavior when we remember that a directory can
remain in either of the two locking modes: Byte-range locking and FGDL, described
earlier in Section 2.5.4. By default, the former is used for any file whereas directories
are able to transition into FGDL at a later time. FGDL is a recent feature, specifically
designed to improve file create performance. Considering that the directory starts
off in byte-range locking mode, there has to be a mechanism which also triggers
the transition into FGDL. Because mdtest’s results cannot provide an answer for
this issue, deeper investigation is needed to understand this mechanism which we
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will further discuss in Section 4.2.2. However, we forestall that traces can indeed
confirm that the directory remains in byte-range locking mode for the first ~8,000
files being created. A directory block can contain thousands of entries, each of them
representing a file in the directory. The byte-range locking mode forces every process
to request an exclusive write token to modify the directory block in which an entry
will be inserted, essentially serializing the access to the directory block. During that
time tokens will be granted to a client but invalidated almost immediately when
other clients also require access to the same directory block. Therefore, leading
to countless token conflicts (known as token thrashing) and many token requests,
slowing down overall performance significantly, as can be seen in the first minute.
This also explains why experiments with a single client are not expressing a similar
issue since an exclusive write token has to be granted only once.

4.1.6 Logging

In the previous section, we have examined the overall create performance in a four
client experiment and interpreted the behavior solely with modified mdtest’s results
which we could also confirm with traces. However, we did not discuss the cause
of small performance fluctuations that can be observed at any data point for every
client (see Figure 4.5). Apparently, every process experiences a shift of up to ~30
creates per second in both directions in consecutive data points. One possible reason
for this behavior could be the flushing of dirty inodes and directory blocks from
memory to disk, disrupting file creation every few seconds. This process can be
invoked by three conditions: Firstly, a node has to flush dirty data when it runs
out of memory. However, since inodes and directory blocks are relatively small in
size (in our case with 4 KiB and 256 KiB, respectively) and each client has 15 GiB
of memory available, it is unlikely that it runs out of memory with a workload of
2 million files. The second mechanism is a periodic background synchronization
feature which is triggered for metadata every 30 seconds to ensure consistency of
the file system. Nonetheless, the fluctuations can be observed much more frequently.
Finally, the last mechanism, the so-called log wrap, triggers the flushing process as
soon as the journal is full.

When log records are written they are initially stored into a log buffer in the memory
of a client. Its size is dependent on the configured block size of the file system.
When the log buffer is full it is flushed to an on-disk circular log whereas its size is
configurable per file system2. The data on the circular log can only be discarded if its
contents are already consistently stored on disk. As long as the on-disk log and buffer
are full no file is allowed to be created. When this occurs, log-wrap is triggered.
In the current state of Spectrum Scale, a single process is assigned to flush the log

2Our file systems use a log size of 16 MiB.
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by requesting the daemon process to send the I/O request to the NSD server node.
During the flushing of log records the daemon blocks further execution until the I/O
is complete to preserve atomicity. Unfortunately, mdtest’s results in conjunction with
different file system configurations do not allow a complete explanation without a
deeper investigation into trace information which we will discuss in Section 4.4.5.

4.1.7 Directory block splits

The earlier presented Figure 4.5 shows not only constant fluctuations in creates per
second but also occasional and sudden performance drops. Interestingly enough,
we observed these dips (c.f. to Figure 4.5 at seconds 210, 300, and 525) in ev-
ery experiment at a similar number of created files. This behavior can best be
seen in experiments with a single active client since it does not express token or
metanode communication as visualized in Figure 4.6. The given figure presents
the abovementioned problem and shows an experiment with 44 HDDs whereas 1
client with 16 processes creates 2 million files. The x- and y-axis representation is
equal to Figure 4.5. Earlier in Section 2.5.4 we elaborated on the complexities that
arise during a directory block split. In summary, a split causes Spectrum Scale to
invalidate all FGDL tokens corresponding to the affected directory block from all
non-metanodes as the metanode requires exclusive access to it. Any client trying to
create a file with a filename that hashes to this directory block has to wait until the
metanode completes the directory split.

Due to the randomness of hashing it is reasonable to assume that all directory
blocks fill up equally, blocking all clients to create files at roughly the same time
due to directory block splits. Moreover, each event is splitting twice as many blocks
than previously, prolonging the required time to split all blocks. This can be easily
observed in Figure 4.6 as every dip introduces a greater drop in performance than
the prior one. Supposing the above also implies that all directory blocks can contain
twice as many entries and files than after the preceding split because the number of
blocks is doubled with each split. This would allow us to predict future directory
block splits at a particular number of files. However, according to Figure 4.6 this
is clearly not the case. As it turns out, the original implementation of mdtest
generates filenames of increasing length depending on the numbering of the file.
The benchmark labels the filename with the process number and the proceeding
file number. Thus, the longer the experiment runs the longer the filenames will be,
resulting in larger directory entries. Consequently, we suspected that more entries
can be placed into a directory block in the beginning of the experiment (rather than
the end) due to the increasing filename length.

In order to confirm the above stated assumption, we adjusted mdtest for generating
filenames of equal length (30 characters) throughout the experiment (see Figure 4.7).
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Fig. 4.6. – Investigation of the running per-process create performance in a single exper-
iment with 1 client and 16 processes where 2 million files are created in total.
Every data point shows the create performance per-process for the last five sec-
onds. In the beginning of the experiment files with a shorter filename length are
created compared to the end of the experiment.
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Fig. 4.7. – Investigation of the running per-process create performance in a single exper-
iment with 1 client and 16 processes where 2 million files are created in total.
Every data point shows the create performance per-process for the last five sec-
onds. Files with an equal filename length are created throughout the experiment.
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Fig. 4.8. – Investigation of the running per-process create performance in a single experi-
ment with 1 client and 16 processes where 2 million files are created in total with
pre-allocated directory blocks. Every data point shows the create performance
per-process for the last five seconds. Files with an equal filename length are
created throughout the experiment.

Spectrum Scale’s own tsdbfs tool revealed that the file system allocates multiples
of 16 bytes for the filename (with a minimum of 32 bytes). Over the course of the
original mdtest experiment, filenames consumed 32 to 64 bytes of space. With the
modified mdtest, all filenames consumed a constant amount of 64 bytes. While
obviously reducing the number of files per directory block, the latter experiment also
sped up the initial byte-range locking mode duration by 30 seconds. Considering that
the first split now happens with approximately 4,000 files created3, we concluded
that the splitting event at second 220 generates 512 directory blocks in total that
contain up to almost two million files. Towards the end of the experiment, we can
observe another directory split containing the remaining number of files that did
not occur in earlier experiments with the same workload. Due to the additional
block split the runtime is also reduced by 1.7% in respect of the experiment shown
in Figure 4.6. Finally, traces can confirm this behavior.

Assuming an average per-thread performance of 305 creates per second and ne-
glecting the need of directory splitting, we could see an improvement of up to
4% in total runtime when compared with the experiment shown in Figure 4.64.
Unfortunately, Spectrum Scale provides no functionality, such as pre-allocating a
number of directory blocks in advance. Furthermore, Spectrum Scale collapses and

3These numbers only apply for file systems with a block size of 256 KiB and with a filename length
that requires 64 bytes in a directory entry.

4We did not calculate the theoretical runtime in the scenario of multiple clients due to unforeseeable
behavior of non-metanodes and token traffic.

40 Chapter 4 Results and discussion



merges splitted directories as soon as enough files are removed from the directory by
default, which we disabled with a particular configuration. Thus, with further mdtest
modifications, we could evaluate experiments whereby all required directory blocks
were already allocated in the beginning of the experiment (see Figure 4.8). Despite
using pre-splitted blocks, we are not able to observe a noteworthy performance
improvement. In fact, the overall creates per second for each process is slightly lower
than before. This was especially apparent in multiple client experiments whereas
create performance steadily decreased over time for the metanode. Considering that
enabling the mentioned mechanism is not the default, we did not deeper investigate
this behavior.

Furthermore, we evaluated the total number of files that a directory can contain
with a filename length of 64 bytes. In concept, assuming a maximum of 220 directory
blocks (see Section 2.5.3) and a file system block size of 256 KiB, a directory can
contain up to 232 files with a filename length of 64 bytes. However, since this number
exceeds the 32 bit offset to the readdir() function [28], the real limit decreases to
231 files.

4.1.8 Inode pre-allocation

As described in Section 4.3.2, the first step in creating a file is to allocate the
corresponding inode. When creating a Spectrum Scale file system, the user is
allowed to set the maximum number of available inodes as well as the number of
pre-allocated inodes. The former configuration prevents applications from running
out of inodes which would prohibit the creation of files and directories regardless
of available disk space5. If the number of pre-allocated inodes is not given by the
user, Spectrum Scale will set it accordingly, depending on the maximum number of
inodes. When no more pre-allocated inodes are available the allocation manager
will allocate a batch of inodes automatically, called inode expansion. This method
avoids lock conflicts on the inode allocation map which would occur if each process
tried to allocate its inode individually. Logically the inode allocation map is a bit
map in a sparse file whereas its logical size is dependent on the maximum number of
inodes. An inode remains in one of four states, represented as bit pairs: In-use, not
in-use, being-created, and being-deleted. The last two states are transitional because
of situations that make atomic allocation and deletion ineligible.

When creating a file Spectrum Scale has to ensure that two nodes are not using the
same inode. The file system solves this issue by locking the inode allocation map.
However, locking the whole map would results in a lock conflict on every access.
For this reason, it is by default divided into 32 separately lockable segments. The

5The maximum number of inodes can also be updated after the creation of the file system.
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Fig. 4.9. – Investigation of the running performance of two experiments, each creating 2
million files in total with a single client and 16 processes. Every data point shows
the create performance of all processes for the last five seconds. The experiment
(shown in red) had enough inodes pre-allocated while the client in the other
experiment (shown in blue) had to expand the inode allocation map several
times (pointed out with arrows).

number of segments is dependent on the expected number of used nodes in the file
system which can be set by the user when creating the file system. In order to further
reduce locking conflicts on the segments, clients try to lock the same segment as
long as free inodes are available in them. Therefore, the allocation manager node
has to lock the whole map in order to expand all segments equally. As a result, all
clients have to wait until the process is finished, blocking operations that require
access to the inode allocation map.

Toward analyzing the impact of expanding the inode allocation map, we executed
two types of experiments: Firstly, with enough pre-allocated inodes available and,
secondly, with the reverse case where only 500,000 inodes are allocated and the
inode allocation map need to be expanded during the file create process. The
Figure 4.9 exemplarily compares two experiments in which a single client was used
for creating two million files. For clarity, all processes are merged together and the
corresponding inode expansion events are pointed out. In the cases of one and two
participating clients inode expansion accounts for ~4% and ~1.2% of performance
degradation, respectively. Note that inode expansion and directory block splits can
overlap (see seconds 120 and 230 in Figure 4.9). In the case of four clients we
found that inode expansion does not measurably impact the total runtime in our
experiments.
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4.1.9 CPU utilization

Although the file creation task has not been found to be particularly CPU demanding,
extensive monitoring shows a different CPU utilization based on the node role: In a
4 client experiment with 16 processes per client, non-metanodes and NSD servers
almost never exceeded 5% and 2% of total CPU usage, respectively. The metanode
consistently showed a total CPU utilization of ~20%6. This increase of CPU usage
can be explained by the requests that the metanode has to answer.

We evaluated the impact of the CPU speed by decreasing the maximum clock fre-
quency for all abovementioned node roles. However, this did not measurably
influence the runtime of our experiments. As a result, we did not further investigate
CPU utilization. Nonetheless, the CPU can play a bigger role in environments where
hundreds of nodes are participating in the file create process in which the metanode
has to respond to many more nodes than in our test cluster, potentially becoming
overwhelmed in the process.

4.1.10 Performance of varying storage

Before starting with the trace analysis, this section investigates the impact of different
storage subsystems on the overall performance of creating two million files in a single
directory. Each workload was run 10 times repeatedly for each storage subsystem
with 1, 2, and 4 participating clients. Five different storage systems were used: 44,
22, and 11 HDDs, as well as 2 SSDs, and 2 RAMDisks. As described in Section 3.1, the
HDDs are enclosed in a storage array, protected by a shared non-volatile cache, and
redundantly accessible through both NSD servers. However, the SSDs and RAMDisks
are not part of this architecture as one SSD or RAMDisk is directly connected to
each NSD server. Therefore, each SSD and RAMDisk is only accessible through
their controlling machine. Note that each storage subsystem requires a separate file
system.

Figure 4.10 presents the create performance of all above experiments. The x-axis
shows the five storage subsystems whereas the y-axis represents their creates per
second. Each data point represents the average creates per second over 10 iterations,
including the corresponding standard deviation.

All storage subsystems show consistently that four clients require considerably more
time to finish their workload as compared to others. Furthermore, all storage
variations express similar performances for the number of used clients, suggesting
that the creates per second are not limited by the I/O latency in our test cluster

6One and two client experiments expressed a similar CPU utilization.
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Fig. 4.10. – Spectrum Scale’s file create performance for creating 2 million files on different
storage subsystems with a varying number of participating clients and 16
processes used per client. Each data point shows the average creates per second
over 10 experiments.

setup. However, it is important to note that all HDD configurations represent the I/O
performance of the non-volatile controller cache rather than the hard disk’s. This is
because data written to the cache is already considered persistent, although it may
not have been stored on the hard disks. In this case the cache size is sufficient to
buffer the written data, explaining the similar performance compared to SSDs and
RAMDisks.

4.2 Trace analysis
In the previous section we have seen how the modified mdtest can be used to make
certain assumptions about the metanode’s behavior. However, mdtest is not only
a tool for a black box create performance evaluation, but is also useful for trace
analysis. For instance, the modified mdtest helps us to understand at what time
during an experiment a particular event happened which we can then easily analyze
with the generated traces. As described in detail in Section 3.2.1, the wrapper scripts
of the modified benchmark enables tracing automatically during the create process
which allows to align the timestamps of the modified mdtest with those of the traces.
In the following sections, we will discuss challenges that arise when working with
traces and investigate when Spectrum Scale is switching from byte-range locking to
FGDL mode.
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4.2.1 Performance degradation

Spectrum Scale provides two tracing modes: blocking and overwrite. The former
is used by default and collects traces in a configurable buffer of up to 16 MiB.
Flushing the buffer to the disk causes all applications to be temporarily blocked. This
implies that increasing the output (e.g., by enabling a large number of trace points)
negatively affects the file system’s performance. Consequently, the blocking mode is
only applicable if either the performance is of no interest or if the storage system is
fast enough to prevent application blocking. The overwrite tracing mode does not
issue any I/O to the underlying storage and instead utilizes a ring buffer in memory,
beneficial for preserving the file system’s performance. When the ring buffer is filled
it continues writing from the beginning of the buffer, overwriting previous collected
trace records. Because a 16 MiB buffer (by default) is saturated almost instantly it
can be set to a higher size to guarantee that no information is lost. When tracing
is stopped all traces are flushed to the disk in a compressed state on a per-client
basis.

Unfortunately, two million created files are already generating too many traces even
with a single subsystem active, despite an overwrite buffer of 8 GiB, which already
accounts for half of each client’s memory. This led to the decision to reduce the
workload to half of a million files, which is still an adequate number to provide a
stable latency distribution over multiple executions (refer to Section 4.4). However,
reducing the workload only solves a part of the problem since the trace size is not the
only concern. File create performance can already degrade if only two subsystems
with a high level of details are enabled. For instance, an experimented created 2
million files with 4 clients and all traces enabled in overwrite mode with a level of
detail of 8 and required over 26 hours to complete with an average of 21.8 creates
per second. This corresponds to a slow-down of a factor of 120 in comparison to an
experiment without tracing enabled, taking only ~13 minutes to complete. Although
this is an extreme example, it shows how expensive tracing can be even without the
additional I/O caused by the blocking mode.

Nonetheless, in most use cases the user is not interested in a large number of trace
records which are provided by a single subsystem. Usually, a whole subsystem is
activated just for the sake of a single trace message, leaving much overhead due to
the remaining, undesired messages. However, Spectrum Scale does not yet provide
a mechanism to specifically turn on a particular trace. Such an option could not only
benefit analyses of specific bottlenecks but might also introduce the possibility of
enabling tracing in productive environments, as the performance degradation of a
single trace message is negligibly small.
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Fig. 4.11. – Number of files that are required to transition into FGDL for all available block
sizes in Spectrum Scale.

4.2.2 FGDL and file system block size

In Section 4.1.7 we showed that directory splits are responsible for sudden perfor-
mance drops although they do not account for much of the overall runtime. We
observed that the performance increase of FGDL aligns roughly to the first direc-
tory split, concluding that FGDL is enabled as soon as two directory blocks are in
use. Thus, different block sizes should have an influence on the time when FGDL
is activated because smaller blocks need to be split sooner. For file systems with
a block size of 256 KiB, the modified mdtest shows that FGDL is activated after
approximately 4,000 files are created with a filename of 64 bytes (confirmed by
traces). Therefore, file systems with a block size of 128 KiB should transition into
FGDL after 2,000 files are created whereas more files need to be created for larger
block size file systems, prolonging the byte-range locking phase. Figure 4.11 presents
different Spectrum Scale file systems with all its supported block sizes and points
out how many files are required to trigger the transition into FGDL. As expected,
directories in file systems with a block size smaller than 256 KiB transition into FGDL
with less files. However, this is apparently not the case for larger block sizes. In
addition, 8 MiB and 16 MiB block size file systems seem to start in FGDL mode from
the beginning of the experiment. This behavior can be explained considering that
Spectrum Scale is able to allocate smaller fragments of a block size for files. The size
of one fragment is 1/32 of the actual block. The main benefit of using fragments
instead of whole blocks is to save disk space. Without fragments large block size file
systems would waste a lot of space if the contents of a file only accounts for a few
bytes of disk space.
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The source code and traces revealed that a directory block usually corresponds to
the block size with an upper limit of 256 KiB. We found that Spectrum Scale enables
FGDL for a directory as soon as either the last fragment of a block is allocated
(applies to block sizes of 64, 128, and 256 KiB) or a fragment of a block is allocated
that would increase the size of the block to the largest allowed directory block size.
The latter applies for file systems with larger block sizes of 256 KiB as less fragments
are required to reach the maximum directory block size. For example, with a block
size of 2 MiB the third fragment corresponds to 192 KiB, allowing up to 3,000 files
to be created. The fourth fragment already allocates the complete directory block
with 256 KiB, enabling FGDL with 3,000 files in the directory (see Figure 4.11).
Therefore, FGDL is enabled before the first directory split, which is only triggered
when the directory block is completely filled with entries. For file systems with a
block size larger than 4 MiB, the first fragment accounts for at least 256 KiB, which
is the reason FGDL is immediately in-use with the first fragment.

From Spectrum Scale version 4.2 onwards the parallel file system introduced a
new configuration setting, called AvoidDirFragments. It disables the allocation
of fragments in the case of directory blocks only. Therefore, the first directory
block is always completely allocated when a directory is created, resulting in the
immediate use of FGDL for the first created file in the directory, regardless of the
block size. However, our test cluster uses Spectrum Scale version 4.1.1 in which
this configuration is not yet available. Nonetheless, we were able to confirm the
benefit of AvoidDirFragments on an IBM test cluster with an installed Spectrum Scale
developer version.

4.3 File create protocol
The creation process, initialized by an open() (with an O_CREAT flag) or creat()
(deprecated) system call, involves three consecutive VFS function calls:

Lookup – gpfs_i_lookup()

The function is called when the file system needs to look up an inode in a
parent directory. The path and filename to look up are given in an otherwise
empty dentry object. The function is called for every directory in the path
while their dentry objects will be cached for future lookup calls. The lookup
returns a positive error code and the found inode in the given dentry if the
lookup succeeds. Otherwise, a negative error code (ENO_EXIST) is returned
with a NULL inode in the given dentry object – the so-called negative dentry.

Create – gpfs_i_create()

The function is called when the file system needs to create a new inode in
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a parent directory. The given dentry is a negative dentry. The function will
return the dentry with a newly created inode if successful.

Open – gpfs_f_open()

The function is called when the file system needs to open an inode in a
parent directory. The function creates a new file object and links it to the
corresponding inode object. The existing inode and empty file objects are
given as arguments. The function will return the newly initialized file object if
successful.

In the following sections, we will present the logical tasks for the creation of a file
in the successful case, that is, the lookup returns a negative dentry and the file can
be created. As we will see in Section 4.4, gpfs_f_open() hardly contributes to the
total time required to create the file. As a result, we did not further investigate
the performance of gpfs_f_open() and its protocol as part of this study. The
protocols for gpfs_i_lookup() and gpfs_i_create() were achieved by creating
the corresponding call graphs with the help of traces and manually investigating
the source code. Each logical task represents a particular abstracted segment of the
create process and contains a number of subsequent functions calls.

4.3.1 Lookup

The lookup is executed in the kernel-space, except where indicated otherwise. The
following enumeration presents the logical tasks of gpfs_i_lookup().

1. Fast lookup
Firstly, the client tries to quickly look up a file in a directory. It is an optimistic,
fast version that only targets a single directory block. However, there are a
number of conditions that have to be met beforehand. Among others, those
conditions require that the directory inode and directory block are already
cached and valid. For file creation this is generally not the case. If at least one
condition is not met, the fast lookup is skipped.

2. Lock the directory file
The client obtains a read-only lock on the directory inode in which a file is
looked up to access the permission data on the directory and ensure that other
nodes cannot delete the directory while the client has a lock on it.

3. Verify permissions
The client verifies that the process can be granted access to look up the file in
the directory.
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4. Acquire FGDL token and directory entries
The client hashes the filename and determines (with extentible hashing) in
which directory block it should reside. Next, the client sends a message to its
daemon to acquire an FGDL token for the corresponding directory entry of the
filename. Because the client might create a file later, implying the insertion
of a new entry into the directory block, it always requests an exclusive-write
token (although it would only require a read-only token for looking up the
file). After obtaining the token, the daemon will request the directory entries
of the whole block from the metanode and cache them. If the client is the
metanode, it will have local access to all up-to-date directory blocks.

5. Lock the directory block
The client obtains a read-only lock on the directory block that it retrieved in
the fourth task. If the FGDL token is invalidated between the two tasks, it
will repeat the prior task. In addition, the file system will drop access to any
previously locked block.

6. Search for the filename in the directory block
Before the client searches for the filename, it verifies that the correct block is
locked multiple times and checks for directory corruption, for example. Next,
the client looks for an entry that matches the searched filename in the looked
directory with the help of a hash table. The hash table avoids the need to
iterate over all entries in the block. If the filename is not found, the function
will return E_NOENT.

7. Release locks
Finally, the client releases all locks that it has obtained earlier. Note that it
does not release the obtained tokens.

4.3.2 Create

The gpfs_i_create() function is run in the kernel-space while, in the beginning,
sending a message to the Spectrum Scale daemon. The whole create process is then
executed in the Spectrum Scale daemon (user-space) as it is allowed to do I/O. Thus,
the following logical tasks are an excerpt of the daemon’s functionality to create a
file.

1. Allocate inode
The client obtains a token for a particular segment of the inode allocation map
and locks it. If there is no free allocated inode available, it will first try to
target other segments which may be locked by other clients. If there are still
free allocated inodes available, it will choose a free one randomly and set it
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to the transitional state being-created. If approximately 80% of the allocated
inodes are in use, the inode allocation map expansion is triggered. In addition,
parts of the log buffer are reserved and the corresponding records are written.

2. Lock file and directory file
The client obtains a read-only lock on the directory inode, similar to the second
task in the lookup process. Furthermore, it requests a token for the allocated
inode and locks it.

3. Get the inode of the directory
The client validates the cached inode of the directory. If it is not valid and the
current node serves as the metanode, it will be read from disk and revalidated.
Non-metanodes request the metanode to send them the up-to-date inode.

4. Acquire FGDL token and directory entries
If the client has lost the FGDL token between the lookup and the create
function, it will request the FGDL token again and the metanode to send
the entries of the corresponding directory block, similar to the fourth task of
gpfs_i_lookup().

5. Search for the filename in the directory block
The client acquires a read-only lock on the directory block and searches for the
filename, similar to the sixth task of gpfs_i_lookup().

6. Various verifications
The client verifies various properties: For example, it checks that the inode of
the new file is valid and not in use, it verifies that the filename does not exist
in the parent directory again, and that the process is allowed to create files in
the parent directory.

7. Create metadata of the new file
The client initializes the metadata in preparation for a new file that is being
created. Inode header fields will be initialized and metadata attributes set,
such as creation date and time.

8. Reserve space in the directory block (metanode only)
The metanode of a directory reserves space for a new entry in the corresponding
directory block. If the directory is in FGDL mode and the directory block cannot
contain additional entries, it will split the block. Splitting is done by copying
the directory block and removing those entries which do not belong in either
block, being determined by extendible hashing. After the split is finished, the
metanode flushes its buffer, writing any required log records to the disk. Until
the split is finished no entries can be added to the affected blocks.
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9. Ask metanode to reserve space in the directory block (non-metanode only)
Non-metanodes will request the metanode to reserve space for a new entry in
the corresponding directory block on their behalf.

10. Finish file create and finalize log
The client finishes the initialization of the cached inode and marks it as dirty.
In addition, parts of the log buffer are reserved and records are written for the
directory block changes and the inode updates.

11. Insert entry into the directory block
The client updates the directory block with the new entry for which it has
reserved space earlier and marks the directory and inode update as complete.
Log records describe the directory block change. Note that the non-metanodes
do not explicitly send a message to the metanode that describe the directory
block insertion within the create process. Instead, when the flushing process
is triggered on non-metanodes by one of the three mechanisms discussed
in Section 4.1.6, the writing of the corresponding directory blocks will be
redirected to the responsible metanode that collects all directory updates.

12. Release locks
The client indicates that the update to the cached inode and directory block
was successful and that the corresponding log records have been written. In
addition, the inode state is changed from being-created to in-use. Finally, the
client releases the log reservation and all locks. Then, it sends a message back
to the kernel process that the file was successfully created, initializing the
corresponding virtual inode.

4.4 Latency distribution
In the previous sections, we analyzed the overall create performance in different cases
and presented reasons that explain Spectrum Scale’s behavior at any time during an
experiment. In addition, we looked at potential performance degrading mechanisms,
such as directory block splits. Finally, we introduced the internal file create protocol
of Spectrum Scale whose logical tasks are needed in the following sections to
understand the time consumption in each step by presenting their corresponding
latency distribution. It is important to understand that a latency distribution cannot
provide data about parallelism as each task will be treated individually. Thus, we
are able to understand which tasks are the most time expensive ones, allowing us to
point out bottlenecks that might be worth optimizing. In the following sections, we
discuss the latency distributions for the most important logical tasks of the lookup
and the create processes. In addition, we investigate logging and I/O performances
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on different storage hardware. Except otherwise indicated, all experiments create
500,000 files on 44 HDDs. We will show a varying number of clients, whereas each
client always runs 16 processes.

4.4.1 Constraints

Generating latency distributions is subject to unavoidable constraints because they
can only be created by analyzing and processing trace records. For example, enabling
traces on a Spectrum Scale cluster is an asynchronous process since every client
writes its own trace file, resulting in slightly different starting times of up to a few
seconds.

Other difficulties arise from potential performance degradations caused by tracing in
general. As discussed previously in Section 4.2.1, collecting many traces can have
a disastrous effect on the creates per second in an experiment and may introduce
storage issues when using overwrite mode due to the danger of overwriting traces
in the buffer. In consequence, we used a workload of 500,000 files and carefully
evaluated the appropriate trace subsystems and levels of detail for investigating
each logical task to preserve create performance as best as possible. However, this
led to the inconvenience of executing multiple experiments for creating the latency
distribution of consecutive or connected logical tasks. For example, two experiments
with different trace submodules enabled had to be run for evaluating the tasks of the
lookup function. Nonetheless, we treat the impact of this inconvenience as negligible.
In all our experiments, Spectrum Scale provides a consistent performance, producing
almost identical latency distributions for repeated benchmark executions, including
smaller workloads of 100,000 files.

Moreover, a latency distribution can only be provided for a single experiment due to
preserving comparability and correctness. Consequently, we will only exemplarily
show a single experiment per investigation, i.e., experiments with a specific trace
subset enabled, in the following sections. They represent one latency distribution
out of the dozen that we have generated in our analysis while the differences in time
consumption of each logical task is minor and generally consistent.

4.4.2 VFS layer

Initially, we traced the virtual file system layer of Spectrum Scale which repre-
sents the entry point of Linux VFS to Spectrum Scale VFS for achieving a first
overview of the latency distribution for each file create. As described in detail in
Section 4.3, the create process involves the three consecutive VFS function calls
lookup(), create(), and open() that correspond to the Spectrum Scale VFS func-
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Fig. 4.12. – Latency distribution of a single client creating 500,000 files. Each entry in
a bucket corresponds to the time a file consumes to be created, i.e., from
gpfs_i_lookup() until gpfs_f_open(). The total number of entries of each
bucket is placed above each bar.

tions gpfs_i_lookup(), gpfs_i_create(), and gpfs_f_open(). In the following
paragraphs, we will present the results for a complete and successful file create
process with one, two, and four clients, involving all mentioned functions.

Figure 4.12 visualizes the distribution of one client for the create process, i.e.,
the time required from the call of gpfs_i_lookup() until the completion of
gpfs_f_open(). The x-axis lists an array of bins, representing the latency (or
time) that was measured for the tracked event. The scale starts at 70 µs and in-
creases non-linearly to 500 ms7. With this scale we are able to distribute all latencies
appropriately while each entry is matched to its bin, determined by rounding its
value. The number of entries per bin are represented as bars whereas they are
aligned to the primary, left y-axis. The green line represents each bin’s contribution
to the total time, aligned to the secondary, right y-axis. Furthermore, we exclude
the traces of the beginning of an experiment in all following latency distributions
because of token trashing. Token trashing is caused by byte-range lock conflicts that
does not show the sustained case on which we are focusing on. Moreover, IBM seems
to be aware of this problem as they already introduced functionality in order to use
FGDL from the very beginning (see Section 4.2.2). Hence, the latency distributions
are generated for the duration of an experiment in which FGDL is activated, resulting

7The scale does not show the bins from 1 to 60 µs as they do not contain any entries.
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Fig. 4.13. – Latency distribution of two clients creating 500,000 files. Each entry in a
bucket corresponds to the time a file consumes to be created, i.e., from
gpfs_i_lookup() until gpfs_f_open(). Stacked bars are used to show the
most represented client in each bin. The total number of entries of each bucket
is placed above each stacked bar.

in slightly less than 500,000 entries. The information for this interval is provided by
the modified mdtest.

According to Figure 4.12, most files in the single client experiment require between
200 µs and 400 µs, which all together contribute to almost 90% of the total time.
Also, 171 files took 20 ms, accounting for already 3% of the time. Next, we compare
the distribution of one client with Figure 4.13 in which two clients were used for the
same workload. In this context, there are two effects to mention: Firstly, both clients
show different create performances as they are not equally represented in each bin.
This fact is also observable from the modified mdtest’s results because one client is
acting as a metanode first, achieving higher creates per second. In this particular
experiment, the boron client was selected to be the first metanode, populating the
bins 300 µs to 500 µs, while the chlorine client during that time achieved only a
performance of 600 µs to 800 µs per file. However, chlorine was also faster than
boron at some point in the experiment, visible by the entries in the bins 200 µs
and 300 µs. These entries correspond to the time frame when boron was already
finished with its workload and chlorine could finish its files without any other client
interfering in the process. In Section 4.1.5, we presented a similar case with four
clients whereas the last remaining client showed single client create performance
towards the end of the experiment.
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Fig. 4.14. – Latency distribution of four clients creating 500,000 files. Each entry in a
bucket corresponds to the time a file consumes to be created, i.e., from
gpfs_i_lookup() until gpfs_f_open(). Stacked bars are used to show the
most represented client in each bin. The total number of entries of each bucket
is placed above each stacked bar.

The second effect corresponds to all bins from 1 ms to 500 ms, showing that only
~13,000 files (~2,6% of the workload) consume almost 30% of the total time.
Observing the latency distribution for four clients, as evident from Figure 4.14,
shows that this effect is getting worse with additional clients participating in the
experiment. We can observe ~50,000 files (10% of the workload), henceforth called
outliers, scattered onto the bins from 1 ms to 500 ms, contributing to ~62% of
the total time. This behavior also explains why two clients are showing a better
performance than four clients (refer to Section 4.1.4). However, it is important
to note that these outliers clearly represent two groups: The first group (bins 70
ms to 500 ms) accounts for ~31% of the time with only 1,337 files (~0.3% of the
workload). The second group (bins 1 ms to 60 ms) contributes also to ~31% of the
total time but with ~48,500 files (~10% of the workload). All clients are represented
equally in the first group while the entries in the second group contain mostly non-
metanodes. In addition, the number of entries in the second group seems to correlate
with the amount of time a client spent as a non-metanode during the experiment. In
summary, both groups show a large relevance to the total runtime in an experiment
and will be further investigated in the following sections to understand their cause.
Furthermore, we will focus on experiments with four participating clients since they
show the outliers most clearly.
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VFS functions
44 HDDs used 1 client (in s) 2 clients (in s) 4 clients (in s)

1. gpfs_i_lookup() 14.6% (~19) 55.7% (~164) 75.2% (~507)
2. gpfs_i_create() 61.3% (~82) 34.8% (~102) 20.8% (~140)
3. gpfs_f_open() 24.0% (~32) 9.5% (~28) 3.9% (~26)

Tab. 4.2. – Time distribution for the sequentially called Spectrum Scale VFS functions
gpfs_i_lookup(), gpfs_i_create(), and gpfs_f_open(). Different experi-
ments are shown per column while their rows display the total time each
individual function call consumed.

In the first step, we measured the three VFS functions separately to understand
if only one particular task is responsible for these outliers. Thus, we created the
latency distribution for experiments with different numbers of clients for each of the
three functions, which revealed that only gpfs_i_lookup() was causing them. For
the gpfs_i_create() function, ~3200 entries were placed into the same bins like
those of the outliers. However, they did only account for ~2.8% of the total time.
The gpfs_f_open() function did not show any outliers. The latency distributions of
the three Spectrum Scale VFS functions in a four client experiment are shown in the
appendix (refer to Figures A.1, A.2, and A.3).

According to the time distribution Table 4.28 (based on their corresponding latency
distributions), the more clients are used in an experiment the higher is the percentage
of the total time that is consumed only by the gpfs_i_lookup() function. In absolute
numbers, we can observe that the gpfs_f_open() function requires the same amount
of time, regardless of the number of clients used in the experiment, suggesting that it
only operates locally. The amount of time that is required by the gpfs_i_create()
function increases more linearly with the number of participating clients compared to
the exponential time increase for the gpfs_i_lookup() function. Therefore, we will
firstly investigate the gpfs_i_lookup() function’s behavior to clarify what is causing
the abovementioned two groups of outliers in the following sections. Later, we
analyze the gpfs_i_create() function to understand which logical tasks consume
most of the total time while focusing on the tasks that do not scale. Because of the
increasing insignificance of the gpfs_f_open() function in accordance with a higher
number of clients (see Table 4.2), we did not further investigate its logical tasks as
part of this thesis.

4.4.3 Lookup

As shown in Section 4.3.1, we divide the lookup function into seven subsequent
logical tasks. These were analyzed for experiments with 1, 2, and 4 clients, each

8Similar time distributions for 2 SSDs and 2 RAMDisks of Spectrum Scale’s VFS functions are listed in
the Appendix (see Tables A.1 and A.2).
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gpfs_i_lookup() tasks
44 HDDs used 1 client (in s) 2 clients (in s) 4 clients (in s)

1. Fast lookup 57.9% (~8) 2.5% (~4) 0.6% (~3)

2. Lock the directory file 5.4% (~1) 0.5% (~1) 0.2% (~1)

3. Verify permissions 0.6% (<1) 0.1% (<1) 0% (<1)

4. Acquire FGDL token
and directory entries

2.8% (<1) 91.6% (~148) 97.5% (~435)

5. Lock the
directory block

12.6% (~2) 3.1% (~5) 0.9% (~4)

6. Search for
the filename
in the directory block

13.8% (~2) 1.5% (~2) 0.5% (~2)

7. Release locks 8.0% (~1) 0.8% (~1) 0.3% (~1)

Tab. 4.3. – Time distribution for the sequentially called gpfs_i_lookup() functions. Differ-
ent experiments are shown per column while their rows display the percentage
of the total time each individual function call consumed, including their absolute
numbers in seconds.

with a total workload of 500,000 files. Table 4.3 presents the time distribution for
all tasks of the three experiments9. In experiments with 2 or 4 active clients, task 4
accounts for almost the total lookup time with 97.5% and increases exponentially
with the number of clients. Both groups of the previously mentioned outliers are
caused by this task. Toward understanding the origin of this behavior, we used a
conjunction of traces and the file system’s source code to determine the task’s exact
functionality.

Task four can be split into two consecutive operations: The acquisition of an FGDL
token from the manager node and the entries of their directory block from the
metanode. In the case of a client being the metanode of the directory, it only
has to request a FGDL token from the token manager to lock the corresponding
range afterwards. Generally, the client requests an exclusive token from the token
manager although it only requires a read-only token to look up the file. This is
because Spectrum Scale has, at this point, no knowledge about the client’s intentions
after the lookup. For creating a file later, the client would already possess a token
strong enough to update the directory entry. Otherwise, it would need to request an
exclusive write token later, implying additional network traffic. However, Spectrum
Scale is currently not using a mechanism allowing to make a more suitable token
choice under certain circumstances, as granting an exclusive write token might
induce an overhead if the client only looks up a file.

9Similar time distributions for 2 SSDs and 2 RAMDisks of gpfs_i_lookup() are listed in the Appendix
(see Tables A.3 and A.4).
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As soon as the metanode is in possession of the token, it can look for the filename
since it owns all up-to-date directory blocks10. Nevertheless, non-metanodes, in
addition to acquiring a FGDL token, need to request the metanode to send the entries
of the directory block in which the token was acquired. Those are necessary for
searching the entry of the corresponding filename in the directory block. In general,
the token and metanode requests are answered immediately by the token manager
and metanode, respectively, while some of them take longer and can be categorized
as the before mentioned outliers. In addition, we could observe that the metanode’s
respond times to client requests often differ, resulting in an up to 50% slower create
performance for some non-metanodes compared to others. Finally, various latency
distributions can confirm that delayed token responses are causing the first group of
outliers, while the second group accounts for slow responses of metanode requests.
This explains the earlier observation that all clients are represented equally in group
one whereas mostly non-metanodes can be found in the second group.

The delayed token responses of the first group of outliers are a result of token invali-
dations in which the token manager requests a particular client to revoke a set of his
tokens. For example, the token manager will request clients to invalidate specific
FGDL tokens if a directory block is split or if the metanode changes, potentially
also influencing lookup operations. We could count almost 2,000 individual token
revoke requests throughout an experiment. The second group of outliers is indirectly
caused by token invalidations as well. This has two reasons: Firstly, the metanode
has to execute a particular function (dgetentries()) that scans the entries of a
directory block. This can take up to five milliseconds and is frequently called in an
experiment. Secondly, all clients whose tokens got invalidated will have to reverify
all held FGDL tokens. The verification of a single token usually consumes less than
one microsecond. However, since the function is called for batches of FGDL tokens,
the required time can increase to up to five milliseconds. In a sample experiment,
we could observe ~310,000 batch executions with approximately 46,000,000 token
verifications in total.

On the other hand, the presumed block splitting is not responsible for most of
the time consuming token invalidations, as discussed in Section 4.4.4. Instead,
they are caused by a particular configuration: (fgdlleavethreshold), set to 1,000
by default, defining that Spectrum Scale transitions out of FGDL mode into byte-
range locking mode every 1,000 file creates. This transition is triggered frequently
throughout an experiment. The purpose of this configuration is that Spectrum Scale
can detect when the number of participating clients during file creation changes to a
single client [28]. In this case byte-range locking mode is more effective as processes

10Spectrum Scale tries to hold the directory blocks in memory, avoiding disk I/O as good as possible to
fetch directory entries. However, as seen from Section 4.4.5 many directory reads are issued.
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Fig. 4.15. – Latency distribution of four clients creating 500,000 files with
fgdlleavethreshold disabled. Each entry in a bucket corresponds to
the time a file consumes to be created, i.e., from gpfs_i_lookup() until
gpfs_f_open(). Stacked bars are used to show the most represented client
in each bin. The total number of entries of each bucket is placed above each
stacked bar.

do not have to request FGDL tokens since the client already holds a byte-range lock
on the whole directory.

Setting fgdlleavethreshold to zero disables this mechanism, resulting in a speed
up of a factor of two in our experiments with four participating clients. Because two
clients do not show many outliers and the configuration seems to only affect them,
the performance improvement is limited to the factor of 1.05. Also, with the disabled
configuration, four client experiments finish their workload slightly faster compared
to single client experiments. This was not the case in earlier experiments as a four
client experiment took significantly longer than one and two client experiments (see
Section 4.1.4). Moreover, almost all outliers disappear from both groups as seen
in the latency distribution, measured from gpfs_i_lookup() until gpfs_f_open(),
for four clients, in Figure 4.15. Finally, entries of the bins from 1 ms to 500 ms
now account for ~20% of the total time with ~3% of the workload. Although
these entries still correspond to task four of the lookup process, we did not further
analyze their cause as part of this study. However, we suspect that the remaining
outliers are caused by token invalidations due to directory splits and metanode
transitions. In addition, we could observe that setting fgdlleavethreshold to
zero reduces the minor performance fluctuations during the experiment that were
shown earlier in Section 4.1.5, resulting in a more stable performance per process,
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especially for non-metanodes (see Figure A.4 in the Appendix). In summary, with
fgdlleavethreshold disabled ~97% of the workload is bound by the network
latency, introduced by token and metanode communication, as the token manager
and the metanode generally answer requests without further delay.

From Spectrum Scale version 4.2 onward fgdlleavethreshold uses an advanced
algorithm that should greatly reduce the disruptive token revokes. The new version
no longer relies on the number of created files since its frequency increases with
better file create performance. Instead, it uses a time-based approach where the
directory transitions out of FGDL every 10 seconds by default [28].

4.4.4 Create

As shown in Section 4.3.2, we divide the create function into 12 subsequent logical
tasks. Their analyses involved experiments with 1, 2, and 4 clients participating in
creating 500,000 files. Table 4.4 presents the time distribution for all tasks of the
three experiments11. Apparently, two tasks (four and nine) are consuming an increas-
ing amount of time the more clients are participating in an experiment. All other
tasks require a similar amount of time. Similar to task four of the gpfs_i_lookup()
function, task four of the gpfs_i_create() function will search for the filename
in the directory block to verify that a file with the same name is not yet created.
This is necessary due to the separation of lookup and create in the Linux VFS which
Spectrum Scale has to implement. Consequently, there is the possibility of losing
the token between the two VFS functions and, furthermore, allowing other clients
to create the same file during that timespan. This is generally not an issue, visible
by the low amount of total time required by task four compared to the same task
in the gpfs_i_lookup() function. However, token invalidations can still occur due
to directory block splits and metanode transitions that cause the loss of a token
between the two VFS functions.

The second mentioned ninth task is also noticeable as it consumes more time with an
increasing number of clients. As shown in Section 4.3.2, task nine is executed by non-
metanodes only, requesting the metanode of a directory to reserve space for a new
entry. Naturally, single client experiments do not show any time consumption in this
step since only one client (its own metanode) is working for the whole experiment.
In multiple client experiments, the time needed for a request is introduced by
the network latency as well as the time that the metanode requires to complete
the request, which can be delayed due to directory splits or metanode transitions.
Although some requests (1%) take the metanode longer than 30 µs to answer, they
only account for less than 10% of the total time of the gpfs_i_create() function,

11Similar time distributions for 2 SSDs and 2 RAMDisks of gpfs_i_create() are listed in the Appendix
(see Tables A.5 and A.6).
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gpfs_i_create() tasks
44 HDDs used 1 client (in s) 2 clients (in s) 4 clients (in s)

1. Allocate inode 14.3% (~9) 9.2% (~9) 6.6% (~9)

2. Lock file
and directory file

9.4% (~6) 4.8% (~4) 2.4% (~3)

3. Get the inode
of the directory

24.2% (~16) 15.7% (~15) 12.4% (~16)

4. Acquire FGDL token
and directory entries

7.3% (~5) 19.8% (~18) 17.3% (~23)

5. Search for
the filename
in the directory block

4.0% (~3) 2.7% (~3) 1.8% (~2)

6. Various verifications 4.9% (~3) 3.4% (~3) 2.5% (~3)

7. Create metadata
of the new file

6.4% (~4) 4.4% (~4) 3.2% (~4)

8. Reserve space
in the directory block
(metanode only)

10.8% (~7) 6.2% (~6) 4.6% (~6)

9. Ask metanode
to reserve space
in the directory block
(non-metanode only)

0% (0) 20.0% (~19) 38.2% (~50)

10. Finish file create
and finalize log

5.3% (~3) 3.6% (~3) 2.8% (~4)

11. Insert entry into
the directory block

8.8% (~6) 6.9% (~6) 5.7% (~8)

12. Release locks 4.6% (~3) 3.2% (~3) 2.4% (~3)

Tab. 4.4. – Time distribution for the sequentially called gpfs_i_create() functions. Differ-
ent experiments are shown per column while their rows display the percentage
of the total time each individual function call consumed, including their absolute
numbers in seconds.
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while ~99% of the requests are answered in 7 µs to 30 µs by the metanode. However,
the cause of the increased time consumption with using more clients is not simply
explained by delayed responses but by the amount of time non-metanodes are active
during an experiment. For instance, in two client experiments task nine is only called
as long as two clients are creating files while the first client finishes its workload
sooner. In four client experiments, on the other hand, non-metanodes work for
~80% of the duration of the benchmark, increasing the time spent in this particular
task. Therefore, the required time in task nine correlates with the duration of actively
working non-metanodes and will likely not increase further with an higher number
of clients than available in our experimental setup.

4.4.5 I/O and Logging

In the previous sections, we have shown that the file create performance in our test
cluster is limited by the network. Moreover, we presented the overall file create
performance for a variety of storage subsystems with the consensus that different
storage does not impact the create performance (see Section 4.1.10). In contrast
to the modified mdtest results, traces are able to visualize the size of data that is
written to the shared storage, including its latency. In Spectrum Scale, all read and
write operations to the storage subsystem go through the same traceable function
which is called by the daemon of each client. Thus, the latency of each trace record
includes the time that the NSD server requires to read or write the data in addition
to the round-trip network time from the client to the NSD server. Furthermore, the
trace record contains information about the amount of bytes that are being read or
written.

The read and write operations are separated into four operations. The following
enumeration includes the average number of requests and average amount of data
being read and written for each operation in a workload of 500,000 files with four
participating clients in multiple experiments:

4 KiB write
This operation represents the writing of the inode of a newly created file,
issued by any creating client. During the experiments 500,000 requests were
measured with a total of 1,953 MiB being written in average.

256 KiB write
This operation represents the writing of a directory block, issued by the metan-
ode only. During the experiments ~30,000 requests were measured with a
total of ~8,000 MiB being written in average.
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Various writes
This operation represents the writings of various sizes, including log records,
issued by any creating client. During the experiments ~4,100 requests were
measured with a total of ~160 MiB being written in average.

256 KiB read
This operation represents the reading of an directory block, issued by the
metanode only. During the experiments ~3,600 to ~6,500 requests were
measured with a total of ~1,500 MiB being read in average.

Avg lat/op in µs 4 KiB write 256 KiB write Various writes 256 KiB read

44 HDDs ~861 ~1774 ~991 ~1162
2 SSDs ~430 ~1236 ~536 ~1284
2 RAMDisks ~344 ~766 ~395 ~601

Tab. 4.5. – Average latency per operation in microseconds with different storage subsystems
for an experiment in which four clients create 500,000 files concurrently.

Table 4.5 shows the average latency per operation in microseconds for an exper-
iment in which 500,000 files were created by four clients, based on their latency
distributions. The table does not include the results for 11 and 22 HDDs as their
average latency is similar to 44 HDDs due to the non-volatile controller cache (see
Section 4.1.10). The table visualizes the impact of faster storage subsystems in the
scenario of parallel file creation for all operations. For instance, RAMDisks show at
least a 50% decrease in latency compared to HDDs in all cases. However, we did not
further investigate the I/O behavior, for example, the cause of the diverse number
of directory block reads, as part of this thesis and did not show an impact on the
experiments runtime.

4.5 Possible improvements
This chapter has shown the time distribution for every logical task and investigated
particular mechanisms further, such as directory block splits. Based on our obser-
vations, we present two ideas to improve file create performance. However, we
will not further elaborate on optimizing mechanisms that affect the enabled FGDL
duration, such as AvoidDirFragments (see Section 4.2.2) and fgdlleavethreshold (see
Section 4.4.3). In conclusion, FGDL ought to be enabled with the first created file in
the directory and not be disrupted during the parallel create process.
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4.5.1 Multiple metanodes per directory

Section 4.1.5 revealed that metanodes achieve at least a twice as good create
performance compared to non-metanodes. This effect leads to an imbalance in
which metanodes finish their workloads earlier, essentially removing one client at a
time from the concurrent create process. But this performance difference is not the
only concern since the required transition time of 30 seconds to a different metanode
wastes performance as well. Applications could use this knowledge to ensure a
dynamic workload distribution on the participating clients at runtime to keep the
same metanode active. However, a solution on the application level is not desirable
as legacy applications will likely not be modified.

Another solution is that Spectrum Scale provides an equal performance for all clients
which create files in a single directory by using multiple metanodes per directory.
Each metanode controls a number of directory blocks and still collects the directory
entry updates from other nodes that need to insert a new entry into the metanode’s
controlled directory block. Due to extendible hashing, which distributes the files
equally to all directory blocks, this solution would lead to a similar performance
and participation for all clients for the whole create duration. Note that the number
of directory blocks increases with the amount of files in a directory, allowing more
metanodes to be used with a bigger workload. Moreover, with a pre-allocation of
directory blocks, as discussed in Section 4.1.7, the scalability could further improve
for smaller workloads where the number of nodes is higher than the number of
directory blocks. This method may pay off in exascale environments in which
a single metanode per directory may be overloaded due to a large number of
client requests. However, implementing this optimization may require a large
implementation overhead because metanodes have to be determined per directory
block as opposed to per directory. Since metanodes are not only used in the create
process, changing them would also require modifications to other parts of the file
system.

In addition, the described methodology can be further improved in the future,
exploiting that metanodes create files faster than non-metanodes (see Section 4.1.5).
Specifically, the metanodes should prefer adding new entries into their controlled
directory blocks. This would allow all clients to achieve the create performance of
single client experiments because all metanodes would generally insert entries into
their locally accessible directory blocks while minimizing metanode and token traffic
over the network. On the other hand, this conflicts with the current implementation
of extendible hashing which would need to be replaced in the process.
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4.5.2 File create intentions

Another potential performance improvement is a mechanism that considers the
client’s intention of creating a new file or opening an existing one. As discussed in
Section 4.4.3, the lookup of a file is done twice during the create process due to the
definition in Linux VFS. Because Spectrum Scale has to ensure that the file does not
already exist in the directory, it repeats the lookup in gpfs_i_create() although
it was already done in gpfs_i_lookup(). This step is necessary since all locks are
released in the end of gpfs_i_lookup() and the corresponding tokens might have
gotten reassigned between the steps. Hence, if Spectrum Scale knows the client’s
intentions, it can skip gpfs_i_lookup() in the case of a file creation, avoiding
the overhead of two consecutive and similar lookup operations while additionally
reducing token traffic.
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5Conclusion and future work

The performance of concurrent file creation in a single directory will become more
important in the future. With the number of nodes in HPC clusters increasing the
mean time between failures (MTBF) of cluster components, e.g., HDDs, will decrease
to the order of minutes [4, 5]. This makes applications, such as checkpointing, even
more relevant. Therefore, metadata performance of modern parallel file systems
has to improve to handle such workloads, which is currently limited by metadata
scalability issues [8]. Although other file systems try to improve metadata perfor-
mance by relaxing POSIX semantics [12], it is not feasible for applications depending
on these guidelines. Therefore, a solution to improve file create performance by
not violating POSIX compliance of a file system is desirable. Nonetheless, this is a
challenging task due to the complexity of the process, involving a large portion of
network communication and I/O operations, in which many aspects are not fully
understood.

In this thesis, we have investigated the file create process of IBM’s Spectrum Scale
parallel file system with its source code, the well-known mdtest metadata benchmark,
and trace records. Our goal has been to provide a detailed insight into the process
and to achieve an understanding about Spectrum Scale’s behavior during concurrent
file creation in a single directory. This has enabled us to pinpoint bottlenecks that
are worth optimizing, providing support to the Spectrum Scale developer team to
improve the file system.

To achieve this goal, we initially have modified the mdtest benchmark to receive
fine-grained per-process information about the creates per second at any point in
time during an experiment for a user-specific time interval. In addition, we have
developed tools to automatically generate graphs of the modified mdtest’s output.
The modified mdtest results have verified the abovementioned scalability issues
measured by previous work and even showed that the runtime increases with an
increasing number of clients for the same workload. But more importantly, the results
have revealed various aspects of the file create performance and their impact, such
as directory block splits and inode pre-allocation, accounting for an performance
increase of up to ~4% in both cases if they do not occur. Moreover, we have
shown that metanodes finish their workload faster due to their better performance
compared to non-metanodes, resulting in a loss of participating nodes during an
experiment and in expensive metanode transitions. Finally, we have observed the
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impact of different storage hardware on file creation with the conclusion that neither
SSDs nor RAMDisks affect the runtime of the ran experiments noticeably compared
to the HDDs in our test setup.

In the second step, we have discussed the implications of trace collection and have
presented the file create protocol of Spectrum Scale. With latency distributions for
each logical task of the file create process, we have identified the gpfs_i_lookup()
function as the main time contributor whose absolute time increases exponentially
with the number of clients participating in the process. Further investigations have
revealed that ~98% of the time in gpfs_i_lookup() is spent for token and metan-
ode communication in a four client experiment which is expected to increase with a
larger number of participating nodes. We have identified the configuration setting
fgdlleavethreshold as the cause, issuing frequent disruptive token revokes and
resulting in file creates that consume significantly more time than usual. Disabling
this setting has decreased the runtime by 50%, outperforming experiments with a
single client participating. Moreover, we have presented the average latency for vari-
ous read and write operations, showing that the RAMDisk’s latency is outperforming
HDD’s at least by a factor of two. We have concluded that file creation in Spectrum
Scale is limited by the 10 Gbit network in our test setup. More specifically, latency
distributions of the gpfs_i_lookup() function and the gpfs_i_create() function
(see Figures A.1 and A.2 in the Appendix) have indicated that runtime is driven by
the accumulated network latencies of token and metanode requests. Overall, most
tasks in the Spectrum Scale’s file create process seem to scale well for up to the
available four nodes in our test cluster.

However, due to the complexity of the file create process we could not follow
every lead that has arisen during our research. For example, we did not further
investigate the I/O behavior since it did not show any impact on the experiment’s
runtime. Nonetheless, faster storage subsystems may play a more important role in
environments with a lower network latency, that should be investigated by future
work. We also recommend to repeat the trace analysis for newer Spectrum Scale
versions (that is, newer than 4.1.1.0) as important mechanisms that influence
Spectrum Scale’s file create performance greatly (e.g., fgdlleavethreshold) have
been updated [28]. As the development of the presented tools will be continued1,
future work should further explore the scalability for every logical task of the file
create process in a cluster with a larger number of nodes. Those results may prove
valuable for enhancing metadata performance in the future with respect to the
upcoming exascale era.

1The sources of the modified mdtest and the trace analyzer are available at
https://github.com/marcvef/mdtest and https://github.com/marcvef/tracealyzer
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AAppendix

The appendix contains additional latency distributions of Spectrum Scale’s VFS
functions gpfs_i_lookup(), gpfs_i_create(), and gpfs_f_open() as well as
their time distributions with 2 SSDs and 2 RAMDisks, similar to those presented in
Section 4.4. Furthermore, the per-process performance of a four client experiment
is shown with fgdlleavethreshold disabled. The below Table summarizes the
Appendix’ content.

Figures:

Figure A.1: Latency distribution of gpfs_i_lookup() for four clients
Figure A.2: Latency distribution of gpfs_i_create() for four clients
Figure A.3: Latency distribution of gpfs_f_open() for four clients
Figure A.4: Per-process create performance with fgdlleavethreshold disabled

Tables:
Table A.1: Time distribution of VFS functions with 2 SSDs
Table A.2: Time distribution of VFS functions with 2 RAMDisks
Table A.3: Time distribution of gpfs_i_lookup() tasks with 2 SSDs
Table A.4: Time distribution of gpfs_i_lookup() tasks with 2 RAMDisks
Table A.5: Time distribution of gpfs_i_create() tasks with 2 SSDs
Table A.6: Time distribution of gpfs_i_create() tasks with 2 RAMDisks
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Fig. A.1. – Latency distribution of gpfs_i_lookup() for four clients creating 500,000 files.
Each entry in a bucket corresponds to the time the gpfs_i_lookup() function
consumes when looking up a file. Stacked bars are used to show the most
represented client in each bin. The total number of entries of each bucket is
placed above each stacked bar.
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Fig. A.2. – Latency distribution of of gpfs_i_create() for four clients creating 500,000
files. Each entry in a bucket corresponds to the time the gpfs_i_create()
function consumes when creating a file. Stacked bars are used to show the most
represented client in each bin. The total number of entries of each bucket is
placed above each stacked bar.
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Fig. A.3. – Latency distribution of of gpfs_f_open() for four clients creating 500,000 files.
Each entry in a bucket corresponds to the time the gpfs_f_open() function con-
sumes when opening a file. Stacked bars are used to show the most represented
client in each bin. The total number of entries of each bucket is placed above
each stacked bar.
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Fig. A.4. – Investigation of the running per-process create performance with
fgdlleavethreshold disabled in a single experiment with 4 clients and
16 processes per clients where 2 million files are created in total. Each line
represents a single process while its color visualizes its client affinity. Every data
point shows the create performance per-process for the last five seconds.

VFS functions
2 SSDs used 1 client (in s) 2 clients (in s) 4 clients (in s)

1. gpfs_i_lookup() 13.5% (~19) 75.5% (~224) 73.0% (~509)
2. gpfs_i_create() 57.2% (~78) 36.0% (~107) 22.3% (~155)
3. gpfs_f_open() 23.6% (~32) 9.7% (~28) 4.14% (~29)

Tab. A.1. – Time distribution for the Spectrum Scale VFS functions gpfs_i_lookup(),
gpfs_i_create(), and gpfs_f_open() with two used SSDs. Different exper-
iments are shown per column while their rows display the total time each
individual function call consumed.

VFS functions
2 RAMDisks used 1 client (in s) 2 clients (in s) 4 clients (in s)

1. gpfs_i_lookup() 14.8% (~19) 51.0% (~133) 64.4% (~316)
2. gpfs_i_create() 58.1% (~74) 37.3% (~97) 28.9% (~142)
3. gpfs_f_open() 24.7% (~31) 10.5% (~27) 5.5% (~27)

Tab. A.2. – Time distribution for the sequentially called Spectrum Scale VFS functions
gpfs_i_lookup(), gpfs_i_create(), and gpfs_f_open() with two used
RAMDisks. Different experiments are shown per column while their rows
display the total time each individual function call consumed.
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gpfs_i_lookup() tasks
2 SSDs used 1 client (in s) 2 clients (in s) 4 clients (in s)

1. Fast lookup 53.9% (~8) 1.9% (~4) 0.6% (~3)

2. Lock the directory file 5.4% (<1) 0.4% (~1) 0.2% (~1)

3. Verify permissions 0.6% (<1) 0% (<1) 0% (<1)

4. Acquire FGDL token
and directory entries

3.1% (<1) 86.2% (~185) 95.2% (~458)

5. Lock the
directory block

13.8% (~2) 9.9% (~21) 3.18% (~15)

6. Search for
the filename
in the directory block

15.4% (~2) 1.1% (~2) 0.5% (~3)

7. Release locks 7.6% (~1) 0.6% (~1) 0.3% (~1)

Tab. A.3. – Time distribution for the sequentially called gpfs_i_lookup() functions with
two used SSDs. Different experiments are shown per column while their rows
display the percentage of the total time each individual function call consumed,
including their absolute numbers in seconds.

gpfs_i_lookup() tasks
2 RAMDisks used 1 client (in s) 2 clients (in s) 4 clients (in s)

1. Fast lookup 56.5% (~8) 2.8% (~4) 0.8% (~2)

2. Lock the directory file 5.2% (<1) 0.6% (~1) 0.3% (~1)

3. Verify permissions 0.6% (<1) 0% (<1) 0% (<1)

4. Acquire FGDL token
and directory entries

2.9% (<1) 92.4% (~118) 97.2% (~324)

5. Lock the
directory block

12.9% (~2) 1.6% (~2) 0.7% (~1)

6. Search for
the filename
in the directory block

14.7% (~2) 1.67% (~2) 0.7% (~3)

7. Release locks 7.3% (~1) 0.9% (~1) 0.4% (~1)

Tab. A.4. – Time distribution for the sequentially called gpfs_i_lookup() functions with
two used RAMDisks. Different experiments are shown per column while their
rows display the percentage of the total time each individual function call
consumed, including their absolute numbers in seconds.
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gpfs_i_create() tasks
2 SSDs used 1 client (in s) 2 clients (in s) 4 clients (in s)

1. Allocate inode 15.0% (~10) 9.6% (~9) 6.3% (~9)

2. Lock file
and directory file

5.6% (~4) 3.8% (~4) 2.0% (~3)

3. Get the inode
of the directory

24.2% (~16) 17.0% (~17) 12.1% (~18)

4. Acquire FGDL token
and directory entries

7.6% (~5) 19.7% (~19) 25.4% (~36)

5. Search for
the filename
in the directory block

4.2% (~3) 2.7% (~3) 1.8% (~3)

6. Various verifications 5.2% (~3) 3.6% (~3) 2.5% (~4)

7. Create metadata
of the new file

6.7% (~4) 4.6% (~4) 3.2% (~4)

8. Reserve space
in the directory block
(metanode only)

11.7% (~8) 6.7% (~6) 3.7% (~5)

9. Ask metanode
to reserve space
in the directory block
(non-metanode only)

0% (0) 18.4% (~18) 32.8% (~48)

10. Finish file create
and finalize log

5.5% (~3) 3.7% (~3) 2.6% (~4)

11. Insert entry into
the directory block

9.3% (~6) 6.9% (~6) 7.7% (~8)

12. Release locks 4.9% (~3) 3.3% (~3) 3.3% (~3)

Tab. A.5. – Time distribution for the sequentially called gpfs_i_create() functions with
two used SSDs. Different experiments are shown per column while their rows
display the percentage of the total time each individual function call consumed,
including their absolute numbers in seconds.
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gpfs_i_create() tasks
2 RAMDisks used 1 client (in s) 2 clients (in s) 4 clients (in s)

1. Allocate inode 15.7% (~9) 9.7% (~9) 7.0% (~9)

2. Lock file
and directory file

6.1% (~4) 2.9% (~3) 2.8% (~3)

3. Get the inode
of the directory

24.3% (~15) 18.1% (~16) 13.0% (~16)

4. Acquire FGDL token
and directory entries

7.6% (~5) 12.8% (~11) 9.5% (~12)

5. Search for
the filename
in the directory block

4.2% (~3) 2.8% (~2) 2.0% (~2)

6. Various verifications 5.2% (~3) 3.7% (~3) 2.7% (~3)

7. Create metadata
of the new file

6.7% (~4) 4.7% (~4) 3.5% (~4)

8. Reserve space
in the directory block
(metanode only)

10.5% (~6) 5.8% (~5) 3.7% (~4)

9. Ask metanode
to reserve space
in the directory block
(non-metanode only)

0% (0) 24.8% (~21) 43.9% (~54)

10. Finish file create
and finalize log

5.5% (~3) 3.8% (~3) 3.0% (~4)

11. Insert entry into
the directory block

9.4% (~6) 7.6% (~7) 6.4% (~8)

12. Release locks 4.8% (~3) 3.3% (~3) 2.5% (~3)

Tab. A.6. – Time distribution for the sequentially called gpfs_i_create() functions with
two used RAMDisks. Different experiments are shown per column while their
rows display the percentage of the total time each individual function call
consumed, including their absolute numbers in seconds.
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