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Figure 1: Based on sparse user annotations a shape model is learned. The detected instances are transformed into descriptors
for the second hierarchy level. Hierarchical detections shown on the right are obtained using only the example marked red.

Abstract
This paper addresses the problem of detecting objects in 3D scans according to object classes learned from sparse
user annotation. We model objects belonging to a class by a set of fully correlated parts, encoding dependencies
between local shapes of different parts as well as their relative spatial arrangement. For an efficient and compre-
hensive retrieval of instances belonging to a class of interest, we introduce a new approximate inference scheme
and a corresponding planning procedure. We extend our technique to hierarchical composite structures, reducing
training effort and modeling spatial relations between detected instances. We evaluate our method on a number of
real-world 3D scans and demonstrate its benefits as well as the performance of the new inference algorithm.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geome-
try and Object Modeling—Object hierarchies; Image Processing and Computer Vision [I.4.8]: Scene Analysis—
Object recognition; Artificial Intelligence [I.2.10]: Vision and Scene Understanding—Shape

1. Introduction

3D scanning technology has matured to a point where
very large scale acquisition of high resolution geometry
has become feasible. Using mobile LIDAR scanners, point
clouds at centimeter resolution of complete countries can
be captured at economically viable costs (such as in the
well-known projects by companies like Google or Navteq).
Cost efficient approaches such as structure-from-motion re-
construction from community photo collections [ASS∗09,
FGG∗10, GAF∗10] complement these efforts.

Having, at some point, accurate 3D models of our entire

planet offers enormous opportunities, but it also poses new
technical challenges. A key problem is semantic understand-
ing: Almost any application beyond simple 3D rendering,
such as mobile navigation, maintenance of public infrastruc-
ture, or planning for disaster preparedness, requires an un-
derstanding of the semantics of acquired geometry, such as
finding roads, cars, street lights, entrances to buildings, and
the similar. This information is not acquired by any 3D scan-
ner, and human annotation of large scale data is obviously
infeasible. Hence, the development of automatic techniques
for semantic labeling and correspondence computation has
become a very important research topic.
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Figure 2: Outline of our method. Given sparse user annotations defining some shapes and their correlations, a shape model
characterizing these shapes is constructed. Each node in the model is associated with corresponding distributions for the local
shapes (descriptors) and the relative location within the shape. The efficient detection allows for refining the model interactively.

In this paper, we address the problem of detecting ob-
ject instances (shapes) according to semantic object classes.
Shapes are defined as a set of distinctive parts describing
local geometry (local shape) as well as the spatial layout
(constellation) of these parts. From a small number of hand-
annotated examples, a part-based shape model is derived
to retrieve large quantities of further instances (see Fig. 2).
This problem is closely related to “scene understanding” ap-
proaches for 2D images: In addition to sophisticated local
descriptors [DT05], and bags of descriptors [LSP06,GD05],
two main strategies have emerged: (1) Conditional random
fields (CRFs) are used to model local appearance and consis-
tency between neighboring pixels [KH03, HZRCP04], aim-
ing at labeling of amorphic categories such as “vegetation”
or “buildings”. (2) Using part-based models objects are rec-
ognized by detecting constellations of parts [FPZ03, FH05,
LLS04, FMR08], excelling in detecting individual objects,
such as “cars” or “bikes”. In the context of 3D scanner data,
several methods have been proposed based on local descrip-
tors [GKF09], bags-of-words [LG07, BBGO11], and con-
ditional random fields [ATC∗05, ZLZ∗10, KHS10]. How-
ever, object detection beyond traditional symmetry detec-
tion [MPWC12] has been explored only briefly [SJW∗11].
Filling in this gap is the main objective of our paper.

Detecting constellations of parts in 3D geometry poses
some unique challenges and opportunities that have not yet
been addressed in previous work:

Correlations: The local shape of object parts is typically
strongly correlated (e.g. corners of a window or tires of a
car). Unlike previous work our model captures these general
correlations. We demonstrate empirically that this leads to a
significant improvement in performance.

Frame invariance: Detection should be invariant under
translations and rotations. In contrast to previous work, our
method provides full rotational invariance.

Correspondences: In 3D computer graphics, detecting
semantic correspondences can be an intermediate step to-
wards building generative models such as morphable shape
spaces. Therefore, obtaining accurate part correspondences

is desirable. Our method improves correspondence accuracy
over previous approaches.

Semantical symmetry: In a large 3D scan, a large num-
ber of instances of the same object class such as cars or win-
dows show up simultaneously. Our algorithm detects all in-
stances of an object class in a single pass.

Structuring scenes: As an extension, we describe a hi-
erarchical version of our method that can not only model
simple objects, but also learn compound models, i.e. higher
order co-occurrence patterns to structure the input.

Efficiency: Finally, training models interactively on large
3D scans requires fast, high-throughput detection algo-
rithms. Our method provides interactive training and very
efficient detection.

We evaluate our method empirically on a number of
benchmarks, evaluating the detection performance as well as
the runtime costs. This includes a large city scan with 4GB
of input data, for which training is interactive and detecting
all instances of an object class takes less than 2 min, using
single-threaded, unoptimized C++ code.

2. Related Work

Image understanding: Our method is related to the idea
of constellation models in image understanding as described
in Fergus et al. [FPZ03]. However, their model does not
consider pairwise relations of part appearances. The utility
of appearance correlations has been shown in the context
of bags-of-words models: Wang et al. [WZFF06] demon-
strate that explicitly modeling the inter-dependencies of lo-
cal patches yields more discriminative models. In the con-
text of part-based models, pairwise geometric relations of
lines have also proven to be helpful for recognition [LHS07,
SGS09]. Leordeanu et al. [LHS07] use a set of angles and
distances to represent the geometric relations between parts.
Stark et al. [SGS09] enrich constellation models by pairwise
symmetry relations between contour segments. In the 3D do-
main, these correlation can be expected to be even more pro-
nounced, as variability due to lighting, texture, and occlusion
is not present.

c© 2013 The Author(s)
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Figure 3: Each shape H is associated with a spatial layout
X and local shapes di. The layout is given by relative coor-
dinates xi of the individual parts hi in a coordinate frame
centered at the first part. The local shape is a collection of
the local shape descriptors of the shape parts.

3D Object Recognition: Segmentation and labeling of ge-
ometry according to semantic categories has been tackled by
using CRF models [ATC∗05,KHS10,ZLZ∗10]. The applica-
tion to large scenes is limited because all labels have to be
estimated in a global optimization problem. Another alterna-
tive is learning the geometry of segmented shapes [GKF09].
The objective of these approaches is to consistently segment
and classify geometry, not to detect objects.

A large amount of work has been devoted to the recog-
nition of single objects (see for example [MSS∗06], and
[DGD∗11] for a survey), not detecting instances within a
larger scene. Furthermore, fixed models of deformations
have also been studied for matching template shapes to data
(typically isolated objects) under isometry or different types
of elastic deformation (see [vKZHCO11] for a survey). In
contrast, our method aims at learning the variability from
training data.

Most related to our method is the work of Sunkel et
al. [SJW∗11]: They present a part-based CRF model based
on a Markovian chain of features. In contrast to their work,
we employ a full pairwise correlation model and an accord-
ing inference algorithm, and our model provides full rota-
tional invariance. We demonstrate empirically that the model
improvements lead to significantly better results in practice.

3. Shape Model

Each shape model characterizes an object class by encoding
similarities of shapes from this class. As illustrated in Fig. 3,
we define shapes as a set of correlated parts. Each part i con-
sists of a relative position xi and the local shape description
di. The individual parts are subsumed into local shape D and
their overall spatial layout X . The shape model θ = (θD,θX )
is then defined by Gaussian models θD ∼ N (µD,ΣD) and
θX ∼ N (µX ,ΣX ) over D and X , thus encoding dependen-
cies (correlations) of the individual parts.

3.1. Probabilistic Model

In the following, let S ⊂ R3 be a smooth manifold embed-
ded in three-space. We use n(x) to denote the surface normal
at point x ∈ S. Typically S is represented by a sampled ap-
proximation (point cloud) S = {s1, ...,sn},si ∈ R3, acquired
by 3D scanners and thus subject to noise artifacts.

Given a shape model θ with k parts, our goal is to find
reasonable assignments of the k parts to points in S: H =
(h1,h2, . . . ,hk), where hi ∈ S denotes the position of part i.
The detection problem can be formulated as a maximum a
posteriori hypothesis search over the joint posterior distri-
bution of H and manifold evidence S. Our objective is to
maximize the following probability:

p(D,X ,H|θ) = p(D|H,θD)︸ ︷︷ ︸
Local Shape

· p(X |H,θX )︸ ︷︷ ︸
Layout

· p(H|θ)︸ ︷︷ ︸
Prior

(1)

It consists of a term accounting for the descriptors (local
shape) and their constellation in 3D (layout). In addition, a
prior distribution p(H|θ) can be used to model additional
constraints on the detection. In our experiments, it is as-
sumed to be uniform over S.

3.1.1. Spatial Layout

Since Gaussian models cannot represent rotations well, we
encode the spatial layout X relative to a local coordinate
frame T. The reference frame T is spanned by the first
two parts h1,h2 and the smoothed surface normal n at
h1, as illustrated in Fig. 3. We compute a tangent vector
t = (h2−h1)×n and set T = (n× t , t , n). The 3(k− 1)-
dimensional layout vector X(H) is then given by:

X(H) = (T(h2−h1),T(h3−h1), ...,T(hk−h1)) (2)

After this normalization, we model the spatial layout of
model parts as a joint Gaussian distribution over the rela-
tive coordinates of X(H), with mean µX and covariance ΣX :

p(X |H,θX )∼ exp(−1
2
(X(H)−µX )

T
Σ
−1
X (X(H)−µX ))

(3)

3.1.2. Local Shape

Local shape D is modeled by a joint Gaussian density
on (d · k)-dimensional vectors D(H) composed of all k d-
dimensional local shape descriptors:

p(D|H,θD)∼ exp(−1
2
(D(H)−µD)

T
Σ
−1
D (D(H)−µD))

(4)
Again, µD represents the (learned) mean and ΣD the covari-
ance of the descriptors, again including all cross-correlations
between the local shapes captured by descriptors of all of the
different parts.

Our framework is independent of the actually chosen shape
descriptor. Any function S→ Rd can be used. The descrip-
tors used in our experiments are described in Section 5.1.

c© 2013 The Author(s)
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Figure 4: Shapes under arbitrary rotations. The first three
principle components of the descriptor are illustrated on the
left. The shape model was constructed using the four exem-
plars shown in Fig. 1, however allowing for less variations.
Detection results are shown on the right. Colors indicate the
quality of the match (blue: perfect; red: bad).

3.2. Learning

In our scenario the model is manually defined: For a number
of shapes the user labels all correspondences between the
shapes – thus defining the parts. The ability to manually se-
lect meaningful parts is important for many applications that
can use these coarse correspondences as input, like replacing
found objects with a template. Whereas, parts automatically
chosen by some objective function might not be the ones de-
sired by the user.

The model parameters θ=(µD,ΣD,µX ,ΣX ) are learned by
supervised training. This is done by specifying a sparse set of
corresponding points on objects of interests. Given the train-
ing instances, mean and covariance are estimated for both
local shape and spatial layout.

For small sets of training instances, the learned covariance
matrices are rank deficient. For example, a principal compo-
nent analysis (PCA) extracts at most a 3-dimensional space
from 4 examples. Hence, the variability is underestimated,
and whole subspaces are falsely assumed to be noise-free in
such cases. Even if in theory the actual class is described suf-
ficiently by a few dimensions, inaccuracies such as scanner
noise typically make a covariance of full rank inevitable in
practice. We model these unmeasured effects by a uniform
Gaussian noise model, i.e. by adding λI to the covariance
matrix, where λ is a user-controllable parameter. In certain
scenarios it might also be necessary to amplify (or attenuate)
the variations learned from the training data. For instance, if
we want to detect objects of different sizes but have only ob-
served two sizes so far. This is implemented by scaling the
observed covariances.

The final covariances are given by:

ΣX = γX Σ
obs.
X +λX I and ΣD = γDΣ

obs.
D +λDI.

3.3. Hierarchical Shape Models

We propose a simple extension of our model, which allows
the detection to be performed hierarchically, using detected
constellations as parts of higher level constellation models.
The motivation is two-fold: First, many complex shapes can
be described by constellations of simpler base shapes. By
training part models separately, fewer training examples are
required for estimating good model parameters. Secondly,
finding constellations of constellations allows us to recog-
nize structural relations between parts (such as windows be-
ing arranged on a regular grid), which permits the extraction
of additional information.

As shown in Fig. 1, the hierarchical extension is straight-
forward: First, several different base models are constructed
as described in the preceding sections. Then, further in-
stances are detected in the model and offered to the user as
additional feature points to be selected for composite mod-
els. The position is set to the centroid of the found instance
and the local shape is obtained by concatenating all local
shape descriptors of the base instance (followed by a reduc-
tion to the original d dimensions of a local shape via princi-
ple component analysis). The class of the base model is also
used to discriminate feature points – the class used during
detection must match the trained one.

Figure 5: More hierarchical detections for the statue. The
hierarchical descriptors shown in Fig. 1 were used. In-
stances used to train the model are marked red.

4. Shape Inference

We now need to find instances of the model defined in
the previous section. Given an input point cloud S, we
want to retrieve all local maxima with significant density of
p(H|D,X ,θ). Obviously, the log-likelihood of this density is
non-convex in any non-trivial case.

c© 2013 The Author(s)
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Traditionally, inference in constellation models is done by
expectation maximization (EM) [FPZ03] or Markov-chain
Monte-Carlo sampling (MCMC) [SGS09], but these tech-
niques are slow and can only compute one solution at a
time. Another option is a restriction to tree-structured mod-
els [FH05], allowing for exact inference, or even further re-
strictions to star [LLS04] or chain models [SJW∗11].

We use a greedy dynamic programming scheme for ap-
proximately retrieving the local maxima of p(H|D,X ,θ). Al-
gorithmically our inference scheme is related to belief prop-
agation for chain structured models [SJW∗11]. However, in-
stead of only considering direct predecessors, we incorpo-
rate dependencies to all predecessors. Omitting these de-
pendencies in the model would allow for solving for local
optima exactly, but at the cost of a weaker model. We ex-
amine the effect of including these global dependencies in
Section 5.

Like for chain-structured models, as used in [SJW∗11],
we successively compute sets of partial assignments. Since
complete enumeration is not feasible (i.e., of exponential ef-
fort), the key idea is to restrict evaluation to those assign-
ments which are likely to be part of an actual instance. Given
a set of candidate assignments for the first i parts of the
model, denoted byHi⊂ Si, we form augmented assignments
for the first i+1 model parts. For each possible value hi+1 of
part i+1, we search for the best partial assignment (in terms
of maximizing Eq. 1) to be combined with hi+1:

Hi(hi+1) = argmax
(h′

1,...,h′
i )∈Hi

p(h′1, . . . ,h
′
i ,hi+1) (5)

We form the set of candidate assignmentsHi+1 by combing
all hi+1 ∈ S with their corresponding best matching assign-
mentHi(hi+1):

Hi+1 =
{
(h1, . . . ,hi︸ ︷︷ ︸
=Hi(hi+1)

,hi+1)
∣∣hi+1 ∈ S

}
; H1 = S (6)

Once the candidate assignments for part k have been com-
puted, we perform a local maxima search to retrieve the final
detections.

By just keeping track of the current best estimates, we
might lose track of a desired instance in favor of a seemingly
better but wrong match. Luckily, real-world data is typically
benign, as demonstrated in Section 5, since fixing the first
few parts imposes substantial restrictions on the remaining
ones. Accordingly, we will optimize for the order in which
the parts are processed, as detailed in Section 4.2.

4.1. Efficiency

Even though we have reduced the complexity from exponen-
tial (for the naïve but exact evaluation) to quadratic costs in
|S|, our algorithm is still too slow for large, real-world scenes
with several million points.

Figure 6: Effect of covariance updates. Potential locations
for the remaining parts after fixing preceding parts (for pur-
pose of illustration the orientation of the shape was fixed).
Fixing the second part of the shape already decreases the
horizontal variance drastically.

Our goal is to retrieve instances with significant proba-
bilities; accordingly we can discard all values hi for part i
if their local shape or relative position does not match the
model at all. We regard hi as a potential value for part i if
its local shape has a Mahalanobis distance of at most 2 to
the local mean shape of part i, thus reducing the set of ini-
tial candidates for each part drastically, see Fig. 7. Similarly,
(h1, . . . ,hi) is only included in the set of candidatesHi dur-
ing detection, if hi adds at most 2 to the overall Mahalanobis
distance to each model mean.

Another improvement concerns the evaluation of Eq. 1:
The incremental algorithm requires repetitive evaluation for
partial assignments (h1, . . . ,hi). We can reduce computa-
tional effort from O(i2) to O(1) if we update the model using
the Schur complement:

Y =

(
Y1
Y2

)
∼N

((
µ1
µ2

)
,

(
Σ11 Σ12
Σ21 Σ22

))

Y2|Y1 ∼N
(
µ̃, Σ̃
)

with µ̃ = µ2 +Σ21Σ
−1
11 (Y1−µ1) and Σ̃ = Σ22−Σ21Σ

−1
11 Σ12.

The update incorporates restrictions caused by the previ-
ously assigned parts to the updated model. Further, the up-
dated covariance matrices are independent of the ongoing in-
ference and thus can be precomputed. Since the dependen-
cies on previous parts are encoded in the updated models,
they can be used for a more efficient pruning. The effect of
these model updates (for the spatial layout) is illustrated in
Fig. 6, giving a hint of the effectiveness of these updates.

4.2. Planning Inference Order

In order to improve the performance of the inference, both
in terms of accuracy and speed, we use a planning step that
determines the order in which part hypothesis are tested. The
goal of the planning is to first search for parts for which the
location has the least uncertainty. This has two benefits:

• The search space is reduced, due to the pruning of unlikely
hypothesis (Section 4.1), thereby improving the run-time.

c© 2013 The Author(s)
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Figure 7: Effect of planning. The set of initial candidates for each part, shown in the order obtained by planning.

• By fixing the parameters for the part with the least un-
certainty first, the risk of propagating wrong information
to later stages of the search is reduced. This is important
since our heuristic algorithm does not use backtracking or
backward propagation of information to part hypothesis
tested earlier.

We will demonstrate empirically (see Section 5) that plan-
ning has a significant impact on both of these aspects, im-
proving both on run-time costs and accuracy.

Planning itself is easy: We pick those parts first for which
the uncertainty in localization is minimal. Again, we use a
greedy optimization algorithm to make the choices: The first
part is selected by descriptor uniqueness: We match the de-
scriptor model against the whole training set and choose the
part with the lowest matching frequency, i.e., whose descrip-
tor matches the fewest other points (again, using a threshold
of a Mahalanobis distance of 2). For choosing subsequent
parts, we now need to model the influence of the previous
choices. Specifically, both the ambiguity in terms of descrip-
tor match as well as variation in spatial localization should
be minimized. For the locality, we compute the marginal of
the Gaussian model: we estimate a marginal covariance in
position, given we fix the previous plan-points. For the de-
scriptor, the improvement depends both on how frequent the
descriptors are expected in the input as well as on the corre-
lations with previously detected part descriptors. We there-
fore multiply the frequency of the part descriptor by the rela-
tive change in volume in descriptor space due to correlations.
This shrinking of descriptor volume is modeled by the ratio
of the determinants of the unconstrained marginal descriptor
covariance and the marginal descriptor covariance obtained
after fixing the already selected plan-points. A typical result
obtained from the planning step is show in Fig. 7.

5. Results and Evaluation

We evaluate the performance of our shape model and
inference by using LIDAR range-scans from the Han-
nover city scan collection (available at http://www.ikg.uni-
hannover.de, courtesy of C. Brenner, IKG, University of
Hannover). In addition, we also use 3D scans of figurines to
demonstrate rotational invariance as well as the hierarchical
variant of our method. All experiments are performed using

an unoptimized single-core C++ implementation on an dual
socket workstation with two Intel Xenons X5650 (2.6GHz)
and 48GB of RAM.

5.1. Local Shape Descriptors

The local shape descriptor is used to characterize the geome-
try within the r-neighborhood Nr(x) = {y ∈ S|‖x−y‖ ≤ r}
of a point x in S.

In order to effectively assess the correlated parts model,
we do our experiments without the use of sophisti-
cated shape descriptors such as in [FHK∗04], [CSM∗06],
[KPW∗10]. Our experiments on large point cloud data re-
quire descriptors which come with low computation costs
and yield a robust descriptor for small, almost planar, sur-
face regions (which does not hold for spin images [JH99]).
We have implemented the following shape descriptors:

• Normal histograms: For every point y∈Nr(x), we express
the normal direction n(y) in polar coordinates with re-
spect to a coordinate frame defined by the smoothed nor-
mal n(x) and y−x. We then build a joint histogram of the
two angles using 15×15 bins.

• Oriented normal histograms: Here, we augment the nor-
mal histograms by using a fixed reference frame given by
n and a fixed global upward direction u.

For efficiency reasons and in order to smooth out noisy
data, the set of high-dimensional descriptors in an input
scene is projected onto a low-dimensional subspace using
principal component analysis.

Figure 8: Manual annotation of the old town hall used for
evaluation. All windows are used for the general class, while
the specific class only subsumes the windows marked in blue.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.
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5.2. Quantitative Evaluation

For a quantitative evaluation of different aspects of our
method we manually annotated two different test sets on
the old town hall, as shown in Fig. 8, ranging from a very
specific class, capturing the most prominent window type,
to a general class, comprising all types of windows present
in the building. We count the number of false positives and
negatives by a coarse criterion that measures the distance of
the centroids of the detection hypotheses to the centroids of
ground truth data. A detected instance only counts as a true
positive if this distance to the nearest ground truth data is
smaller than the descriptor radius r employed to compute
the local shapes. We use cross-validation for measuring the
performance; we always use 3 examples per type and av-
erage over 8-10 stratified random samples; we precompute
a random partition that guarantees to cover all examples at
least once. Curves are measured by varying one of the model
parameters while keeping the others fixed.

5.3. Shape Model Experiments

Rotation invariance and hierarchical shape model: We
demonstrate the rotation invariance of our approach in Fig. 4.
The statue model features a deformed, regular pattern in dif-
ferent orientation, not captured by a common “upward di-
rection”, which is need for the method of [SJW∗11] to work.
We also examine the use of hierarchical models (see Figs. 1,
5, 15), improving the recognition accuracy and yield a struc-
turing of the instances in terms of a regularly repeating grid.

Effect of correlations between parts: We first evaluate the
effect of including all pairwise correlations of the parts’ lo-
cal shapes into our model (which are not included in the tra-
ditional constellation model [FPZ03]). Curves are measured
by varying descriptor noise parameter λD, describing the tol-
erance of a fit to noise and unmodeled effects. The results are
shown in Fig. 9: When learning a complex class for differ-
ent windows in the old town hall, the detection performance
improves by including these correlations. For the class of
rigidly similar windows, this effect is less pronounced.

Secondly, we compare to different underlying graph struc-
tures, i.e. dependencies of relative locations of parts: Both,
our full model as well as constellation style model include all
pairwise correlations of parts locations. Star shaped models,
as used in [FMR08, LLS04], only consider spatial relations
to one center part. Chain structured models, as employed by
[SJW∗11], merely consider pairwise correlations between a
part and its predecessor. In order to compare the different
model structures, we restrict our more general model appro-
priately by removing accordant pairwise interactions. The
results are shown in Fig. 10. We varied covariance scale γD,
to observe the behavior under shape models of different flex-
ibility. The underlying structure of the shape is captured bet-
ter the more dependencies are included.
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Figure 9: The detection rate improves by including corre-
lations of descriptors. The upper diagram shows results for
the specific class of rigidly similar windows, the lower for
the more general class containing more varying geometry.
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Figure 10: Evaluation of different model structures. The ex-
cerpts show typical results for the different model types. Re-
sults are shown for similar numbers of false positives.

We also compare our method qualitatively to Sunkel et
al. [SJW∗11] (Fig. 11). Our method yields more accurate
correspondences. The global correlations avoid drift over the
course of the chain. For applications in computer graphics,
beyond pure detection, this is an additional benefit.

c© 2013 The Author(s)
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Figure 12: Evaluation of the inference scheme. For a very narrow class (where exact inference is feasible) exact inference
only performs slightly better than our approximate inference (left). Curves are measured by varying the noise parameter λD,
describing the tolerance of a fit to noise and unmodeled effects. Effect of planning: the recognition performance improves over
the average of a random order (middle). The runtime improves significantly (right). Curves are measured by varying λD.

result of [SJW∗11]

our result

Figure 11: Comparison to previous work by Sunkel et
al. [SJW∗11]. Because of the lacking global correlations,
lower boundaries of the windows do not match up, which
our model avoids. For both examples identical training in-
stances are used. Edges encode the chain used in [SJW∗11].

5.4. Inference Experiments

Effect of approximate inference: In order to quantify the
error imposed by the approximate inference, we have im-
plemented an exact version of our algorithm. To make exact
inference feasible, a very specific model (small variances) is
required since this allows for efficient pruning: We use the
specific class (Fig. 8) and assume very little noise. The re-
sults are show in Fig. 12 (middle). As expected, the exact
version yields slightly better results, but the gain of the ex-
ponential algorithm is below 3% (please note the scale!).

Effect of Planning: We also study the effect of planning
(see Fig. 12). We compare to the average of a random order
for inference, again for finding windows in the “old town
hall”. The recognition rate improves consistently by up to
4%. The effect on the run-time is more dramatic: As shown
in Figure 12 (right), we obtain high detection rates much
more rapidly than without planning.

Scalability: We apply our method to all facades from the
Hannover data set (126 million sample points, 4GB binary
data). Since we do not want to compute descriptors for the
complete set, we reduce the point cloud to a set of interest
points. This is done by extracting points of high curvature,
using the technique of Gumhold et al. [GWM01], i.e., using
the smallest eigenvalue of a PCA-analysis of local neighbor-
hoods as curvature measure. Only these points are consid-
ered as candidates for points in H, the rest of the method
remains unchanged. We denote the reduced point set by S̃.

Fig. 13 shows an example where 35 windows are used for
training, retrieving a large subset of the actual windows in
the rest of the town with few false positives. Our inference
algorithm runs in less than 2 minutes (on the reduced set),
statistics are shown in Figure 14. We also vary the scene size
by cutting out excerpts: the run-time scales almost perfectly
linear with scene size (Figure 14).

6. Conclusion and Future Work

We have presented an object detection technique for 3D
scans that is based on correlating layout and local shape of
object parts. We have also introduced a new algorithm for si-
multaneous detection of many object instances. Empirically,
the new model of including all correlations leads to a signif-
icant improvement. In addition, we also improve over pre-
vious work in terms of frame invariance and by providing
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Figure 13: Large scale result: The complete set of Hannover scans (126 million points, 4GB of raw data). We train 35 examples
of windows, all taken from the buildings marked in blue (16 million points). We are able to detect a substantial fraction of
further instance of the “window” class on the rest of the data set. The computation time is approx. 2 minutes.

Figure 15: Hierarchical detections for the crocodile.

a hierarchical matching model to reduce combinatorial re-
dundancy which can in addition be used to obtain a natural
structuring of the scene. Nonetheless, our algorithm is fast
and scalable; a single-threaded implementation can retrieve
sets of object instances in large 3D scans with more than
100 million points within 2 min, a figure that has also not
yet been shown in literature.

In our experiments, we have deliberately chosen to em-
ploy simple, basic descriptors to focus our study on the ef-
fect of the improved correlated parts model and the approx-
imate inference. Even then, we already obtain remarkable

results, such as discovering a large number of windows in a
city scene with few false positives from a rather small train-
ing set, that have not been demonstrated previously. First
experiments with integrating various different descriptors as
in [KHS10] indicate potential for improvement.
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|S| |S̃| # found
train 16,193,592 1,013,301 249
test 110,763,979 8,645,128 672
all 126,957,571 9,658,429 921

0

20

40

60

80

100

120

0 2 4 6 8 10

ti
m

e
 [

s]
 

point cloud size [Mio] ‘

Figure 14: Statistics for the complete Hannover scan.
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