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Abstract
In this paper, we present a novel method for extracting feature lines from volume data sets. This leads to a re-
duction of visual complexity and provides an abstraction of the original data to important structural features. We
employ a new iteratively reweighted least-squares approach that allows us to detect sharp creases and to preserve
important features such as corners or intersection of feature lines accurately. Traditional least-squares methods
This is important for both visual quality as well as reliable further processing in feature detection algorithms. Our
algorithm is efficient and easy to implement, and nevertheless effective and robust to noise. We show results for a
number of different data sets.
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1. Introduction

Volume datasets provide a huge amount of information that
is not easily graspable due to occlusion and visual clutter.
This is a challenge for both a human observer as well as for
automated data analysis techniques, and this motivates fea-
ture extraction techniques: The goal is to reduce the data to
essential features that summarize important structural prop-
erties of the data set in a more compact form. This allows
a human observer to focus on certain structural aspects (as
extracted by the feature detector). For a computational data
analysis, it transforms the problem from the difficult prob-
lem of “understanding” a continuous data set into a simpler
problem of analyzing a collection of discrete feature ele-
ments. Obviously, it is of particular importance to preserve
geometrical and topological key properties that provide in-
sight into the data characteristics.

There is a long history of feature detection techniques
that extract interest points [Low03], lines [MI97, OBS04,
BBW∗09], or entire regions [HFG∗06]. In many applica-
tions, graphs of line features have been particularly effective
as a coarse sketch of the geometry of a data set: For im-
ages and 3D surfaces, it is even often possible to reconstruct
most of the salient geometry from just a few high curvature
edges [OBS04,MW09], which makes them a good candidate
for automated shape analysis techniques [BBW∗09]. From
the point of view of volume visualization, finding graphs
of feature lines is also promising: On the one hand, line

graphs provide connectivity so that the topological structure
is easier to grasp than in clouds of feature points. On the
other hand, occlusion problems of extended isosurfaces are
avoided.

This paper describes a new scheme for summarizing vol-
ume data by a simple line sketch. Our approach is mo-
tivated by recent work that uses robust statistical estima-
tion techniques for reconstructing surfaces while preserv-
ing sharp features [FCOS05, DTB06, OGG09]. Similarly,
we employ robust statical fitting techniques to extract line
skeletons that preserve features such as corners and inter-
sections. Our algorithm consists of two stages: We first ex-
tract candidate regions by analyzing gradient magnitude and
curvature [HKG01, HG02]. Simple thresholding of such in-
terest regions typically leads to extended and smeared-out
results. Therefore, in second step, we apply a mean-shift-
like projection algorithm to contract the line candidate points
to sharply located curves [CM02, WL08, HR08, BBW∗09,
CTO∗10]. In both steps of our algorithm, we employ iter-
atively reweighted least-squares computations with robust
bilateral weights, which significantly improves the results
at sharp corners and in regions where several feature lines
branch or intersect. This is the main contribution of this
work. We argue that preserving such topological features
is particularly important for human shape understanding as
well as machine analysis because the branching structure
and the sharp corners of the line sketch give important cues
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about the data structure. Traditional least squares techniques
usually fail in such regions as they violate the underlying
assumption of fitting a single, unimodal model to the local
data.

Our new technique is conceptually simple and easy to im-
plement but nevertheless yields a substantial improvement
in quality of the extracted feature lines over traditional least-
squares techniques, which we demonstrate for a number of
example data sets. The performance penalty is moderate, re-
quiring only a small number of refitting operations to gain
the additional robustness. Besides the purpose of visualiza-
tion, we belief that our technique is also useful in the con-
text of processing and analyzing volume data (such as mea-
suring, registration, matching, or abnormality detection), but
this paper focuses on the extraction algorithm and its use in
visualization.

2. Related Work

The detection and extraction of contour lines and skeletons
has been in the focus of research since the early days of com-
puter graphics, vision and visualization. In his pioneering
work [Can86] Canny extracts edges from 2D images by de-
tecting lines along local gradient extrema. Elder and Zucker
[EZ98] exploit the information covered in edges to achieve
storage compression for images. Their characterization of an
edge, as zero crossings of the image Laplacian is more gen-
eral, and their method is capable of detecting blurred edges
over multiple scales. Zhan et al. [MM94] describe an exten-
sion for 3D edge detection and a generalization of the 2D
sobel operator to the volumetric case as presented by Prabir
et al. [BW96].

For point clouds, Gumhold et al. [GWM01] present a
technique to detect crease lines and border parts. They de-
scribe points and the constitution of their local neighbor-
hoods by a correlation ellipsoid, among others, their results
can be used to mark areas of interest in a non photo realis-
tic manner. Pauly et al. [PKG03] extend the idea to multiple
scales, which makes their method more robust to noise. They
demonstrate how the acquired contours can be used to stylize
the underlying geometry. Hildebrandt et al. [HPW05] pro-
pose a technique to extract feature lines from surface meshes
to emphasize its visually most prominent characteristics. De
Carlo et al. [DR07] present a method to detect and highlight
principle as well as suggestive contours on a mesh model to
increase their relative importance for a viewer.

Wang et al. [WL08] show how to extract a skeleton from
a volume data set. They first shrink the entire model in a
least square sense, followed by a thinning step. Hesselink
et al. [HR08] introduce a slightly modified definition of a
skeleton and demonstrate how to compute it efficiently. Re-
cently, Cao et al. [CTO∗10] demonstrate how to extract a
point based skeleton using a Laplacian based contraction
scheme.

Our approach is based on two strains of ideas: The first
ingredient is classical detection algorithms for feature lines:
We employ a differential surface analysis to detect salient
lines. The formulation is similar to Hladuvka et al. [HKG01,
HG02]. Our shrinking strategy is similar to Bokeloh et
al. [BBW∗09] and related to previous skeletonization tech-
niques, as listed in the previous paragraph. The second ingre-
dient is robust statistical fitting that assumes non-Gaussian
distributions of differential properties [FCOS05, DTB06].
Our actual implementation of robust moving least squares
fitting is most closely related to the work by Oztireli et
al. [OGG09], who propose a similar technique for surface
reconstruction with sharp creases.

3. Iteratively Reweighted Least-Squares

Before we go further into the details of the algorithm, we
would like to briefly introduce the main computational tool
our framework is based on, iteratively-reweighted least-
squares fitting (see for example the work by Oztireli et
al. [OGG09] for more details).

Assume that we would like to represent a function f :
Rd ⊇ Ω → R by a linear combination of basis functions
B = b1, ...,bk,bi : Rn→ R using the (unknown) coefficients
λ1, ..,λk. This problem can be solved by minimizing the
quadratic error function

E( f ) =
∫

Ω

ω(x)

(
f −

k

∑
i=1

λibi(x)

)2

dx,

which yields a simple linear system of equations. The weight
function ω can be used to control the influence of data points.
Frequently, ω is set to a smooth windowing function, such
as a Gaussian, and its center is moved through the data. This
transforms the original function f to a filtered function f̃
which is the moving least squares (MLS) reconstruction of
f . We employ this strategy with a quadratic monomial basis
to estimate differential properties of the volume. However,
at (higher order) discontinuities, such as creases or corners,
the least squares approach yields blurred and smeared out
results, which is due to the quadratic penalty that dispropor-
tionally discourages larger fitting errors. This problem can
be avoided by using a different error metric than the L2-norm
that implies a Gaussian error distribution (a Gaussian distri-
bution is a distribution of maximum entropy at fixed vari-
ance, implying an unstructured error distribution). For most
data sources, this is not realistic: Typically, we have much
smaller errors but a few far out outliers due to sharp creases.
In order to account for this, a heavier-tail distribution such
as an Lp norm with 0 < p≤ 1 should be used [DTB06]. This
can be implemented easily using reweighting, i.e., by choos-
ing a weight function ω that is reciprocal to a power of the
residual of the fit: We start with an L2 fit and reweight iter-
atively until convergence. This strategy is globally optimal
for p≥ 1 due to the convexity of the functional. In our case,
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Figure 1: Diagram describing the interplay of the different algorithm stages.

we use a Gaussian kernel for reweighting that leads to a non-
convex optimization problem but tends to preserve sharp fea-
tures better (for a constant monomial basis, this reduces to
the bilateral filter). In our application of fitting small local
patches, non-convexity is not an issue as the L2 initialization
gives a good initial estimate.

A further extension is a more general, attribute-driven bi-
lateral reweighting [FCOS05]: If we have multiple proper-
ties at each point in space such as normals or curvatures
(not just the function value), we can also perform a Gaus-
sian reweighting based on the difference of these properties.
This is useful for preserving discontinuities in these proper-
ties as the reweighting implicitly partitions the problem into
points with similar properties. We use this idea in our pro-
jection algorithm to robustly handle corners, junctions, and
intersections of line segments.

4. Algorithm Description

The sequence of the different intermediate steps of our ap-
proach is depicted in Figure 1. Our algorithm first analyzes
the local neighborhood of each voxel by fitting a quadratic
function to it which is repeatedly refined. The fitted function
allows for describing the geometric properties in the voxels
neighborhood. From this, we select candidate regions con-
taining topological features. In general, these regions exhibit
a width of several voxels. In the projection step, we repeat-
edly shrink this extent which results in a dense skeleton-like
representation. According to their context, we combine the
yet independent feature points to crease lines. The final step
consists of the appropriate visualization. In the remainder of
this section, the above mentioned stages are explained in de-
tail.

4.1. Local fitting

The first step of our algorithm is to estimate the second or-
der differential properties of our input volume at each voxel.
This is done using a MLS scheme with iterative reweighting.
We employ a second order monomial basis b and estimate a
coefficient vector c such that the resutling function f locally

approximates the volume V well in the vicinity of a point x0.

b = (1,x,y,z,xy,xz,yz,z2,x2,y2)

c = (c1,cx,cy,cz,cxy,cxz,cyz,cxx,cyy,czz)

fx0(x,y,z) = b · cT

In order to estimate f , we will iteratively solve for multiple
such solutions, indexed by a time parameter t = 0,1, .... In
each iteration, we compute the c(t) and thereby an f (t) that
minimize

∑
x∈N(x0)

( f (t)(x)−V (x))2 ·ω(t)
x0 (x),

where N denotes voxels of the volume that lie within the sup-
port of the weighting function ωx0 . We initially use a purely
spatial Gaussian window

ω
(0)
x0 (x) = exp

(
− (x−x0)2

2σ2
spat

)
with a standard deviation σspat corresponding to a few vox-
els (we truncate the Gaussian when it becomes numerically
close to zero; see Section 4.6 for a discussion of concrete
parameter choices). Given the initial estimate, we perform a
reweighting where we take ω to be the product of the spa-
tial kernel used so far and a kernel function in the intensity
domain:

ω
(t)
x0 (x) = exp

(
− (x−x0)2

2σ2
spat

− ( f (t−1)(x)−V (x))2

2σ2
intens

)
We iterate this reweighting until convergence. The coeffi-
cients obtained from this estimate yield a robust and de-
noised estimation of a second order Taylor series for the data
in V at point x0: The linear coefficients represent the gradi-
ent and thus the normal direction of a local isosurface. We
denote this by:

n := (cx,cy,cz), G := ||n||, n1 :=
n
G

The quadratic coefficients yield estimates for the entries of
the Hessian matrix:

H =

 cxx cxy cxz
cxy cyy cyz
cxz cyz czz


We multiply from the left and from the right with a projec-
tion matrix that cancels out contributions in normal direction
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(a) input volume (b) candidate set

(c) projected candidate set (d) orientation clusters

Figure 2: An illustration of the effects of the intermediate
steps using the example of the engine block data set.

and thus obtain the curvature tensor of a local isosurface:

P = I−n1 ·n1
T

H = P ·H ·PT

Obviously, H has at most rank 2. Let therefore x1,x2 be
the normalized eigenvectors and λ1,λ2 the corresponding
eigenvalues (largest absolute value first) of H. After dividing
by the gradient magnitude, the eigenvalues yield the princi-
pal curvatures κmax = λ1/G,κmin = λ2/G of a (hypotheti-
cal) isosurface crossing x0. Correspondingly the eigenvec-
tors yield the directions of principal curvature kmax,kmin.

4.2. Candidate selection

After computing differential quantities, we will extract re-
gions that correspond to sharp feature lines in the volume.
These regions are characterized by both a strong gradient
magnitude (indicating a local surface) as well as a large max-
imum principal curvature. In this first step, we use a simple
thresholding method to identify a candidate area of interest:

C = {ci ∈V |G(ci) > τG, |Kmax(ci)|> τK}

With τG and τK as thresholds for the gradient and the abso-
lute value of Kmax. By these parameters, the user can control
how pronounced a line feature needs to be to be included in
the candidate set C (see Section 4.6). As an example, Fig-
ure 2a) and b) shows input and the result of this stage for the
well known engine block model. Please note that the color
encodes the orientations of kmin, which is the tangential di-
rection of the extracted lines

4.3. Projection

So far, we have a candidate set of voxels that are located
near actual sharp features. However, their location is still
smeared out. Our goal is now to shrink these smeared out
feature regions to thin and (piecewise) smooth feature lines,
a step that we call projection onto feature curves. Formally,
for every voxel-quantized point ci ∈ C from the candidate
set, we compute a projected point p(

i t) at a continuous coor-
dinate. Our procedure is very similar to mean shift cluster-
ing [CM02]: Starting at the candidate position ci, We itera-
tively move the points pi the the centroid of its local neigh-
bors in the original candidate set C, weighted by a spatial
Gaussian window. In the following, we will use pt

i to denote
the position of the moving point at step t of this iteration.
Please note that we always compute weighted averages with
respect to the original candidate set, not the moved points.
Unalteredly, the described procedure would move the points
to the centroids of regions where the highest density of can-
didate points is located (this is mean shift clustering). How-
ever, we want to extract lines, not centroid points. Therefore,
we restrict the movement of the pi: For each point, the min-
imum principal curvature of the isosurface kmin is the tan-
gential direction of line we are extracting. Correspondingly,
we restrict the candidate points to not move into the direc-
tion of kmin (again, the constraint direction is fixed through-
out the iteration). This procedure yields thin feature lines,
but does not yet lead to satisfactory results in regions where
lines of different direction are close to each other. Therefore,
we again employ bilateral reweighting to separate the influ-
ence of lines of different tangential direction onto each other.
A new position is now computed by the bilaterally weighted
average of neighboring positions: in addition to spatial dis-
tance, we also take the deviation in tangential direction into
account; points with very dissimilar tangents have only min-
imal influence on the projection. We summarize the proce-
dure in the following algorithm:

p(0)
i = ci

p(t+1)
i = (I−kmin(ci) ·kmin(ci)

T ) ·

 ∑
j 6=i

ω
(t)
i (c j) · c j

∑
j 6=i

ω
(t)
i (c j)


ω

(t)
i (x) = exp

(
−

(p(t)
i −x)2

σ2
spat

− ∠(kmin(ci),kmin(x))
σ2

angle

)

In the case that the sum of weights of a point is very small
(leading to a near-zero denominator in the weighting), we
discard the point altogether as an outlier. As a result of this
stage, we are given a narrow skeleton which consists of yet
unconnected representatives. This is illustrated in Figure 2
c). Note the difference in thickness by preserving the orien-
tation at the same time.
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4.4. Clustering

Since many positions coincide after the projection step we
will decimate the feature points first. Although we want to
reduce their number for further processing, we need to keep
those which belong to different lines especially at junction
points. Therefore we start a context aware resampling at an
arbitrary point by erasing all points closer than half a voxel
diameter, whose orientation of kmin differs less than σangle.
We repeat this for all remaining points.

Now that the feature points are pruned, we cluster them
to crease lines by a region growing approach. We again start
at an arbitrary point and project a line segment through this
point, whose orientation is given by the minimal principal
curvature direction. Then we collect all points in a local
neighborhood with a distance less than σspat to the projected
line segment and which do not differ more than σangle in
their own orientation. This is repeated until no valid neigh-
bors can be added. Then a new cluster starts at the next point
which has not been assigned before, until all points have
been considered.

The representatives gathered in these clusters form the
control points of the crease lines. This clustering step comes
along with an abstraction of structural information from
points to curves, and so leads to a reduction in the number of
scene elements. Circles and circular arcs are approximated
by several clusters. Figure 2 d) shows a zoom on the engine
block model. Different colors indicate different clusters.

In order to overcome problems with outliers we remove
clusters with less than 4 representatives.

As a corner or junction, we define those points where two
clusters intersect or approach closer than σspat and whose
orientation differs more than 2 · σangle. These regions are
specially marked for later highlighting.

4.5. Rendering

We have implemented two different options for rendering
the result. The first is a straightforward point-based render-
ing, where every extracted point on a line is just displayed as
a dot, or alternatively, as a small line segment in line direc-
tion (kmin) with length proportional to the sample spacing.
This corresponds to the native output format of our feature
extraction pipeline but it is obviously not a good represen-
tation for rendering with complex shading. In particular, it
is hard to perceive occlusion and depth order for a simple,
uniformly colored line drawing. Therefore, we convert the
point sampled lines into cylindrical surfaces of fixed radius
R in an (optional) additional step. This yields a visualiza-
tion that looks like a network of pipes. In order to compute
a valid manifold triangle mesh for line networks of general
topology, we employ a moving least squares (MLS) based
implicit surface fitting technique inspired by the work of
Shen et al. [SOS04] (who consider the case of surfaces rather

than lines): For each sample point, indexed by i = 1..n, we
setup an infinite cylindrical distance function fi that encodes
the distance to the straight line of infinite length that passes
through the point sample in kmin-direction. In order to eval-
uate the implicit function f at an arbitrary position in space,
we use a partition of unity weighted combination of the im-
plicit functions fi:

f (x) = ∑
n
i=1 ω(x)( fi(x)−R)

∑
n
i=1 ω(x)

This gives us an implicit moving least squares (IMLS)
scheme [OGG09] for which its zero level set encodes the
surface to be extracted. We use a simple Gaussian kernel as
weighting function ω with a standard deviation above sam-
ple spacing to create smooth results. Because this function
has (at least numerically) compact support, we do not eval-
uate the implicit function for points in space that are farer
away from than the support of the weighting function. This is
implemented using a standard octree decomposition of space
that only subdivides space in proximity to sample points.
The maximum number of subdivisions is a user parameter
that determines the resolution of the resulting mesh. For all
octree leave nodes that are within the support of the Gaussian
kernel centered around a line sample point, we run a stan-
dard marching cubes algorithm to create a triangle mesh. In
order to avoid displaying small outlier segments, we delete
connected components with a small number of triangles.

4.6. Parameters

In practice we use spatial Gaussian windows with a stan-
dard deviation σspat of 2-3 voxels and a truncation outside a
support volume of 53 voxels. The standard deviation σintens
is set to a fixed fraction of the observed intensity range, for
our examples we use σintens = 5% ·(Imax− Imin). The thresh-
olds for the candidate selection τG and τK are also a percent-
age of the highest gradient and the highest absolute value of
the maximal principal curvature, found in the entire volume.
Their tuning is crucial and is discussed in the next section.
σangle which affects the bilateral weight in the projection and
is later used in the clustering, ranges between 20◦ and 30◦.

5. Results

Figure 3 (a) shows a synthetic volume. The letters and num-
bers exhibit very sharp edges and corners. Each symbol is
given a different intensity value, indicated by different colors
in the original volume. The red coloring in the results marks
the positions of corners and junctions (b). Note the sharpness
and connectivity as well as the faithful depth order in the ren-
dering. In part (c) we demonstrate the result for the bonsai
tree model. It preserves the sharp outlines of the leaves and
allows to trace branches. We omitted to colorize junctions
here because they are too frequent, especially at the roots in
the plant pot. In Figure 4 (a) we show the final rendering for
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(a) (b) (c)

Figure 3: An artificially generated volume (a) and its extracted line sketch (b). Our result for the bonsai tree model (c).

the engine block data set. Part (b) shows a zoom on a cor-
ner of our result where 3 edges meet. In (c) we demonstrate
what happens if the projection to the plane orthogonal to the
line direction is not applied. In this case it behaves like regu-
lar mean-shift filtering, thus the edges move away form their
junction point and tear apart the geometry.

The advantages of our method over a traditional least-
squares baseline approaches are examined in figure 5, using
the engine block example again. The upper left image shows
the candidate set computed by the method described in this
paper. The lower left image shows the corresponding image
with reweighting omitted (setting σintens to infinity), but us-
ing the same parameters otherwise. The resulting candidate
set is larger (227k to 122k) and does not as clearly separate
feature lines in the volume. Moreover, many more planar ar-
eas are recognized as features. This shows the shortcomings
of a standard MLS for detecting sharp edges and corners.
The middle column shows the results of the projection step
for the both images on the left, using the same parameter
settings. One can easily see that the planar regions remain
as dense artifacts on the left and in the background. In the
right column we see what happens if the bilateral weighting
of the orientation is omitted. Edges lose their sharpness, and
mutual influence of adjacent lines of different direction starts
to show up: Note in particular the circles on the left side of
the engine block. Without reweighting, they show a distorted
shape because they are attracted by the points which belong
to an intersecting line. In order to evaluate the improvement
of the techniques described in this paper, we have to compare
the lower right image (no reweighting at all) to the middle
image in the upper row. Obviously, the feature lines are ex-
tracted less accurately and in several places, even the topol-
ogy of the line graph is wrong without reweighting (see the
inner left bottom corner, for example).

5.1. Open problems

Since spheres, cylinder and slightly curved planes exhibit a
high gradient as well as a high value of the maximal princi-
pal curvature, it is hard to distinguish those undesired can-
didate regions from linear structures. Introducing another

threshold which takes into account Kmin in order to not de-
tect spherical parts as candidates does not work because cor-
ner regions have high values for Kmin as well. We therefore
restrict ourselves to thresholding Kmax only. That is why the
thresholding is so crucial for the quality of the results. Either
the thresholds are low enough to allow all small details at the
cost of introducing undesired regions or they are too high
and important structures are lost but the candidate set is free
of false positives. Our examples use rather low thresholds.
Spheres, cylinders and planes are characterized by many fea-
tures side by side which point into the same direction. Our
projection algorithm terminates very early because the at-
traction of the points in the neighborhood is equally high.
This leads to numerous relatively small clusters. This fact al-
lows us to use the post-processing step described in Section
4.5 which removes small unconnected components from the
final output. This removes most artifact in problematic areas
but potentially sacrifices small linear features as well.

Figure 6 show our result for a micro-ct scan of a mechan-
ical part. One can see how problematic regions look before
and after the post-processing. A more general solution would
probably be to integrate path along the surface in kmax direc-
tion and check whether the angle spanned by similar curva-
ture spans more than 180◦; we leave the examination of such
filtering techniques for future work.

5.2. Performance

The most time consuming part of our algorithm is the local
fitting step. It is linear in the number of voxels, the kernel
size and the number of reweighting steps. The duration of the
projection stage depends on the size of the candidate set and
the neighborhood radius. The time for convergence varies
from model to model.

Our prototype implementation is written in C++ using
OpenMP

TM
to allow parallel computation. The performance

was measured on an Dual Socket Intel R© I7
TM

system run-
ning at 2.66 GHz with 24 GB of main memory. Table 1 in-
cludes timings for the intermediate steps of several models,
with parameter settings as they are explained in section 4.6.
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(a) (b) (c)

Figure 4: The rendered outcome for the engine data set and a zoom on the lower part of the left side (a) and (b). The same
view on a result achieved without taking care of the orientation in the projection step (c).

Figure 5: A comparison of intermediate results achieved which illustrate the influence of correct reweighting. Upper row: can-
didate set computed with reweighting, lower row: without. Left column: initial candidate set. Middle column: After projection,
with reweighting, Right column: after projection without reweighting. Our result is the upper/middle image, the base-line result
is the lower right one.

Other operations like thresholding, resampling, crease line
clustering and corner detection only consume fragments of
seconds in practice, thus they are not listed there. One can
see that the bonsai tree has a very high number of feature
points compared to the engine block model. Although the
size of its candidate set is almost similar to the one of the
mechanical part, the neighborhoods are much more complex
and it takes longer until the projection reaches a steady state.

Model Resolution Fitting |C| Projection
Logo [200,150,60] 11 sec 42k 1 sec
Engine [256,256,256] 100 sec 123k 3 sec
Bonsai [256,256,256] 100 sec 555k 25 sec
Part [504,504,225] 360 sec 545k 13 sec

Table 1: Listed timings for different models.

6. Conclusion

We have presented a novel feature line extraction algo-
rithm for volume data sets. In contrast to traditional meth-
ods, our algorithm employs robust statistical fitting tech-
niques at several steps of the algorithm, which is moti-
vated by recent work in feature preserving surface fitting
[DTB06, FCOS05, OGG09]. As a result, we are able to re-
produce sharp corners, junctions, and intersections of fea-
ture lines significantly more accurately than standard least-
squares techniques, which frequently introduce geometric
errors in these regions that are large enough to even alter
the topology of the resulting feature graph. We believe that a
robust extraction of line graphs of general topology is impor-
tant in both visualization of data sets as well as automated
data analysis. The shortcoming of traditional techniques,
which yield artifacts at topologically sensitive junction ar-
eas, is particularly bad for both an effective visual summary
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Figure 6: Result renderings of a mechanical part (left). Before (middle) and after post-processing (right). Note that the dis-
turbing artifacts around the middle cylinder and the surfaces at the outer boundary are removed.

and even more for automated data analysis. Our new ap-
proach reduces these problems significantly. As a limitation
and avenue for future work, our algorithm still has a few
parameters for the user to be set. The automation of these
choices could be improved. We also sometimes obtain arti-
facts from moderately curved cylindrical and spherical sur-
faces, which could be filtered out more effectively, as dis-
cussed above. In addition to this, we would also like to ex-
amine data processing algorithms that operate on line graphs
such as feature-based symmetry detection [BBW∗09].
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