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Abstract
In this paper, we present an algorithm for detecting partial Euclidean symmetries in volume data. Our algorithm
finds subsets in voxel data that map to each other approximately under translations, rotations, and reflections.
We implement the search for partial symmetries efficiently and robustly using a feature-based approach: We first
reduce the volume to salient line features and then create transformation candidates from matching only local
configurations of these line networks. Afterwards, only a shortlist of transformation candidates need to be verified
using expensive dense volume matching. We apply our technique on both synthetic test scenes as well as real CT
scans and show that we can recover a large amount of partial symmetries for complexly structured volume data
sets.
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Categories and Subject Descriptors (according to ACM CCS):
I.4.7 [Computing Methodologies]: Image Processing and Computer Vision—Feature Measurement
I.4.8 [Computing Methodologies]: Image Processing and Computer Vision—Scene Analysis
I.5.4 [Computing Methodologies]: Pattern Recognition—Applications

1. Introduction

Gaining insight into the structure of volume data sets is a
prime challenge in scientific visualization. Because of the
dense 3D structure with occlusions, it is often hard to under-
stand important structural properties of volume data for a hu-
man observer. This motivates algorithms that extract struc-
tural properties of such data sets fully automatically and and
display them to the user. Obviously, this is not just useful
in visualization of single data sets but also for an automated
analysis or batch screening of large quantities of data.

In this paper, we look at one specific approach for ex-
tracting structural properties from 3D volume data: Partial
symmetry detection. The goal is to find parts within the data
that approximately map to other parts of the data under a
Euclidean transformation (i.e., rotations, translations, reflec-
tions, and any combinations of these).

Partial symmetry detection has recently gained a lot of
interest in the geometry processing community [MGP06,
BBK06, GCO06, LE06, PSG∗06, SKS06, OSG08, PMW∗08,
BBW∗08, BBW∗09] and has been proven to be an invalu-
able tool for a number of applications, ranging from denois-

ing and compression to complex shape understanding algo-
rithms that for example infer building plans from symmetry
information.

Despite this success in processing 2-manifold data, very
little work has been done in applying symmetry detection
to 3D volume data. Our paper aims at filling this gap and
proposes an efficient and robust computational framework
for computing partial symmetries in 3D volume data.

Detecting such symmetries naively requires an exhaustive
search over all Euclidean motions that map the volume (par-
tially) to itself. As this group of transformations has 6 de-
grees of freedom, a well-sampled exhaustive search would
require a computation time of O(n9) for an O(n3) volume
data set, which is prohibitively expensive. Therefore, the
main task of a practical symmetry detection algorithm is to
reduce the amount of comparisons while maintaining the im-
portant self-matches.

As detailed in the next section, a number of approaches
have been proposed that address this problem for 3D sur-
faces, but only very little work has been done in the domain
of volume data. We use some ideas from [BBW∗09], who
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use line features as intermediate representation for efficient
matching. This approach has the advantage of condensing
the information to a small amount of characteristic features
early in the matching pipeline, which is particular useful for
volume datasets: On the one hand, this reduces the amount of
data to be processed and on the other hand, this abstraction
step helps in making the algorithm more robust: By reduc-
ing the matching to important feature structures, objects with
complex structure can be matched automatically. We discuss
how to perform feature extraction and matching effectively
and robustly in 3D volume data and propose and evaluate
a complete symmetry detection pipeline for the volumetric
case.

We apply our algorithm to a number of test scenes, in-
cluding two real-world CT scans of complexly structured
objects.

2. Related Work

Symmetry Detection on Surfaces and Images: A con-
siderable amount of work has been done in finding global
and partial symmetries in surface data. Early work focused
on exact, combinatorial algorithms [AMWW88]. More re-
cently, algorithms have been explored that can handle inac-
curacies and approximate matching. A large class of algo-
rithms is based on transformation voting [MGP06, GCO06,
LE06, PSG∗06, PMW∗08]: The algorithm builds a space
of all transformation and votes for likely transformations
by counting or clustering pairs of potentially matching sur-
face elements. An alternative approach is numerical opti-
mization, where shapes are initialized in a relative pose
and an energy function is minimized that finds an over-
lap [SKS06, BBK06]. A third class of algorithms is based
on matching graphs of features on surfaces by a geometric
transformations [BBW∗08, BBW∗09]. Finally, global sym-
metries of shapes can also be computed by spectral mo-
ments [MSHS06]. Using Eigenfunctions of the Laplace-
Beltrami operator of the surface, bending invariant symme-
tries [OSG08] can be found.

Applications: Symmetry detection has been used for a
number of interesting applications. Thrun et al. [TW05] use
symmetry to infer missing geometry from partial informa-
tion. Another canonical application is the improvement of
data quality [PMW∗08, BBW∗09] by using statistics of en-
sembles of symmetric objects. More recently, symmetry de-
tection has been proven useful as an elementary building
block in higher level shape understanding algorithms, such
as structure aware shape editing [GSMCO09] and inverse
procedural modeling [SBM∗10, BWS10].

Volume analysis: Only very few methods have been pro-
posed for detecting symmetries in volume data sets. The
only technique we are aware of that specifically targets 3D
voxel data is the work of Hong and Shen [HS08]. They ap-
ply the reflective symmetry transform algorithm of Podolak

et al. [PSG∗06] to volume data. In contrast to our approach,
this method can only handle global and reflective symme-
tries. The methods based on spherical harmonics analy-
sis [MSHS06] are inherently volumetric some of the other
detection principles could be generalized to volume data as
well, but we are not aware of concrete approaches.

While symmetry detection has not yet gained much atten-
tion in volume visualization, there is a large body of litera-
ture of techniques that extract structure from point clouds for
a semi-automatic analysis. We give a brief overview, which
is by no means exhaustive.

Many approaches have been studied for feature detec-
tion in volumes: Wu et al. [WCHK03] extract salient points
in a multi-scale framework. Tzeng and Ma [TM05] extract
and visualize 4D features within time dependent volume
data via machine learning methods. Vijay et al. [VNP∗05]
present a topological approach for simplifying continuous
functions defined on volumetric domains based on a small
set of atomic functions. Caban et al. [CJR07] focusing on
time-varying volume data with a texture-based technique
tracks various features individually and then uses the tracked
objects to better visualize structural changes. Hadwiger et
al. [HLRS∗08] present a method optimized for industrial
CT (e.g. machine parts, such as our examples). The idea is
based on a region growing preprocessing step that stores for
each voxel a feature size curve that is then during rendering
used in combination with transfer functions to interactively
explore the features in the volume. Schulze et al. [SMB10]
introduce probabilistic boosting trees with partial cascading
and classifier sorting for general feature detection in volumes
but focus mostly on medical data.

There are also several domain specific techniques: Laney
et al. extract topological features to study Rayleigh-Taylor
instabilities [LBM∗06]. Grottel et al. [GRVE07] detect con-
densation clusters in Molecular Dynamics simulation data.

3. Symmetry Detection Algorithm

We first give a brief overview of our approach. The method
proceeds in three major steps:

Feature Detection: Our algorithm uses constellations of
line features as primary representation for the analysis and
data matching. This reduces the amount of data to be pro-
cessed and is the key to efficient computations. We employ
line features because they preserve much more structural in-
formation than traditional key points [Low03], without ex-
cessive costs. We start with feature preserving filtering in or-
der to suppress noise in the input volume. Then, every voxel
is described by the differential properties of its local neigh-
borhood and we extract a skeleton of salient structures. After
shrinking and pruning the selected areas, locations of similar
properties are grouped together to crease lines. The detection
of locations where different crease lines intersect concludes
the first part. Details are given in Section 3.1.

c© The Eurographics Association 2011.



J. Kerber & M. Wand & J. Krüger & H.-P. Seidel / Partial Symmetry Detection in Volume Data

Sparse matching: Given a set of intersection points, we
compare all contained junctions by determining the trans-
formation between each pair. The transformations are rated
according to the quality of the matching for adjacent line
fragments. The best transformations, in the sense of most
overlap found, are kept for the final step, as a transformation
candidate shortlist. Details of the sparse feature matching
step are discussed in Section 3.2.

Dense matching: For each transformation on the final
candidate shortlist, we compute a separate symmetry volume
by applying the transformation to each voxel of the input
volume and comparing its value to the intensity at the desti-
nation position. We accordingly colorize the patches where
the transformation has mapped to similar entries. Further-
more we visualize rotation axes and reflectance planes to
better illustrate the applied transformation. Dense Matching
is described in Section 3.3.

Visualization: We discuss briefly how we visualize the
results in Section 3.4.

Postprocessing: Because of noise and quantization er-
rors, the computed symmetry volumes usually still show
some remaining noise and outliers. Therefore, we perform
a postprocessing step to address this issue. See Section 3.5.

3.1. Feature Detection

Let V : [1,nx]× [1,ny]× [1,nz]→ [0,1] be a volumetric func-
tion that maps from a cuboid in R3 to real numbers between
zero and one. We assume that we are given a discrete rep-
resentation that stores values only at integer positions, i.e.,
on a regular grid. We assume that it is possible to distin-
guish between an actual object and the background by either
thresholding very small values, or by a user defined addi-
tional binary mask.

Since the preservation of sharp edges and transitions be-
tween different materials is mandatory for the following
steps, we opted for a bilateral filtering as an initial denois-
ing [TM98]. It is known to ensure a smoothing of local high
frequencies without blurring large intensity differences. This
preprocessing helps to increase the robustness of the later
mapping step for which the presence of noise could lead to
outliers. We denote the filtered Volume by V .

The remainder of this section summarizes the employed
crease line extraction algorithm. It is based on the method
recently developed by [KBW∗10] where we refer for more
details.

In the beginning, a quadratic three dimensional surface
is fitted to the local neighborhood of each voxel. Devia-
tions between the approximated surface and the actual be-
havior of the sub-volume are taken into account by a bilat-
eral reweighting and a new refined surface is computed. This
is repeated iteratively until convergence. The resulting sur-
face approximates the local conditions best in a least square
sense.

Given such a surface, we can describe each voxel by a
structure tensor in the shape of an ellipsoid. Let (~N, ~K1, ~K2)
be the orthonormal axes of this tensor pointing into the ori-
entation of the surface normal and its principal curvature di-
rections. Further, let the triple (g,k1,k2) be the magnitudes
of the gradient and the bendings of the surface. In contrast
to faces, where only a high gradient is present, edges exhibit
significant values of the maximal principal curvature as well.
The vector ~K2 in every voxel characterizes the direction in
which an edge is locally propagating. All voxels are ranked
according to the product g · k1 which is proportional to the
area of the ellipse spanned by the two vectors. We pick the
best percentage µ of all voxels for further processing.

Usually, the chosen voxels are situated in a certain radius
around an actual edge. This spatial extension is shrunken by
applying a connectivity preserving bilateral mean-shift filter.
In this case, deviations in the orientation of ~K2 are weighted
and the shift in each step is restricted to a plane perpendicu-
lar to this orientation. By this we ensure the preservation of
connectivity in the filtered outcome. At the end of this step
all points belonging to the same edge, collapsed to a thin line
in space.

After that, all points which exhibit a similar orientation
are clustered by a region growing approach. Each such clus-
ter is henceforth denote as a line feature described by a
common orientation and a set of points in space. Straight
edges contain only one line feature, whereas curved or cir-
cular edges are described by multiple smaller elements of
similar orientation.

Whenever, points of feature lines with deviating orienta-
tions converge close enough, we regard it as an intersection.
These constellations are denoted as bases. Each base con-
sists of a triple formed by a virtual intersection point in space
and two line features (p, l1, l2). Note that also each counter-
part (p, l2, l1) is detected. The set of the extracted bases B
serves as input for the next step in the pipeline.

Figure 1 (a) shows the extracted feature lines for a bi-
nary cube. They are color-coded by their orientation and the
junction points of the detected bases are indicated by small
spheres. Exactly six distinct bases are located in each corner
of the cube because three pairs of lines meet there.

3.2. Sparse Matching

Due to the abstraction which was achieved by the previous
step, the size of the search universe has decreased drastically.
The number of elements is small enough such that we now
can afford an exhaustive search over all pairs of bases which
requires O(|B|2) comparisons. To do so, we proceed with an
iterative closest line approach (ICL) which was initially used
for detecting similar structures in point clouds [BBW∗09].
The quality of this match is determined by taking into ac-
count the similarity of the adjacent line segments.
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(a) (b)

(c) (d)

Figure 1: Detected line features and intersections (a) two
selected transformations (b+c) and a visual combination of
detected symmetries (d) for a binary cube.

Line feature matching starts by estimating an initial trans-
formation from the matched base pair. Given this transfor-
mation, the adjacency graph of neighboring lines is traversed
in a region growing approach: Whenever we visit a new line
segment in the source instance, we search the target instance
for a nearby line. We first locate the closest line sample and
then compute the point-to-line distance by projecting the dis-
tance vector into the space orthogonal to the tangential di-
rection of the line. We then evaluate a matching score: For
each distance di of line sample from the source connecting
to the closest target, we sum up the value of exp(−d2

i /2σ
2).

In other words, we assume a radial function around the lines
within which geometry is considered to be matching. The
radius of the region, given by σ, is set according to the ex-
pected errors in the match (due to noise, modeling errors,
quantization problems, etc). Region growing is stopped if all
neighboring line segments fall below a small threshold. The
overall matching score accumulated so far is stored and used
later in order to assess the match quality.

Refinement: The initial transformation estimates are ob-
viously rather noisy. Therefore, we optimize the alignment
iteratively: After each region growing step, we compute the
point to line distance of all source points with respect to
their closest target lines, weighted by the exponential kernels
around each line. We then compute the transformation that
minimizes the sum of these distance values (see [BBW∗09]
for details). After refinement, we continue region growing,
and iterate (we currently use 5 iterations).

Removing doublets: The algorithm presented so far is
likely to report one and the same match multiple times, ob-
tained from different bases that yield a similar transforma-
tion, after iterative refinement. Let T denote the set of trans-
formations obtained from the previous step. We prune T by
eliminating similar transformations and only keep the high-
est ranked representative according to the matching score of
the ICL algorithm. After that we proceed with eliminating
inverse transformations; they are redundant as they are easily
obtained from the originals by swapping source and target
labels. Since each transformation is represented by a 4× 4-
Matrix, this is done by thresholding the Frobenius-norm, af-
ter normalizing the translation part to [0,1].

||Ti−Tj||F < ε (1)

||(Ti ·Tj)− ID4×4||F < ε (2)

Given the example of the cube, this means we have
48× 47 valid transformations in the beginning. After solv-
ing all double occurrences the size drops to 47 and further to
33 entries when the inverse transformations are eliminated.
Figure 1 (b) and (c) show two of the remaining transforma-
tions: one rotation and one reflection. They are depicted by
the corresponding axis and plane respectively.

3.3. Dense Matching

Now we can apply the remaining transformations to the vol-
ume itself and check for similarities in the overlapping areas.
This means that for each element ti ∈ T we create a new
symmetry volume that separately shows the corresponding
effect. According to the current transformation, each voxel
in V is mapped to a destination. If this destination is lo-
cated in the background or outside of the defined volume,
then there is nothing to do. Otherwise we compare the en-
tries at the source and target positions. If the intensity de-
viation is below a certain threshold both voxels are marked
accordingly.

|V(v)−V(ti(v))|< τI (3)

Here, τI denotes the allowed tolerance w.r.t. intensity devia-
tions.

In general the target will not exactly match a voxel center.
Experiments have shown that a trilinear interpolation is time
consuming and causes wrong classifications at sharp bound-
aries and transition areas because of the continuous fall off.
To overcome this, we opted for a rounding to the next dis-
crete grid cell. This solution is much simpler, faster and the
remaining problems can be solved as described below.

In the case of a rotation or a reflection there will be voxels
which are either mapped to themselves or they have at least
one direct neighbor for which both map to each other.

v j = ti(v j) (4)

(ti(v j) = vk)∧ (ti(vk) = v j)∧ (|vi− v j|< 2) (5)
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We specially mark these voxels because they belong to the
corresponding axes or planes which help us visually describe
the transformation. If a translation is involved we will not
find any voxels which fulfill the above mentioned criterion.

3.4. Visualization

For the coloring of the symmetry volume we assign red to
all voxels which are marked as a source and green to those
which describe a target location. Areas where both labels
overlap are colored in blue. To provide an additional orien-
tation, the remaining foreground voxels of the initial volume
are shown in a semi transparent light gray. We use a stan-
dard rendering approach of volumetric raycasting with alpha
blending and Phong-like shading.

If voxels are marked as belonging to a symmetry plane
or axis, we indicate this by a semi transparent checkerboard
pattern with black and orange fields. This highlights the in-
variant voxels and assists a viewer in understanding the per-
formed transformation. The absent of such voxels that are in-
variant under the symmetry transformation indicates a trans-
lational component in the mapping.

If we had not eliminated the inverse matrices in the match-
ing step we would get additional volumes for which the red
and green color would only be interchanged.

3.5. Post Processing

The continuous nature of the transformations and a poten-
tially coarse resolution of the volume might cause outliers in
form of discretization artifacts. This means that areas where
source and target should have met, are only assigned to ei-
ther one of them. As it can be seen in Figure 2(a), where
red and green areas are present in the back of the car. These
discontinuities are very thin, often not larger than one voxel.
Therefore we apply an additional morphological erosion as a
post processing (only for red and green) whereas the deleted
voxels are reset to semi transparent light gray. The tidy result
can be seen in Figure 2(b).

(a) (b)

Figure 2: A reflective symmetry for a toy car model before
and after post processing.

4. Results

Figure 1 shows a toy example, a synthetic cube that has
global symmetries, forming its octahedral symmetry group:
The cube entirely maps to itself under multiples of 90◦ ro-
tations around axes and axis aligned reflections. This shows
as blue voxels in the visualization (no erosion was applied).
In Figure 1 (d) we show the planes of all reflective trans-
formations in one picture (the rotation axes are a part of the
planes). Given this visualization the viewer can see that a
cube consists of 48 equally shaped tetrahedra which start in
each corner and point towards the center.

In Figure 3 we analyzed a synthetic binary writing and
show 7 selected symmetries. The accompanying video con-
tains additional matches and also demonstrates that for this
inherently two dimensional model, rotations and reflections
lead to the same results. Moreover it also contains point sym-
metries.

The engine block data set consists of many rotational sym-
metries, and the upper and lower part correspond in large
areas as well. In addition, we also discover symmetries be-
tween disjoint volumetric areas (see Figure 4 and the accom-
panying video). For some of these symmetries, a human ob-
server would probably not notice intuitively that these parts
are actually related. We would therefore argue that this is
a good example to demonstrate the use of our technique:
We can robustly discover structural redundancy in complex
and noisy data sets. Furthermore, we obtain insights into the
structure of the data that is not apparent in a traditional vol-
ume rendering.

Finally we show the detected symmetries for a mechanical
part in Figure 5. The plane and the coloring in the second im-
age show that almost the entire volume is reflectively sym-
metric. The gray areas indicate where the geometry starts to
differ. A rotation around the center axis is shown, followed
by the detection of a pair of cylinders. This data set has less
redundancy than the engine block but we still discover some
main partial symmetries fully automatically. Again, this is
real-world data from a CT scanner, showing that the abstrac-
tion into line features and our subsequent matching and fil-
tering pipeline is effective in handling such data robustly.

4.1. Discussion

One limitation of the presented approach is that in the feature
detection step, the quality of voxel is compared globally. In
areas of low intensity the magnitudes of gradients and cur-
vatures are naturally small. Hence it is likely that potentially
less important features in other regions are preferred because
they are ranked higher. Boundaries of cylinders and sphere
are ranked high as well and might be detected (false positive)
at the cost of proper edges.
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Figure 3: A synthetic dataset and seven detected pairwise symmetries. Each figure shows a single symmetry transformation.
Red: source volume, green: target volume, blue: both (overlap). Checked organge: self-mappings (i.e., planes of reflection or
axes of rotation. The absense of self-mapping points indicate a translational component.

Figure 4: Results of our method for the engine block data set (same color scheme as Fig. 3).

Figure 5: A ct scan of a mechanical part and three extracted similarities (same color scheme as Fig. 3).
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Especially the last part of Figure 3 demonstrates that the
detected symmetries are actually correct, but do not always
correspond to the intuitively expected outcome. The reason
for this is that matching subsets of the feature lines does not
guarantee semantically meaningful correspondences in any
case. In future work, this could possibly be addressed by pe-
nalizing orthogonal intersections of line feature graphs to be
matched explicitly. This would reduce the ranking of such
fragmented symmetries.

Since the sparse matching step only analyzes geometric
constellations but the dense matching step compares actual
intensity values, it is not necessarily the case that the highest
ranked matching causes the largest set of corresponding vox-
els. Again, it would be possible to add an option to rerank a
larger set of line-based matches by the actual volume cov-
ered.

4.2. Performance

The runtimes listed in Table 1 were measured on a dual
Socket Intel Xeon X5650 2.66 GhZ with 48 GB of main
memory. The basic unoptimized CPU implementation of our
algorithm is written in C++ using OpenMP. We are con-
vinced that an implementation on graphics hardware results
in an interactive application.

The runtime for the feature detection step linearly scales
with the resolution. In contrast to that, the sparse matching
heavily depends on the complexity of the underlying geom-
etry and the similarity therein. The VMV-Logo has a signif-
icantly smaller search universe but consumes the same time
as the engine block model. In the synthetic case the iterative
closest lines approach has to traverse very large segments
of the model because many parts actually look the same.
On the other hand there are a number of bases for the en-
gine block which do not match at all and lead to a rejection
very early. The timings for the dense matches are quoted for
the generation of 20 symmetry volumes using the 20 best
matches. They depend on the resolution and the amount of
background voxels.

Model |V | Detect |B| Sparse Dense
Cube 1 M 5 s 48 6 s 6s
Logo 1.9 M 11 s 684 206 s 11s

Engine 16.7 M 90 s 1602 208 s 74s
Part 7.1 M 42 s 2432 300 s 30s

Table 1: Runtimes of the three algorithm stages for different
models

5. Conclusions and Future Work

We have presented an algorithm to find partial symmetries
in 3D voxel data under Euclidean transformations. The al-
gorithm transforms the volume to an intermediate represen-
tation consisting of line features that helps finding impor-
tant symmetries efficiently and robustly. To the best of our
knowledge, this is the first algorithm for detecting symme-
tries in volume data sets in these general settings.

In future work, we could address the problem of struc-
turing the space of symmetries and employing this structure
for visualization. In particular, we plan to augment our al-
gorithm to detect hierarchical structures in the symmetries.
Analyzing a video and detecting periodicities in time would
be another interesting application. Developing a visualiza-
tion technique that shows multiple different symmetries in
a single volume rendering also constitutes a direction for
future research. Unlike in the surface case, visualizing the
symmetry structure of a dense volume data set in a single
image is a very challenging task. In our experience, obvious
solutions such as just coloring symmetric parts in the same
color do not yield satisfactory results but frequently lead to
visual clutter.
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