Shape Analysis with Subspace Symmetries

Alexander Berner¹ Michael Wand^{1,2} Niloy Mitra^{3,4} Daniel Mewes¹ Hans-Peter Seidel¹

¹MPI Informatik

²Saarland University

³KAUST ⁴IIT I

⁴IIT Delhi

Overview

Introduction Related Work Subspace Symmetries Detection Algorithm Results Conclusions

Overview

Introduction

Related Work Subspace Symmetries Detection Algorithm Results Conclusions

Partial Symmetries

Partial Symmetry Detection

- Find similar parts
- Decomposition into building blocks
- Fundamental tool in shape understanding

Partial Symmetries

Partial Symmetry Detection

Repetetive Parts

Partial Symmetries

Partial Symmetry Detection

- Repetitive part \mathcal{P} (sufficiently large)
- Transformations $f_i \in G$
- Group of transformations G

Restriction

Restriction

- Fixed group of transformations
 - Rigid motions, reflections, scaling, affine maps
 - Intrinsic isometries
- Need to define *a priori* what constitutes similarity

More General Symmetries

Overview

Introduction

Related Work

Subspace Symmetries Detection Algorithm Results Conclusions

Symmetry Detection

Fixed Transformation groups

Reflections

[Podolak et al. 2006], [Loy et al. 2006]

- Euclidean Transformations [Bokeloh et al. 2009]
- Similarity transforms [Mitra et al. 2006], [Pauly et al. 2008]
- Intrinsic isometries

[Ovsjanikov et al. 2008], [Lasowski et al. 2009], [Xu et al. 2009] [Mitra et al. 2010], [Kim et al. 2010]

Global Matching of General Shapes

Global Matching

- Topological Methods
 - [Hilga et al. 2001]
- Combinatorial Search
 - [Zhang et al. 2008], [Au et al. 2010]
- Learning
 - [Kalogerakis et al. 2010],
 [van Kaik et al. 2011], [Sunkel et al. 2011]

Global Matching of General Shapes

Building subspace models

- Local matching, user guided
 - [Blanz et al. 1999], [Allen et al. 2003], [Hasler et al. 2009]

Overview

Introduction Related Work

Subspace Symmetries

Detection Algorithm Results Conclusions

Subspace Symmetries

No transformation groups

- (Almost) arbitrary mappings
- How to avoid spurious matches?

Key idea

Matching functions must form low dimensional subspace

Subspace Symmetries

Objective

Find

- Part \mathcal{P}
- Functions $f_1, ..., f_n$

Remarks

Uniqueness:

- Many aquivalent subspace models might fit the same data
- Symmetry breaking: minimize bending

Gaussian Model:

- We can learn covariance from data
- Additional constraint

Challenge

Input

• Shape $S \subseteq \mathfrak{O}^3$

Unknowns

- Part $\mathcal{P} \subseteq \mathcal{S}$
- Functions $f_1, ..., f_n$

Can be computed

- Rigid transformations T₁, ..., T_n
- Basis functions **b**₁, ..., **b**_n
- Shape coordinates $\lambda_1, ..., \lambda_n$

Challenge

Unknowns

- Part $S \subseteq \clubsuit^3$
- Functions $f_1, ..., f_n$

Problems

- Need correspondences
- High dimensional objects
- Very large search space

Overview

Introduction Related Work

Subspace Symmetries

Detection Algorithm

Results

Conclusions

Three Steps to Reduce Complexity

1. Feature matching

• Sparse, discrete matching

2. Graph matching

Matching heuristic

3. Optionally: User training

• Learn graphs from user input

Feature Extraction

Features: surface curves & crossings

- Strong assumption: Graphs invariant under symmetry
- See paper technical details

Feature Matching

Brute-foce feature matching

- *d*-dimensional subspace, *n* feature points
- Brute force algorithm: double exponential in *d*

Need more efficient strategy

Heuristic Bootstrapping

Stronger Assumption

Corresponding parts have similar feature graphs

Similar

- Same topology (small defects possible)
- Similar geometry
 - Angles, up to some noise
 - Intrinsic distances up to factor 3x

Bootstrapping

- Find a few instances first, build PCA model
- Partial finds more

Graph Matching

Complete & Partial Matches

Refinement

Use discovered subspace model

Dense Correspondences

Deformable ICP

- Fit bending minimizing dense correspondence field
- Thin-plate-splines

Result

Result

principal eigenvalue

Extension: Manual Training

Training

- Click on corresponding feature points
- Mark relevant lines (one instance)
- Then: Learn PCA model of *relevant* graph parts

Usage

- Noisy, cluttered feature graphs
- Focus on "interesting" subset
- Instance retrieval is still automatic

Overview

Introduction Related Work Subspace Symmetries Detection Algorithm

Results

Conclusions

Chairs (synthetic)

Chairs (synthetic)

Living Room (synthetic)

Living Room (synthetic)

Statue (3D Scan)

Dino (3D Scan, Manual Training)

Church (3D Scan)

Overview

Introduction Related Work Subspace Symmetries Detection Algorithm Results

Conclusions

Conclusions

General notion of symmetry

- Important problem
- Proposal: subspace model

Heuristic graph matching algorithm

- Can get good results on clean input
 - Meshes and range data
 - Parameter dependent
- Training improves performance on ambiguous data

Future challange

Provably efficient and effective solution