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Figure 1: Structure-adapting shape editing. An input shape (a) is automatically analyzed to extract regular translational patterns (b). Our
algebraic model of shape regularity identifies useful degrees of freedom (c). These degrees of freedom are exposed for robust real-time shape
editing (d).

Abstract

We present an approach to high-level shape editing that adapts the
structure of the shape while maintaining its global characteristics.
Our main contribution is a new algebraic model of shape structure
that characterizes shapes in terms of linked translational patterns.
The space of shapes that conform to this characterization is param-
eterized by a small set of numerical parameters bounded by a set of
linear constraints. This convex space permits a direct exploration
of variations of the input shape. We use this representation to de-
velop a robust interactive system that allows shapes to be intuitively
manipulated through sparse constraints.

CR Categories: I.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling;

Keywords: shape editing, shape understanding, symmetry, struc-
tural regularity

Links: DL PDF

1 Introduction

Three-dimensional content creation is one of the key challenges of
modern computer graphics. While we have sophisticated tools for
displaying three-dimensional environments, the creation and edit-
ing of high-fidelity shapes needed to populate these environments is
still a time-consuming and expensive task. One way to address this
is to enable easy adaptation of existing shapes for new purposes.

Towards this end, recent research has begun to explore structure-
aware shape editing algorithms. Such methods define a structure
model for a shape, extract according information from the input
geometry, and use this knowledge to enable high-level shape ma-
nipulation.

A drawback of most existing approaches to structure-aware shape
editing is the restriction to homeomorphic mappings: the topology
of the object cannot be altered. The goal of our work is to develop
a similarly robust and easy to use approach for structure-adapting
shape editing, enabling intelligent adaptation of a shape’s structure
in response to high-level interactive manipulation. To this end, we
introduce a new algebraic model of shape regularity. We observe
that many objects, in particular man-made shapes, are composed
of pieces of regular patterns: discrete patterns such as arrays of
windows or ornamental elements, and continuous patterns such as
planar surfaces and straight edges. Our model characterizes shapes
as interlinked collections of such patterns.

The model is conceptually simple and is applicable to many man-
made objects. It is specific to translational patterns, and the degrees
of freedom represented in the model are limited to the translational
generating directions of detected patterns (Figure 1). Each regular
pattern is represented by a small set of variables and linear con-
straints, with geometric elements associated with some of the vari-
ables. Overlap and adjacency relationships between patterns lead to
additional variables and linear constraints. The complete shape is
represented by a linear system. The null space of this linear system
defines the space of valid variations of the shape. A basis for the
null space yields degrees of freedom for manipulating the shape.
Interactive manipulation constraints placed by the user lead to a
quadratic objective over the null space. The variation that conforms
most closely to the interactive constraints is found by solving the
resulting quadratic program.

In summary, the primary contribution of this paper is a new alge-
braic model that characterizes shapes in terms of interlinked regular
patterns. We present a robust interactive shape editing system based
on this model and demonstrate its effectiveness on shapes from pub-
licly available repositories.

http://doi.acm.org/10.1145/2185520.2185574
http://portal.acm.org/ft_gateway.cfm?id=2185574&type=pdf
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Figure 2: Analysis pipeline. (a) We analyze a shape for regular patterns and (b) represent each pattern as a triple (o, l, t), with origin
o, length/number of elements l, and a constant direction vector t. (c,d) We link each pair of adjacent patterns by a linear equation that
constrains the difference vector ∆0,1 between the adjacent elements. In (c), the last element of pattern 0 is linked to the first element of
pattern 1. (e) The space of valid solutions to the linear system is parameterized using the initial configuration x0 and linear combinations of
basis vectors for the null space of A. This yields a low-dimensional representation of the degrees of freedom in the input shape.

2 Related Work

In the last few years, structure-aware shape editing has gained a
lot of attention. There have been continuous, topology-preserving
deformation techniques and, more recently, techniques that allow
for discrete modifications to the shape’s structure.

Structure-aware deformation. Free-form deformation tech-
niques are frequently employed to model organic shapes [Seder-
berg and Parry 1986; Sorkine et al. 2004; Botsch and Sorkine
2008]. However, working on complex man-made objects remains
challenging due to structural relationships that must be respected
during editing. Kraevoy et al. [2008] propose the first method for
content-aware resizing of geometric models. The method enables
axis-aligned stretching and protects “vulnerable” regions by adapt-
ing the elasticity. Cabral et al. [2009] constrain mesh deformations
to preserve edge orientations in a least-squares sense. Rather than
modeling algebraic regularity of the geometry, they focus on adapt-
ing textures when the shape is edited. Yang et al. [2011] explore
shape variations under nonlinear constraints motivated by architec-
tural applications but parametrize the shape space only locally using
Taylor approximations. Xu et al. [2009] create a joint-aware defor-
mation model based on slippage analysis. Gal et al. [2009] use
symmetry constraints to maintain the global structure of the model
under deformation. These structure-aware deformation techniques
can substantially reduce the amount of user interaction required to
create plausible shape variations. Nevertheless, all of these tech-
niques are restricted to deformations with fixed topology.

Discrete reassembly. A promising approach to producing shape
variations is inverse procedural modeling [Aliaga et al. 2007; Št’ava
et al. 2010; Bokeloh et al. 2010]. Such methods often rely on in-
ferring a shape grammar from the input shape. One limitation of
this approach is controllability. While forward modeling is easy,
finding a production of a shape grammar that fits user constraints
remains a difficult combinatorial problem [Talton et al. 2011]. Our
approach is different: we represent the space of valid variations as
the feasible region of a linear system. Finding a variation that fits
user constraints reduces to optimizing a quadratic objective over
this region. Our technique is based on structural regularity detec-
tion as introduced by Pauly et al. [2008]. A subsequent paper by the
same authors applied this model to shape editing [Mitra and Pauly
2008]; however, the paper does not consider complex relationships
between multiple regular patterns.

The most closely related work to ours is by Bokeloh et al. [2011].
This prior work is based on content-aware elastic deformation,
building on the techniques of Kraevoy et al. [2008]. The prior ap-
proach detects 1-parameter patterns in the input and uses “sliding
dockers” to adaptively insert or remove pattern elements. Our work

follows a similar line of thought, but our approach is both simpler
and more general. The combination of continuous variational de-
formation and discrete algebraic regularity developed in Bokeloh et
al. [2011] is unsatisfying: this approach does not explicitly model
the pattern structure of the object but rather uses elastic deforma-
tion to adjust patterns locally. Furthermore, although the approach
uses fairly complex finite-element deformation, the least-squares
formulation does not yield exact results and can retain significant
residual deformation errors due to the trade-off between different
energy terms.

In contrast, our approach explicitly characterizes the space of valid
variations through a set of simple algebraic conditions. Our model
can handle multi-parameter grids and their interactions. It avoids
the substantial deformation artifacts of the previous approach and
produces clean shapes with no residual bending, even with quick
and imprecise interactive manipulation. It is also much more com-
putationally efficient, allowing rapid interactive exploration.

Another related recent work is by Lin et al. [2011], who retarget
irregular architectural models in three orthogonal directions based
on a user-guided hierarchical box decomposition. Our approach
is different in that we construct the structure representation fully
automatically, yielding an algebraic regularity model that does not
rely on user-provided constraints. Furthermore, our work supports
a broader range of variations, not limited to axis-aligned resizing.

3 Algebraic Model

We denote the input surface by S ⊂ R3. We assume that S is
a triangle mesh of arbitrary topology. Our goal is to describe the
structure of S and to represent the space of valid variations of this
shape.

Our structure model is based on regular patterns. A regular pattern
represents a part of the input surface compactly by replicating a ge-
ometric element in a regular fashion. Manipulation of a single regu-
lar pattern is fairly easy since it only requires changing independent
parameters (such as moving the origin or changing the number of
elements). However, even mildly complex shapes contain regular
patterns that interact with each other, such that their parameters can
no longer be manipulated independently. The key idea of our ap-
proach is to detect regular patterns in S, analyze how these patterns
interact to form the overall composite shape, and identify possible
degrees of freedom that maintain the important relationships be-
tween the different patterns.

First, we decompose the entire input shape into regular patterns.
The result of this step is a set of geometric elements and associated
parameters. In the following, we will give a precise definition of
regular patterns (Section 3.1) and discuss how to resolve their am-
biguities (Section 3.2). The actual extraction process is based on



algorithms developed in prior work and is discussed in Section 5.1.
After pattern analysis, we investigate the interaction of patterns and
set up linear equations that constrain neighboring patterns in order
to maintain important pairwise relationships (Section 3.3). This re-
sults in an underconstrained linear system, the null space of which
yields a direct parameterization of the degrees of freedom in the
input shape (Section 3.4). A schematic overview of the analysis is
provided in Figure 2.

3.1 Regular Patterns

Regularity in shapes appears in many different forms. In this work,
we consider the type of regularity induced by a set of genera-
tor transformations {T1, . . . , Tk} that generate a symmetry group
G = {T i1

1 ◦ · · · ◦ T
ik
k |i1, . . . , ik ∈ Z}. We restrict the genera-

tor transformations to be translations. For a detailed introduction
please refer to [Pauly et al. 2008].

Typically, a single regular pattern covers only a small part of a
shape whereas symmetry groups describe global structures. Con-
sequently, we consider regular patterns as structures with limited
spatial support that we express by an element E ⊂ S that is repli-
cated using transformations of a finite subset GP ⊂ G. We define a
regular pattern as Π = (GP , E). In the following, we will describe
different types of regular patterns and their parameterization.

Discrete 1-parameter pattern (“line patch”): A discrete line
patch is a regular pattern with one generator transformation that
translates an element E at least three times (Figure 3b). We param-
eterize a line patch by (o, l, t), where o is the origin of the pattern
(centered at the first element), l refers to the “length” of the pattern
which corresponds to the number of elements minus one, and t is
the generator translation that will stay constant. Using this param-
eterization we can translate the whole pattern by moving the origin
or resize the pattern by changing the number of elements. Impor-
tantly, we cannot produce negative elements, so we constrain each
length variable to be nonnegative: l ≥ 0.

Discrete 2-parameter pattern (“area patch”): Discrete area
patches are subsets of regular grids that we describe by specify-
ing polygonal boundaries (Figure 3c). Each edge of a boundary
polygon is modeled as a discrete line patch where each individual
generator transformation is an integer combination of the two gen-
erators that span the grid.

We do not consider discrete 3-parameter patterns here since they
are not very common in practice. However, the generalization to
this case would be straightforward by using discrete area patches to
enclose a region of a volumetric 3-parameter grid.

Continuous pattern: Both previous cases have continuous
counterparts (Figure 3d,e). A continuous area patch is a polygon
obtained directly from the input mesh where each boundary edge is
represented as a continuous line patch. We consider polygon edges
as fixed if their edge length is below a threshold r (we use r=1%
of the diameter of S). A continuous line patch is a special case of
a continuous area patch where some edges are fixed, such as the
elongated quads shown in Figure 3d.

Mixed discrete/continuous pattern: In some cases a discrete
line patch and a continuous line patch form a mixed-case area patch
(Figure 3f).

0-parameter pattern (“rigid patch”): A rigid patch is a piece
of geometry without regular structure. This means that all polygon

(a) rigid patch (b) discr. line patch (c) discr. area patch

(d) cont. line patch (e) cont. area patch (f) mixed-case patch

Figure 3: Different types of regular patterns and their parametriza-
tion. (a) Each patch has an origin o. (b) Discrete line patches add
a length variable l. (c) The boundary of an area patch is defined by
a continuous polygon, which is represented as a collection of line
patches that are coupled to the area vertices. (d,e) Line patches
and area patches can be continuous. (f) Discrete and continuous
line patches can form a mixed-case area patch.

edges are too small to be considered as continuous line patches (l <
r). In this case we parameterize the rigid patch by the position of
its origin o (Figure 3a).

3.2 Normalization

The previous definition of regular patterns permits a large number
of different representations of one and the same regular structure.
We therefore normalize the representation.

Maximal patches: Larger patterns usually contain an exponen-
tial number of subsets that also form regular patterns. There-
fore, we restrict our model to maximal patterns. If there exist
Π1 = (GP 1, E) and Π2 = (GP 2, E) with Π1 ⊂ Π2, we only keep
the second structure. Among these, we maximize the area, i.e., use
the pattern with maximal E . If different patterns can explain the
same geometry, we keep the one with the largest number of ele-
ments. If the same geometry can be described by different patterns
with an identical number of instances, we keep an arbitrary pattern.

If one pattern is entirely contained in a grid element of another pat-
tern, we use only the largest pattern with respect to set inclusion.
We currently do not model hierarchical nesting of patterns.

3.3 Linked Patterns

In the following, we assume that the input shape S has been de-
composed as a union of potentially overlapping regular patterns
S = Π1 ∪ ... ∪ Πn, including rigid patches that represent non-
repeating geometry. We proceed in two steps. First, we detect
pairwise adjacencies and intersections of patterns, forming an undi-
rected graph that links interacting patterns. Afterwards, for each
such link {Πi,Πj}, we create a set of linear constraints on its vari-
ables that maintain the link structure.

Computing the link graph: The link graph is established
straightforwardly by checking all pairs of regular patterns for inter-



section or adjacency. We link those pairs of patterns whose distance
is smaller than a constant ε that corresponds to modeling accuracy.

Link constraints: Having determined the link graph, we iterate
over all links and create a set of constraints that couple correspond-
ing patterns. The basic idea is that we couple individual elements of
a pair of patterns by constraining the difference of their relative po-
sition with a linear equation, where we use, as before, the element
centers as (arbitrary) reference points (see Figure 4).

We now make this notion of coupling more precise. For simplicity,
we first restrict ourselves to line patches; area patches are discussed
subsequently. To simplify the notation, we refer to the center of
an element i in line patch Πa by ei(Πa), where the index refers to
the original configuration. The center of such a pattern element can
be expressed by a linear combination of pattern origins and length
variables. For example, the center of the first element in pattern a is
denoted by emin(Πa) = oa. Correspondingly, the center of the last
element of a line patch Πa can be computed as emax(Πa) = oa +
tala. For in-between values, we use extra variables, as explained
below.

Let ei(Πa) be an element of pattern Πa and let ej(Πb) be an ele-
ment of pattern Πb. A linear constraint that encodes a link between
these two elements has the following form:

ei(Πa)− ej(Πb) = ∆i,j
a,b, (1)

where ∆i,j
a,b is the difference vector between the two elements in

the original shape. For example, in Figure 2c we couple the last
element of pattern Π0 to the first element of pattern Π1.

Extra variables: The patches in our model are fully described by
variables (o0, . . . ,on, l0, . . . , lm) that specify pattern origins and
lengths. In order to reason about the constraints imposed upon in-
between elements, we introduce additional variables of the form
χi

P , where χi
P refers to the i-th element of pattern P . (The in-

dex i refers to the value of χi
P in the original shape. The actual

value of χi
P can (and generally is) different from its original value

i when the shape is manipulated.) These extra variables are created
as needed. A variable is only created when it is needed to define
a link, and only once in the case of multiple links that involve the
same element.

To maintain the semantics of elements within a pattern, we con-
strain their domain. For a line patch, we add the linear inequalities
0 ≤ χi

P ≤ lP . If multiple extra variables are defined within a
pattern, we also add linear constraints that preserve their original
ordering: χi

P ≤ χj
P for j > i.

Area patches: Area patches are handled analogously. In case of
linking to an element along the boundary, we use the already es-
tablished mechanism for the line patches. For inner vertices, we
create extra variables that are constrained to remain within the area
of the original polygon. In our current implementation, we approxi-
mate this constraint, which in general is non-convex, with a simpli-
fied convex constraint. Instead of the full polygon area, we permit
only the intersection of all half-spaces the point considered resides
in. This is a conservative approximation: it guarantees that we al-
ways obtain valid polygons, without intersections or links outside
the polygon, but the maneuverability of the element is in general
reduced.

So far, we have discussed how to couple a pair of elements. De-
pending on the type of the two adjacent patterns and their interac-
tion, we can obtain a varying number of such element-wise con-

z z z z z z z z z z z z z z z z zj j j j j j j j j j j j j j j j j
oa tala -

yyyyyyyyyh h h h h h h h hob tblb -

rr rr
oa − ob =∆0,0

a,b oa+taχa − ob+tblb =∆8,9
a,b

Figure 4: A link between two line patches. In order to couple the
last element of pattern b to an element of pattern a, we introduce a
new variable χa. In the initial shape, χa = 8. The vector ∆8,9

a,b is
the offset between the two elements in the initial configuration.

straints. In the following, we will describe how the actual con-
straints are computed when different types of patterns interact.

(1-1)-interaction, line to line patch: If two line patches Πa,Πb

are linked, we first consider their generating translations ta, tb. If
they are collinear, the configuration corresponds to overlapping in-
tervals (Figure 4). Otherwise, they intersect at a point. In the lat-
ter case, we create one constraint that couples the pattern elements
closest to the intersection point. As discussed before, we might
add new variables here to identify interior elements. In the former
case, we create two constraints that bound the interval that the two
patterns have in common. This case is illustrated in Figure 4.

(1-2)-interaction, line to area patch: Again, the linear pattern
can be coplanar to the area patch or intersecting. An intersection
leads to one constraint that couples the elements closest to the in-
tersection point. Coplanarity leads to two constraints that couple
the beginning and end of the overlapping interval.

(2-2)-interaction, area to area patch: Two coplanar area
patches are linked by coupling the elements closest to the inter-
section points of the boundaries of the patches. Non-coplanar area
patches intersect in auxiliary line patches. These are handled as in
the (1-1)-interaction case. Most prevalent in typical models is the
link of adjacent area patches at boundaries, which is handled as a
(1-1)-interaction.

(0-1)- and (0-2)-interactions with rigid patches: Rigid patches
remove degrees of freedom. As in the previous cases, we create
constraints that link the origin of the rigid pattern to the intersection
line or surface.

3.4 Null Space Analysis

The link constraints from the previous section form a large, heavily
redundant linear system:

Ax = b, (2)

where x is the vector of pattern origins, pattern lengths, and ex-
tra variables. The vector b is composed of the offsets that were
observed in the original configuration. In order to preserve these
relationships we keep b constant. Typically, the linear system is
underdetermined and yields a linear subspace of solutions. By an-
alyzing the kernel of matrix A we can directly parameterize this
subspace. Let KA be a basis for the linear subspace Ker (A). We



can now express all possible solutions as a function of a parameter
vector λ:

x(λ) = x0 + KAλ. (3)

Each column of KA points in a direction that corresponds to chang-
ing a set of pattern parameters while still maintaining the pattern re-
lationships. The vector λ parameterizes these changes. To produce
solutions for equation (2) we need to translate the linear subspace
by an arbitrary solution x0 (in this work, we simply choose the ini-
tial state). We call λ ∈ Λ the parameter representation of a shape
and Λ the parameter domain.

Inequalities: Not all solutions to equation (3) correspond to
valid shapes because only a subset meet the inequalities that con-
strain the original variables. These inequalities include nonnegativ-
ity constraints on pattern lengths and extra variables, and ordering
constraints on the variables. We project all inequalities into the null
space, which allows us to perform all computations in this low-
dimensional space. Let Mx ≥ m be all inequalities. Expressing
the inequalities in parameter domain yields:

[M KA]| {z }
=M′

λ ≥m−Mx0| {z }
=m′

. (4)

Choosing a basis for the null space: In simple cases, the ker-
nel of A can be computed by row reduction techniques such as
Gaussian elimination. These approaches are numerically unstable
and therefore not advisable in general, however we use them to re-
move trivial redundancy. We iteratively apply three basic types of
operations: remove constant variables, remove identical rows, and
substitute variables by other dependent variables. However, we do
not perform substitutions if they are not well-conditioned, i.e., if the
omitted variable cannot be stably computed from the substitution.

A numerically stable method to compute the null space is based
on the singular value decomposition (SVD). Let A = UΛVT be
the decomposition. A basis KA for the null space is formed by
the columns of VT that are associated with singular values that
are equal to zero. To compensate for numerical noise and small
inaccuracies in the linear system we consider singular values to be
zero if their value is below 0.01% of the largest singular value.

4 Shape Editing

The algebraic model defined in the previous section provides a di-
rect parameterization of the degrees of freedom in the shape and
a set of inequalities that define the set of valid parameters. In this
section, we utilize this model for shape editing. First, we describe
individual types of interactive constraints used in our shape edit-
ing system, which lead to a quadratic objective over the parameter
space. Then, we formulate the complete quadratic program.

4.1 Interactive Constraints

Our implementation supports two types of interactive manipulation
constraints: point constraints and difference constraints. For point
constraints, the user selects a pattern element and drags it to a spe-
cific target point y. We select the pattern origin eclosest closest to
the selection point and formulate a quadratic objective term:

Epoint(x) = (eclosest − y)2 . (5)

Difference constraints are defined similarly. The user selects two
pattern elements ec0 and ec1 , and specifies their difference vector
δc0,c1 . The corresponding objective term is defined to be

Ediff (x) = (ec0 − ec1 − δc0,c1)2 . (6)

4.2 Regularization

With only a few sparse user constraints, the optimization problem
stated in Equation 9 is still underconstrained and admits many un-
reasonable solutions. We therefore introduce a regularization ob-
jective that aims to keep the original values of the length variables.
This regularization term is weighted very weakly in comparison
with the interactive constraints. Let li be a length variable of pat-
tern i and l0i be its original value. The regularization objective is
defined as

Ereg(x) = wreg

X
i

`
li − l0i

´2
. (7)

4.3 Quadratic Program

We sum all of the above terms into a quadratic objective:

E(x) = Epoint(x) + Ediff (x) + Ereg(x)

= xT Q x + xT q.

This objective is formulated in the original domain and then pro-
jected into the parameter domain:

E′(λ) = λT
“

(KA)T Q KA

”
λ+ λT (KAq) . (8)

Overall, we minimize the quadratic objective (8) subject to the in-
equalities (4) in the parameter domain:

Minimize E′(λ)
subject to M′λ ≥m′.

(9)

A significant advantage of this formulation is that it separates the
modeling of the space of valid variations of the shape, which is
characterized through linear equations and inequalities, from the
interactive constraints and the regularization term, which are ex-
pressed as quadratic objectives. User constraints are typically
somewhat imprecise. The same is true for the regularization term,
which defines a general default behavior for the shape. On the other
hand, modeling the space of valid shapes requires precise alignment
of adjacent patterns in order to avoid gaps or holes. If we were to
formulate this with strong quadratic constraints we would end up
with conflicting objectives where shape validity is traded off against
imprecise user input. In our approach, the interactive constraints do
not compromise the correctness of the shape (Figure 5).

5 Implementation

5.1 Pattern Detection

In order to implement the framework described in the preceding
sections, we still need a technique for detecting symmetries and
regular grids in 3D shapes. Our implementation follows the ap-
proach of Bokeloh et al. [2011], which is based on the RANSAC
technique. We randomly sample generator transformations from
mesh features and evaluate the number of elements that belong to



the pattern defined by the generator. This is repeated a number of
times (up to 500 in our implementation) and only the dominant pat-
tern (with the greatest number of elements) is kept and removed
from the sampling set. The whole process is iterated until no pat-
terns can be found. The remainder of this section describes this
process in more detail.

Pattern primitives and cascaded detection: An important dif-
ference from the implementation described by Bokeloh et al. [2011]
is that we do not cut triangles. Our method operates directly on
the mesh structure and uses three types of pattern primitives: con-
nected components, polygons, and polygon edges. We apply our
detection techniques in a top-down manner. First, we perform pat-
tern detection on connected components only and remove all el-
ements that belong to a pattern. Then, we extract all polygons
from the remaining set and repeat the same process on the poly-
gon level. Polygon extraction is done by clustering adjacent trian-
gles with similar normal vectors into polygons, which need not be
convex. Finally, we search for patterns within polygons by consid-
ering edges as primitives. This top-down approach is not only faster
than non-hierarchical methods but also produces better results. The
connected components often carry important information from the
modeling process of the original shape. Additionally, detecting dis-
crete boundary patterns of polygon edges avoids heuristic cutting of
triangles into repeating elements and yields a persistent representa-
tion that maintains mesh quality.

For the following detection modules we equip each pattern prim-
itive with a small descriptor that consists of the centroid dc, the
radius dr of the bounding sphere centered at dc, and the number
of vertices dn associated with that primitive. We cluster primi-
tives based on dr and dn into classes and perform pattern detection
within these classes of primitives. Polygon edges are not shared
across different polygons. We observed that additional classifica-
tion of polygons based on their parent (a connected component)
yields more meaningful decompositions in practice.

Discrete 1-parameter pattern detection: We randomly select
two primitives (referred to as first and second sample) and define
a line through their centroids. Then, we gather all primitives with
centroids close to the defined line. In this subset we again per-
form random sampling to find generators with the maximal number
of consecutive elements. In order to be robust against imprecisely
placed elements with slightly varying generators, we allow the el-
ements to be misplaced by 3% of the generator’s length. We also
need to make sure that all elements have the same geometry and the
same orientation. Therefore, we compare each primitive with the
first selected primitive before adding it to the subset. To compare
two primitive we align both by aligning their centroids and test if
each vertex has a counterpart within modeling accuracy ε.

We repeat this process several times and extract only the pattern
with the highest number of elements. For each detected pattern
we mark each associated primitive and prohibit a new pattern from
starting with one of these primitives. (However, the second sam-
ple can still be drawn from the set of marked primitives.) This
ensures that we extract a pattern only once but still allow patterns
to share elements. To improve the recognition performance we use
an octree-based sampling strategy that draws the second sample in
proximity to the first one.

Discrete 2-parameter pattern detection: For 2-parameter pat-
terns we use a similar sampling approach to the 1-parameter case.
We select three primitives, create a plane, and gather primitives near
that plane. In contrast to the 1-parameter case, instead of randomly
sampling two generator transformations from the subset, we apply a

a) Bokeloh et al. [2011] b) our method

Figure 5: Badly placed interactive constraints force the prior tech-
nique of Bokeloh et al. [2011] to distort the shape. In contrast, our
method always produces a valid shape that is as close as possible
to the interactive constraints.

generator voting technique first to retrieve a set of possible genera-
tors [Pauly et al. 2008]. Then, we randomly sample from this set of
generators to obtain area patches where we choose the area patch
with the highest number of elements. Since 1-parameter patterns
are included in 2-parameter patterns, we search for area patches
before searching for line patches.

5.2 Instantiating Models

Producing the mesh that corresponds to the manipulated shape is
easy with our representation. For discrete patterns we round the
number of elements to the next integer, create the desired number of
elements, and apply affine scaling to match the given pattern length.
Discrete area patches are rasterized without scaling. Complex poly-
gons, for example with a discrete pattern along the boundary, are
triangulated using a standard quadtree-based polygon meshing al-
gorithm [de Berg et al. 2008].

6 Results

We have implemented a prototype shape editing system based on
the representation and algorithms introduced in this paper. Our im-
plementation is single-threaded. The experiments were performed
on a consumer-grade workstation with a 2GHz Intel Xeon E5335
processor and 4GB of main memory. We use MOSEK for quadratic
programming.

Editing software prototype: Our system permits the user to in-
teractively manipulate shapes by placing handle constraints. In ad-
dition, it displays the available degrees of freedom, which are iden-
tified by projecting the indicator vectors that correspond to each
length variable onto the parameter space and only retaining those
whose projection is non-negligible. We visualize the degrees of
freedom using arrows and perform farthest-point sampling to re-
duce visual clutter (Figure 6).

We have tested the system on a large number of shapes obtained
from publicly available repositories, namely the Digimation Model
Bank and the Google 3D Warehouse. Our test shapes and their
degrees of freedom are shown in Figure 6. Data for each shape is
provided in Table 1. Editing results are shown in Figure 7. The
supplementary video demonstrates a number of interactive editing
sessions, captured in real time.



(a) canvas chair (b) cottage (c) platform (heliport) (d) Spanish mission (e) synagogue (f) school

(g) castle (h) downtown hotel (i) stairs (j) modern house (k) pavilion (l) cabin

Figure 6: Automated visualization of degrees of freedom for our test shapes.

Our technique is able to extract meaningful degrees of freedom for
all of the shapes. Typically, we obtain 25 to 200 degrees of free-
dom. The initial linear systems have between 10 and 100,000 equa-
tions and up to 50,000 variables. Incomplete elimination reduces
the complexity to below 2000 variables in all cases. The complex-
ity of the resulting parameter space depends strongly on the input
model, but not necessarily on the mesh size: objects with many
different pieces embedded in smooth polygons have more degrees
of freedom than large, regular structures. For example, the modern
house (example (j)) creates a complex parameter space due to many
independent pattern origins.

We obtain plausible editing results for all test shapes and, equally
important, our editing interface is easy to understand and work
with. This is because we directly modify the main “variation
modes” of the shapes, represented by numerical parameters rather
than complex combinatorial rules. Preserving complicated com-
binations of regular patterns, for example the characteristic roof
shapes in examples (b), (f), (k), and (l) can be quite challenging
in traditional modeling tools. Our system alleviates the burden of
detailed modeling and provides only solutions that obey the mean-
ingful constraints imposed by the structure of the input shape. For
example, when the user lifts the partial roof of the doorway in ex-
ample (b), the method automatically resizes all dependent patterns,
such as the fence below. However, the position and size of the entry-
way can still be controlled independently as shown in the magnified
views in Figure 7(b). This and other examples are demonstrated in
the supplementary video.

Performance: For most models, the automated analysis is per-
formed in a few seconds; only some models with complex de-
pendencies require more time. In these cases, the computation of
the SVD, which currently uses the dense-matrix implementation of
OpenCV, dominates the costs. Interactive shape optimization in re-
sponse to user constraints runs at multiple frames per second, as
shown in the video. Very large models can result in huge linear
systems that we currently cannot handle due to large memory and
run-time requirements of dense SVD.

Comparison to prior work: In comparison to the previous ap-
proach of Bokeloh et al. [2011], we obtain a number of significant
improvements. Our test shapes contain 2-parameter grids and over-
lapping grids, which cannot be handled by the previous approach.
This is illustrated in Figure 8. Furthermore, our system extracts ex-
plicit numerical degrees of freedom, which has important practical

model num. triangles pattern detection analysis
canvas chair (DM) 3232 263ms 925ms

cottage (DM) 8516 551ms 41s 895ms
platform (DM) 10132 822ms 1s 46ms
mission (DM) 18182 809ms 2s 440ms

synagogue (DM) 31644 4s 612ms 41s 237ms
school house (GW) 412 21ms 1s 577ms

castle 14370 3s 620ms 1s 470ms
downtown hotel (DM) 47475 19s 17s 800ms

stairs (GW) 4958 3s 526ms 947ms
modern house (DM) 3462 194ms 2s 632ms

cabin (GW) 3796 1s 256ms 5s 148ms
staircase (GW) 1728 1s 591ms 1s 982ms
pavilion (GW) 956 630ms 2s 103ms

Table 1: Data for our test shapes, including number of trian-
gles and performance statistics (pattern detection time and time for
setup and analysis of the quadratic program). The shapes were ob-
tained from the Digimation Model Bank (DM) and the Google 3D
Warehouse (GW).

implications. We have included the “canvas chair”, “platform”, and
“castle” examples from the paper of Bokeloh et al. [2011] to illus-
trate the advantages of the algebraic approach. As shown in Fig-
ure 9 and in the video, the previous elastic deformation approach
with least-squares structure constraints creates residual artifacts,
which we avoid altogether. Furthermore, editing is automatically
constrained to available degrees of freedom, which makes the in-
teraction easier; one cannot accidentally “bend” the model when
constraints move out of the feasible space as shown in Figure 5.

Limitations: Our method has a number of limitations. Our model
is currently restricted to translational regular patterns, and can only
handle rigidly symmetric parts, ruling out organic shapes. In some
of the examples, artifacts can show up due to rounding. These can
usually be removed by shifting constraints slightly. We have also
not yet considered further modeling aids, such as maintaining non-
regular and global symmetries in the spirit of Gal et al. [2009],
which would be an interesting extension of our approach. Com-
putationally, our method is limited in terms of structural complex-
ity: while examples of moderately high complexity work very well,
highly detailed geometry with many interleaving patterns bring our
approach to its limits. This has two reasons. First, a large number
of variables and equations causes problems with our current (dense)



(a) canvas chair (b) cottage

(c) platform (heliport) (d) Spanish mission

(e) synagogue (f) school house (g) castle

(h) downtown hotel (i) stairs (j) modern house

(k) pavilion (l) cabin

Figure 7: Interactive editing results (orange) for our test shapes (grey). Real-time editing sessions are shown in the supplementary video.



Figure 8: A shape with overlapping patterns (grey). The approach
of Bokeloh et al. [2011] cannot create discrete variations for such
shapes because it requires a volumetric region with regularly re-
peating geometry. In this shape, the repeating geometry is broken
by the diagonal elements. Our formulation handles such shapes
natively and offers a degree of freedom for pattern-aware editing
(orange).

SVD implementation in terms of high input complexity and a large
nullspace basis. Second, many shapes contain types of regularity
that are not yet included in our model, such as rotations, complex
hierarchical dependencies, and curved patterns. The first problem
could be addressed by employing an alternative method for comput-
ing a basis for the null space. We have performed some preliminary
experiments with factorizations optimized for sparsity [Gilbert and
Health 1987], with promising results. The second issue is more
fundamental, as we have to deal with non-linear objectives and, for
general curved patterns, more general pattern detection. We leave
this as a research challenge for future work.

7 Discussion

We have presented an algebraic regularity model for shape editing.
The main idea is to detect regular patterns (and their continuous ex-
tensions) and describe the overall shape by linking their parameters.
We derive a system of linear equations with linear inequality con-
straints that characterizes the space of valid variations of the shape.
Interactive manipulation operations are modeled as quadratic ob-
jective terms. We demonstrate the algebraic model in a prototype
shape editing system where the user can rapidly obtain plausible
shape variations by placing and moving a set of sparse handles.

One could interpret our model as a formulation of Poisson surface
editing in terms of degrees of freedom due to structural regularity
in the input shape. The model maintains the appearance of man-
made shapes more faithfully than previous work and naturally per-
mits adaptation of the shape’s structure while preserving its global
characteristics.

We see our approach as a step towards structure models that de-
scribe spaces of related shapes using only basic and abstract as-
sumptions, such as symmetry and correspondence. In future work,
it would be interesting to study more complex classes of transfor-
mations, including rotations and scaling. One of the challenges here
is the numerical treatment of non-convex motion trajectories. As

a) Bokeloh et al. [2011] b) our method

Figure 9: Unlike the prior technique, our method does not create
any residual bending artifacts.

demonstrated by our results, imposing algebraic structure offers an
improved understanding of structural properties of shapes and fa-
cilitates navigation in resulting shape spaces.

Acknowledgements
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