
EUROGRAPHICS 2003 / P. Brunet and D. Fellner Volume 22 (2003), Number 3
(Guest Editors)

 © The Eurographics Association and Blackwell Publishers 2003. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden,
MA02148, USA.

Real-Time Caustics

M. Wand and W. Straßer

WSI/GRIS, University of Tübingen

Abstract
We present a new algorithm to render caustics. The algorithm discretizes the specular surfaces into sample
points. Each of the sample points is treated as a pinhole camera that projects an image of the incoming light
onto the diffuse receiver surfaces. Anti-aliasing is performed by considering the local surface curvature at the
sample points to filter the projected images. The algorithm can be implemented using programmable texture
mapping hardware. It allows to render caustics in fully dynamic scenes in real-time on current PC hardware.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture / Image Generation – Display Algo-
rithms; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

A real-time simulation of the interaction of light with
complex, dynamically changing scenery is still one of the
major challenges in computer graphics. In this paper, we
look at a special global illumination problem, rendering of
caustics. Caustics occur if light is reflected (or refracted) at
one or more specular surfaces, focused into ray bundles of
a certain structure, and then received as patterns of light on
a diffuse surface. Caustics are a subtle effect but for many
scenes these subtleties are very important to obtain realistic
images. Consider for example a pool of water that reflects
the environmental light onto its surrounding or a set of
metallic objects like spoons and knifes focusing the incom-
ing light onto the surface of a table.

Currently, the simulation of specular-to-diffuse light
transports is often done by some variant of the photon-
tracing algorithm2,3,4,9,12,20,28: Starting from the light
sources, photons are shot into the scene and their interac-
tion with specular objects is tracked until they meet a dif-
fuse receiver. On the receiver surfaces, statistical density
estimation is used to approximate the local incident flux
density. Photon tracing is a very powerful paradigm that
allows a physically correct simulation of a large class of
light transport problems. However, due to the stochastic
nature of the algorithm, it needs a considerable amount of
sample photons to achieve a good image quality. Each of
the photon traces needs multiple potentially expensive ray
intersection queries. After that, a statistical density estima-

tion step has to be performed that is often even more ex-
pensive. Thus, the technique is usually not very efficient.
Although the implementation techniques for raytracing
queries have made impressive advances in the last few
years29, raytracing based algorithms still need a consider-
able amount of computational power (such as a cluster of
several high end CPUs) to calculate global illumination
solutions in real time30.

In this paper, we propose a rasterization based tech-
nique that implements caustics rendering using texture
mapping: We discretize the specular surfaces into a set of
sample points that are treated as reflecting pinhole cameras.
Each of these “pinholes” projects an image of the incoming
light onto the receiving objects. The images are blurred by
an anisotropic filter kernel that is derived from the local
surface curvature. To allow an efficient implementation,
the algorithm considers only cases with a single specular
interaction on each light pass and assumes that the light
sources are far away from the specular reflectors. The
spatial relationship between the reflectors and the receivers
can be arbitrary. An advantage of the rasterization based
strategy is that the algorithm does not need involved data
structures and no preprocessing. Thus, it is fairly simple to
implement robustly and, more important, it can be applied
to fully dynamic scenes. The light emitters, specular reflec-
tors and receivers can be changed arbitrarily without addi-
tional costs. The coherent, rasterization based strategy also
allows for an efficient implementation using modern pro-

 Wand and Straßer / Real-Time Caustics

 © The Eurographics Association and Blackwell Publishers 2003.

grammable graphics hardware: Our implementation uses
current consumer PC hardware according to the DirectX 9
specifications. It is able to render caustics in scenes with
fully dynamic receivers and reflectors and complex, dy-
namically changing lighting environments in real-time.

In the following, we will first survey related work in
section 2. Then we will describe the new algorithm more in
detail in section 3 and present results in section 4. The
paper concludes with some ideas for future work in section
5.

2. Related Work

The standard technique for rendering caustics is photon
tracing. The algorithm was introduced by Arvo2 in 1986.
To calculate caustics, it shoots a set of (random) photons
from the light sources into the scene and tracks their path
until they meet a diffuse surface. This is usually more
efficient for rendering caustics than raytracing from the
view point15. On the receiving surfaces, a density estima-
tion technique is needed to recover continuous irradiance
values from the discrete photon hits. Heckbert9 proposes a
technique that accumulates photon statistics in adaptive
texture maps. Chen et al.3 use a map corresponding to the
viewport pixels and an adaptive reconstruction filter based
on the radius of the k nearest neighbors. Jensen12,13 con-
structs a photon map, i.e. a spatial hierarchy that stores the
results of the photon tracing and allows efficient neighbor-
hood queries. For caustics, the irradiance at a surface point
is computed by estimating the surface area covered by its k
nearest neighbors. The advantage of the nearest neighbor
techniques is a constant noise ratio independent of the local
photon density. Ma et al. propose a variant of the algorithm
based on hash tables that allows for an efficient hardware
implemenation21.

Collins4 uses extended ray cones to enhance the ac-
curacy of the photon tracing: The method tries to estimate
the footprint of the reflected rays using finite differencing.
A more general framework for ray footprint estimation is
presented by Ighey10. Our antialiasing scheme is based on
similar ideas. Watt33 proposes a backward beam tracing
technique for polyhedral scenes. Another possibility of
improving the photon tracing technique is bidirectional
path tracing20,28: Two paths from the viewpoint and the
light source are shot simultaneously and connected via
shadow rays. Granier et al.8 and Dmitriev et al.6 describe
global illumination techniques based on photon tracing that
allow for efficient dynamic updates.

Today, it is possible to perform raytracing based
global illumination algorithms on commodity hardware in
interactive settings29,30. However, a cluster of several PCs

is still needed to obtain fluid frame rates. Our rasterization
based technique for rendering caustics is less flexible than
the raytracing based techniques but it delivers fluid frame
rates on a single PC with a modern graphics accelerator
board.

Sloan et al.26 describe an approach for static scenes
with dynamically changing lighting conditions: The de-
pendency between surface irradiance and global lighting is
precomputed and stored in a spherical harmonics represen-
tation. The method can render low frequency caustics with
correct shadowing under changing lighting conditions in
real-time. Our technique neglects shadowing but it is able
to handle fully dynamic scenes without preprocessing and
without the restriction to low frequency effects.

Besides general purpose techniques for global illu-
mination and caustic rendering, there are also some tech-
niques for special cases such as underwater scenes11,14,23.
The technique of Trendall et al.19 calculates underwater
caustics on a planar receiver using programmable graphics
hardware.

Our algorithm was inspired by the “Instant Radios-
ity” algorithm by Keller17: It computes diffuse radiosity
solutions by accumulating multiple images with shadows
from single point light sources.

Our technique is also related to point based render-
ing: The techniques for sampling the reflector surfaces are
taken from point based rendering literature24,25,27,31,32. We
use the “differential point sample” representation by
Kalaiah et al.16 to estimate the texture footprints for the
illumination environment maps.

In the results section, we show examples of caustics
from natural light environment maps. The idea of using
high dynamic range photographs for lighting was intro-
duced by Debevec5. The environment maps in our example
scenes are taken from his web site.

3. The Algorithm

The idea of our algorithm is based on a well-known obser-
vation: If you light a reflective disco ball in a room with a
light bulb you obtain several small light spots on the walls
that just turn out to be blurred images of the light source.
The reason for this effect is that the facets of the disco ball
act as a set of (reflecting) pinhole cameras that project an
image of the light source onto the receiving surfaces. This
observation leads to the following strategy for rendering
caustics:

We discretize the surface of the specular reflector
into small regions (analogous to the facets of the disco ball)
and treat each as a pinhole camera that projects the incom-
ing light onto the surrounding objects. This sampling ap-

 Wand and Straßer / Real-Time Caustics

© The Eurographics Association and Blackwell Publishers 2003.

proach is prone to aliasing artifacts: If you mirror a point
light source at a set of surface points on a smooth surface
you obtain a set of bright points on the receiver instead of a
continuous caustic. To avoid these undersampling artifacts,
we must examine the local curvature at the sample points
on the reflector to determine an appropriate resampling
filter for the projected images. Taking surface curvature
into account, we will obtain different results for a disco
ball with first-order discontinuities on the surface and a
smooth sphere.

3.1. Texture Mapping

The idea of projecting images of the light sources onto the
receivers using reflective or refractive pinhole cameras can
be mapped easily to programmable texture mapping hard-
ware (see Figure 1). The first step is to represent the in-
coming light as an environment map. If all light sources are
far away from the specular object, it is sufficient to use one
global environment map for all sample points at once. If
the light sources become closer to the reflector, it might be
necessary to compute multiple environment maps, which
increases the computational efforts. In our implementation,
we use only one map for all sample points, which is suffi-
cient for most cases. We use a cube environment map that
can be generated easily on-the-fly from the scene geometry
using z-buffer rendering.

Now we assume that we are given a set of sample
points on the specular object that act as pinhole cameras.
Thus, the next step is to compute the caustics by adding
together multiple images reprojected from the sample
points. To do this, we render the receiving surfaces using a
z-buffer renderer and a pixel shader program that calculates
each projection. It takes the vector d from the current raster
position on the receiver pd to the sample point ps and re-
flects it at the normal ns of the point sample. The resulting
reflection vector r is then used as direction vector to do the
cube map texture lookup (Figure 1). The resulting color
value has to be scaled to account for correct light attenua-
tion. The point samples have to be treated as infinitesimal
area reflectors. Each point sample represents a small piece
of surface area that reflects light onto the receiver. This
means, we must multiply the texture value by the cosines of
the incident angles at the reflector and the receiver and
divide by the distance:

dd
dndn

dist
ndnsds

,
,,coscos

2
⋅−

=
⋅ αα (dn = d / || d ||)

The scalar products are clamped to the range [1,0] to per-
form backface culling. To avoid singularities, we add a

small positive constant to the denominator. This constant
should be in the range of the diameter of the surface region
that is represented by one sample point squared. This ac-
counts for the uncertainty of the position (and thus of the
distance d) due to the discrete sampling. Additionally, we
have to normalize the light contribution by dividing the
total surface area by the number of sample points.

The computation of the lookup vector, the texture
lookup, and the computation of the attenuation term is
implemented as a pixel shader. We employ DirectX9
2.0/2.x pixel shaders that allow floating point computations
in the pixel pipeline and programmable (“dependent”)
texture lookups22. Due to the limitation of the instruction
count, it is only possible to consider a fixed amount of
reflector samples in one rendering pass. Using pixel shad-
ers version 2.0 that allow 64 arithmetic and 32 texture
operations per shader, up to three samples can be handled
by the graphics hardware in a single pass. For hardware
according to the extended version 2.x standard, more sam-
ples can be considered (the maximum instruction count is
here 1024 and the instruction set includes loops). For
additional rendering passes, we draw the receiver geometry
again and accumulate the additional contribution in the
frame buffer using additive blending.

3.2. Sampling

To perform the algorithm outlined above, we need sample
points on the reflector surface that serve as pinhole cam-
eras. We use a uniform sampling, i.e. we try to place sam-
ple points uniformly over the surface. This is done because
the light contribution of all sample points should be simi-
lar. This avoids adding images with low contribution to the
final result and thus leads to a better convergence. How-
ever, the contribution of the sample points also depends on
the orientation of the two surfaces considered and their
distance. Thus, a more elaborated sampling scheme should
also consider the normal vectors for sample placement and
use a spatial hierarchy to assign sample points to receivers
adaptively. These optimizations have not been imple-
mented yet but will be subject of future work.

To obtain sample sets with uniform density on the
reflector surfaces, we employ well known techniques from
point sample rendering. Four alternatives have been exam-
ined (see e.g. Wand et al.32 for a more detailed analysis of
the strategies):

1) Random27,31: The sample points are chosen at
random with uniform probability across the surface of the
reflector. This strategy is very easy to implement but leads
to relatively large noise artifacts in the solution.

 Wand and Straßer / Real-Time Caustics

 © The Eurographics Association and Blackwell Publishers 2003.

2) Grid-stratification31: We use a high density ran-
dom sample set and fix a three dimensional grid of cubes in
space. In each grid cell, we chose only one of the sample
points and delete all others. The method is comparable to
jittered sampling7 in stochastic raytracing but we delete
rather than explicitly place points using the grid. The strati-
fication leads to a more uniform sample distribution and
thus improves the image quality. However, the sample
selection is biased: Surfaces parallel to the grid obtain
more sample points than surfaces in a diagonal direction.

3) Quantized-grid stratification31: The same as strat-
egy 2, but all sample points are quantized to the grid cells.
The noise is reduced further but now it is possible to obtain
aliasing artifacts. Additionally, the strategy can lead to
considerable displacements of the points for small sample
sets. Although the strategy is efficient for point based
rendering, it is unfavorable for our application.

4) Neighborhood-based stratification32: Starting
from a random sample set with high density, we remove
superfluous points in a greedy manner. If a point is still
covered by a sphere around another point with fixed di-
ameter, it is regarded as superfluous and can be removed
(similar to Poisson disc sampling7 used for stochastic
raytracing). This strategy leads to a more uniform distribu-
tion than the grid based techniques, avoids structured
aliasing and has no bias. Therefore, we use it in all example
scenes in the following sections.

For dynamic scenes, the sampling has to be per-
formed at every frame. The initial random sampling can be
done even with complex reflector models in reasonable
time. For a complex stratification technique like method
(4), the running time of the stratification step might be an
issue. However, it depends only on the number of sample
points, not on the model complexity. As we only chose a
small number of sample points (due to the costs of the light

source reprojection and blending), this is usually no per-
formance problem.

3.3. Anti-Aliasing

Up to now, the algorithm still has an important drawback:
In many cases, one can still see that the caustic is an over-
lay of multiple sample images and not continuous. This is
an aliasing artifact that is caused by the finite sampling of
the reflector surface. In order to avoid this effect, we must
apply an appropriate resampling filter for the texture look-
ups. Theoretically, we would have to consider the reflec-
tion vectors at all surface points in the region around each
sample point to calculate the exact texture footprint (i.e. the
region in the texture that is mapped to the current pixel). In
order to implement the filtering using graphics hardware,
we must make an approximation:

Modern programmable graphics hardware according
to the pixel shader 2.x standard offers programmable ani-
sotropic texture lookups: The lookup instruction
(“texldd”) takes three arguments: a position texture and
two gradients fpu and fpv in u and v direction. The three
vectors define a parallelogram in texture space and the
hardware tries to approximate the integral over this region
by choosing a suitable mipmap level and then performing a
footprint assembly18. The technique can also be used for
cube maps using three dimensional gradient vectors.

As the local curvature determines the broadening or
focusing of the reflected ray bundle, we use a second order
surface approximation around each sample point (“differ-
ential” point samples16) to determine the footprint paral-
lelogram. To estimate the local curvature, we take a denser
set of sample points in the region around the main sample
point. We determine a tangent plane by computing the
average normal and establish a local coordinate frame u,v
in this plane. We project all sample points into the plane

Figure 1: Rendering caustics using
texture mapping

Figure 2: Differential point sample Figure 3: Footprint estimation

 Wand and Straßer / Real-Time Caustics

© The Eurographics Association and Blackwell Publishers 2003.

and examine the normals at these points. Using linear
regression, we fit a linear function n(u,v) = n + u·∂ n/∂ u +
v·∂ n/∂ v to the sample points, yielding a matrix ∇n =
(∂ n/∂ u | ∂ n/∂ v).

The footprint parallelogram is then estimated by fi-
nite differencing: We calculate the reflection vector at three
points: the center point p and two points pu, pv on the
tangential plane of the surface with a distance r to the
center where r is half the sample spacing of the point set
(Figure 2). The two distant points are chosen in orthogonal
directions, according to the minimum and maximum curva-
ture of the surface. The directions are computed by an
eigenspace transformation of the matrix ∇n (yielding a
modified coordinate frame u,v). The gradients fpu and fpv
are then set to the differences of the reflection vectors at
the distant points pu = p + u, pv = p + v to the reflection
vectors at the center point (Figure 3). To calculate the
reflection vectors at pu, pv, the normals nu = n + r·∂ n/∂ u
and nv = n + r·∂ n/∂ v are used.

4. Results

In this section, we describe the results obtained with a
prototype implementation of our algorithm. The implemen-
tation uses DirectX 9 pixel shaders to perform the texture
mapping operations. We tested two variants of the algo-
rithm: The first uses pixel shader version 2.0 instructions
and does not perform antialiasing. This variant runs in
hardware on an ATI Radeon 9700Pro graphics board. The
second variant uses pixel shaders version 2.x instructions
to perform programmable anisotropic texture lookups as
described in section 3.3. This variant cannot be executed in
hardware on the Radeon 9700 board. The pixel shader 2.x
instruction set is supported by nVidia GeForceFX graphics
boards that have become available just recently. However,
we were not able to use the “texldd” instruction (anisot-
ropic filtering with explicit footprint specification) with
cube environment maps on GeForceFX boards. Up to now,
we were not able to determine if this is a driver problem or
a hardware restriction. Thus, we ran the 2.x version of the
algorithm in a software simulation (DirectX reference
device, 16 × anisotropic sampling). This software simula-
tion is about a thousand times slower than the hardware
implementation. Therefore, we were not able to demon-
strate interactive applications with antialiasing*. We expect
that the version with antialiasing will run with a speed
roughly comparable to that of the unfiltered version once
the corresponding hardware support becomes available.

* The accompanying video was also recorded without antialiasing.

The results will be presented in two subsections:
The first examines the properties of the different sampling
strategies. Here, we use a worst-case scene to make the
differences visible. The second subsection describes results
from interactive applications.

4.1. Evaluation

In order to evaluate the benefits of the different sampling
strategies, we applied the algorithm to a scene with very
disadvantageous lighting conditions: A metallic ring lying
on a flat table is lit by a point light source from above. The
point light source has a solid angle of only about 0.0008 sr.
It is a white Gaussian spot of about 5 pixel diameter on a
2562

 × 6 cube map, using only 1/8 000 of the cube map area.
In contrast to scenes with complex, extended lighting
settings, the texture mapping algorithm is not very efficient
for this scene as it mostly processes black texels. However,
this “worst-case” scene is well-suited to examine the dif-
ferences between the different sampling strategies.

Anti-Aliasing: Figure 4 shows the ring scene ren-
dered with 100, 1,000, and 10,000 surface samples on the
reflector. The first row was rendered in hardware without
antialiasing (135msec, 1.6sec, and 19sec rendering time).
The second row was rendered with antialiasing, using the
pixel shader 2.x software emulation (4 min, 57 min, and
11h rendering time). The resolution was 512 × 512 pixel. In
all cases, the rendering without antialiasing clearly reveals
the discrete nature of the rendering algorithm. Using ani-
sotropic filtering, we already obtain a plausible result for
very few samples and the image quality of the 1,000 sam-
ples version may be acceptable for interactive applications.
Even at the high sampling rate of 10,000 light source sam-
ples per fragment, the quality is still strongly improved by
the anisotropic filtering.

Sampling Pattern: Figure 5 shows a comparison of
the four sampling strategies described in section 3.2. The
metallic ring lit by a point light source is again used as
benchmark scene with a fixed number of 2,000 reflector
sample points. In contrast to Figure 4, we disabled the
attenuation term in the intensity calculation to enhance the
contrast of the calculated caustic patterns. No antialiasing
was performed.

The random sampling strategy leads to an uneven
distribution of sample points and thus to a noisy solution
(Figure 5a). Using grid based stratification reduces the
noise level (Figure 5b and c). Quantization to the grid cells
leads to a more uniform sampling pattern but it also intro-
duces aliasing artifacts. It can be seen in the left part of the
caustics in Figure 5c that the caustics are composed of
discrete rings. Additionally, the area illuminated by the

 Wand and Straßer / Real-Time Caustics

 © The Eurographics Association and Blackwell Publishers 2003.

caustic does not exactly match that of the three other solu-
tions. This is due to the artificial displacements of the
quantization step. The best results are obtained with
neighborhood based point removal (Figure 5d). The tech-
nique produces less noise than the other three strategies
and does not suffer from aliasing or displacement prob-
lems. Therefore, this technique was used in all other exam-
ples, too.

4.2. Applications

In this section, we apply the technique to typical applica-
tion scenes*. All examples where rendered in real-time
using a Radeon 9700Pro graphics board and a 2Ghz Pen-
tium 4 System. Due to the problems with pixel shader 2.x
conformant hardware, all scenes had to be rendered with-
out anti-aliasing. We use lighting environments without too
much high frequency detail to compensate for the lack of
correct filtering.

Natural Light: Figure 6 shows objects that are lit
with natural light. The lighting situation was modeled as an
environment map created from high dynamic range images
(Figure 6a). The images for the environment maps where
taken from P. Debevec’s web site5. Figure 6(b) and (c)
show a metallic spoon and Figure 6(d) and (e) show a
metallic ring reflecting caustics on the ground. All objects
(reflectors and receivers) can be moved interactively with
no additional costs (see also the accompanying video). The
rendering time is about 6-20 fps (frames per second) for the
test cases. It depends linearly on the projected area on the
screen and on the number of sample points.

Self reflectance: Figure 6f and Figure 7b show a re-
flecting teacup. It focuses the light inside and casts caustics
on itself. The same technique is also used in Figure 6e. In
these cases, the reflector is also receiver (however, only
one reflective bounce is evaluated for the caustics). For
objects reflecting on themselves, it is important to add the
(aforementioned) small constant to the denominator in the
distance attenuation term to avoid singularities (section
3.1). Otherwise, these singularities become visible as small
bright spots near the sample points. The rendering time is
6.4fps for the ring and 4.9fps for the cup. The cup scene is
the slowest example scene because it needs more sample
points than the others to achieve a realistic effect.

Dynamic Lighting: A special advantage of our al-
gorithm is that it allows for dynamic scenes with arbitrary
changes at every frame. Figure 7c shows a scene with
dynamic lighting generated from geometry. The bright

* Note that the intensity of the caustics has been exaggerated a bit
in order to demonstrate the effect.

spheres in the upper left are the light sources. The light
geometry is rendered into an environment map at every
frame. As in all other examples, the reflector samples are
recomputed at every frame. Thus, it is possible to modify
the lighting situation, the reflectors and the receivers inter-
actively at every frame. See the accompanying video for a
real-time demonstration.

5. Conclusions and Future Work

In this paper, we presented a new technique for rendering
caustics at high frame rates of up to 20 frames per second.
Our technique is based on rasterization with texture map-
ping. This allows an efficient and fairly easy implementa-
tion on current programmable graphics hardware. There are
some advantages over photon tracing based techniques:
The algorithm can handle complex lighting situations with
extended light sources at no additional costs. The algorithm
does not need a density estimation step, which is often a
robustness problem as well as an efficiency problem. It
performs an adequate filtering operation based on an analy-
sis of the mapping process rather than based on a statistical
estimate. The algorithm can easily be applied to fully dy-
namic scenes as it does not need any preprocessing.

However, there are still some restrictions. Some of
them could be diminished in future work: Firstly, the algo-
rithm does not compute any visibility for the light sources
with the exception of backface culling. If the reflectors are
far away from the receivers, it is possible to incorporate
correct shadowing on the receivers by using a cube map
with depth values as shadow map. A second restriction is
that the light sources are assumed to be far away from the
reflector. If this is not the case, it could be necessary to
compute multiple cube maps for different clusters of sam-
ple points, requiring additional computation time. The third
restriction is that only one specular bounce can be handled.
This seems to be an inherent restriction. Except from spe-
cial cases, it seems not to be possible to handle multiple
specular interactions on a light path with our technique.

There are also some possibilities to generalize the
technique. It should be straightforward to apply the algo-
rithm to scenes with a single refractive interaction in the
light path, such as underwater scenes. The algorithm could
also be combined with volume rendering (using textured
slices1) to obtain volumetric caustics. Another opportunity
for a generalization would be the use of more complex
BRDFs. To employ a more general local lighting model for
the receiving surfaces, one could replace the simple Lam-
bertian cosine law by a more elaborated lighting model
(e.g. Phong or a more general, lookup table based model).
The BRDF of the reflector could be altered, too: A simple

 Wand and Straßer / Real-Time Caustics

© The Eurographics Association and Blackwell Publishers 2003.

modulation of the reflected intensity depending on the
incident angle (e.g. for a Fresnel term) is straightforward.
More general glossy reflections are not so easy. This could
probably be achieved by perturbing the reflection direc-
tions in the pixel shader. However, this would introduce
new aliasing problems that have to be addressed.

Concerning the performance of the algorithm, we
believe that it can be improved by using more adaptivity in
the sampling step: Firstly, the sampling strategy should
considers the surface normals of the reflector. Secondly,
clustering of sample points for receivers that are farther
away could improve the running time for larger scenes.

References

1. Akeley, K.: RealityEngine Graphics. In: Siggraph
93 Conference Proceedings, 109-116, 1993.

2. Arvo, J.: Backward Ray Tracing. In: Developments
in Ray Tracing, SIGGRAPH `86 Course Notes,
1986.

3. Chen, E., Rushmeier, H. E., Miller, G., Turner, D.:
A Progressive Multi-Pass Method for Global Illu-
mination. In: SIGGRAPH 91 Conference Proceed-
ings, 164-174, 1991.

4. Collins, S.: Adaptive Splatting for Specular to
Diffuse Light Transport, Proceedings of the Fifth
Eurographics Workshop on Rendering, 119-135,
1992.

5. Debevec, P.E: Rendering Synthetic Objects into
Real Scenes: Bridging Traditional and Image-
Based Graphics with Global Illumination and High
Dynamic Range Photography. In: SIGGRAPH 98
Conference Proceedings, 1998.

High dynamic range images taken from:
http://www.debevec.org/Probes

6. Dmitriev, K., Brabec, S., Myszkowski, K., Seidel,
H.P.: Interactive Global Illumination using Selec-
tive Photon Tracing. In: Rendering Techniques
2002, 21-34, 2002.

7. Glassner, A. S.: Principles of Digital Image Syn-
thesis. Morgen Kaufmann Publishers, 1995.

8. Granier, X., Drettakis, G.: Incremental Updates for
Rapid Glossy Global Illumination. In: Computer
Graphics Forum (EUROGRAPHICS 2001), 20(3),
2001.

9. Heckbert, P.S.: Adaptive Radiosity Textures for
Bidirectional Ray Tracing, SIGGRAPH 90 Confer-
ence Proceedings, 145-154, 1990.

10. Igehy, H.: Tracing Ray Differentials. In:
SIGGRAPH 99 Conference Proceedings, 179-186,
1999.

11. Iwasaki, K., Dobashi, Y., Nishita, T.: An Efficient
Method for Rendering Underwater Optical Effects
Using Graphics Hardware. In: Computer Graphics
Forum, 21(4), 2002.

12. Jensen, H.W.: Global Illumination using Photon
Maps. In: Rendering Techniques '96, 21-30,
Springer, 1996.

13. Jensen, H.W.: Rendering Caustics on Non-
Lambertian Surfaces. In: Proceedings of Graphics
Interface ’96, 116-121, 1996.

14. Jensen, L.S., Golias, R.: Deep-Water Animation
and Rendering. In: Gamasutra, September 2001.
http://www.gamasutra.com

15. Kajiya, J.T.: The rendering equation. In:
SIGGRAPH 86 Conference Proceedings, 143-150,
1986.

16. Kalaiah, A., Varshney, A.: Differential Point Ren-
dering. In: Rendering Techniques 2001, Springer,
2001.

17. Keller, A.: Instant Radiosity. In: SIGGRAPH 97
Conference Proceedings, 49-56, 1997.

18. Schilling, A.G., Knittel, G., Straßer, W.: Texram:
A Smart Memory for Texturing. In: IEEE Com-
puter Graphics & Applications, 32-41, 1996.

19. Trendall, C., Stewart, A.J.: General calculations
using graphics hardware, with application to inter-
active caustics. In: Rendering Techniques 2000,
287-298, Springer, 2000.

20. Lafortune, E. P., Willems, Y. D.: Bidirectional
Path Tracing. Proceedings of CompuGraphics, 95-
104, 1993.

21. Ma, V.C.H, McCool, M.D.: Low Latency Photon
Mapping Using Block Hashing. In: Graphics
Hardware 2002, pp. 89-98.

22. Microsoft DirectX9 Software Development Kit.
http://www.microsoft.com/windows/directx

 Wand and Straßer / Real-Time Caustics

 © The Eurographics Association and Blackwell Publishers 2003.

23. Nishita, T., Nakamae, E.: Method of Displaying
Optical Effects within Water using Accumulation
Buffer. In: SIGGRAPH 94 Conference Proceed-
ings, 1994.

24. Pfister, H., Zwicker, M., van Baar, J., Gross, M.:
Surfels: Surface Elements as Rendering Primitives.
In: SIGGRAPH 2000 Proceedings, 335-342, 2000.

25. Rusinkiewicz, S., Levoy, M.: Qsplat: A Multireso-
lution Point Rendering System for Large Meshes.
In: SIGGRAPH 2000 Proceedings, 343-352, 2000.

26. Sloan, P.P., Kautz, J., Snyder, J.: Precomputed
Radiance Transfer for Real-Time Rendering in
Dynamic, Low-Frequency Lighting Environments.
In: SIGGRAPH 2002 Conference Proceedings,
2002.

27. Stamminger, M., Drettakis, G.: Interactive Sam-
pling and Rendering for Complex and Procedural
Geometry. In: Rendering Techniques 2001.

28. Veach, E., Guibas, L.: Bidirectional Estimators for
Light Transport. In: Rendering Techniques ‘92,
147-162, 1992.

29. Wald, I., Slusallek, P., Benthin, C., Wagner, M.:
Interactive Rendering With Coherent Raytracing.
In: Computer Graphics Forum, 20(3), 153-164,
2001.

30. Wald, I., Kollig, T., Benthin, C., Keller, A.,
Slusallek, P.: Interactive Global Illumination using
Fast Ray Tracing. In: Rendering Techniques 2002,
Springer, 2002.

31. Wand, M., Fischer, M. Peter, I., Meyer auf der
Heide, F., Straßer, W.: The Randomized z-Buffer
Algorithm: Interactive Rendering of Highly Com-
plex Scenes. In: SIGGRAPH 2001 Conference
Proceedings, 361-370, 2001.

32. Wand, M., Straßer, W.: Multi-Resolution Render-
ing of Complex Animated Scenes. In: Computer
Graphics Forum, 21(3), 483-491, 2002.

33. Watt, M.: Light-water interaction using backward
beam tracing, SIGGRAPH 90 Conference Proceed-
ings, 377-385, 1990.

 Wand and Straßer / Real-Time Caustics

© The Eurographics Association and Blackwell Publishers 2003.

(a) 100 sample points, no filtering (b) 1,000 sample points, no filtering (c) 10,000 sample points, no filtering

(d) 100 sample points,

anisotropic texture lookup
(e) 1,000 sample points,

anisotropic texture lookup
(f) 10,000 sample points,

anisotropic texture lookup

Figure 4: A worst case scene. This scene shows a ring illuminated by a point light source of only about 0.0008 sr solid angle
(1/8 000 of the cube map area). The first row shows conventional texture mapping, the second performs anti-aliasing using

anisotropic texture lookups. The sampling artifacts are strongly reduced by the anisotropic filtering strategy.

(a) random sampling (b) grid stratification (c) quantized grid
stratification

(d) neighbor-removal
stratification

Figure 5: A comparison of different sampling strategies. The scene is the same as in Figure 4 but without filtering and with
light attenuation by distance disabled to enhance the patterns of the reflected light. 2000 sample points are used. The black
dots show the sample points. Strategy (d) yields the best results; thus it is used in all other example images in this paper.

 Wand and Straßer / Real-Time Caustics

 © The Eurographics Association and Blackwell Publishers 2003.

(a) High dynamic range environment

maps (forest map taken from [5]). Left:
exposure used for the background.

Right: exposure used for the caustics.

(b) A metallic spoon reflecting the
incoming light on the ground.

60 samples / 19 fps.

(c) A metallic spoon. View from
above.

60 samples / 15 fps.

(d) A metallic ring reflecting the incoming
light on the ground (similar to Figure 4,

only the inner side is reflective).
103 sample points / 13 fps.

(e) A solid metallic ring, two sided reflec-
tions and self reflections.

154 sample points / 6.4 fps.

(f) A reflecting cup with caustics from
natural light inside (beach environment

map taken from [5]).
354 sample points / 4.9 fps.

Figure 6: Caustics from natural light. All scenes where rendered at a resolution of 400 × 400 Pixel
on a Radeon 9700 Pro graphics board.

(a) test scene: a reflective cup

(diffuse shading).
(b) Caustic in the cup. Lit from above

by a point light source.
354 sample points / 4.9 fps.

(c) Fully dynamic scene. The light
source and the reflector are moved

interactively.
200 sample points / 9.6 fps.

Figure 7: Some more examples. All scenes where rendered at a resolution of 400 × 400 Pixel
on a Radeon 9700 Pro graphics board.

