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Abstract 
We present a new algorithm to render caustics. The algorithm discretizes the specular surfaces into sample 
points. Each of the sample points is treated as a pinhole camera that projects an image of the incoming light 
onto the diffuse receiver surfaces. Anti-aliasing is performed by considering the local surface curvature at the 
sample points to filter the projected images. The algorithm can be implemented using programmable texture 
mapping hardware. It allows to render caustics in fully dynamic scenes in real-time on current PC hardware. 

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture / Image Generation – Display Algo-
rithms; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism 

 
 
1. Introduction 

A real-time simulation of the interaction of light with 
complex, dynamically changing scenery is still one of the 
major challenges in computer graphics. In this paper, we 
look at a special global illumination problem, rendering of 
caustics. Caustics occur if light is reflected (or refracted) at 
one or more specular surfaces, focused into ray bundles of 
a certain structure, and then received as patterns of light on 
a diffuse surface. Caustics are a subtle effect but for many 
scenes these subtleties are very important to obtain realistic 
images. Consider for example a pool of water that reflects 
the environmental light onto its surrounding or a set of 
metallic objects like spoons and knifes focusing the incom-
ing light onto the surface of a table. 

Currently, the simulation of specular-to-diffuse light 
transports is often done by some variant of the photon-
tracing algorithm2,3,4,9,12,20,28: Starting from the light 
sources, photons are shot into the scene and their interac-
tion with specular objects is tracked until they meet a dif-
fuse receiver. On the receiver surfaces, statistical density 
estimation is used to approximate the local incident flux 
density. Photon tracing is a very powerful paradigm that 
allows a physically correct simulation of a large class of 
light transport problems. However, due to the stochastic 
nature of the algorithm, it needs a considerable amount of 
sample photons to achieve a good image quality. Each of 
the photon traces needs multiple potentially expensive ray 
intersection queries. After that, a statistical density estima-

tion step has to be performed that is often even more ex-
pensive. Thus, the technique is usually not very efficient. 
Although the implementation techniques for raytracing 
queries have made impressive advances in the last few 
years29, raytracing based algorithms still need a consider-
able amount of computational power (such as a cluster of 
several high end CPUs) to calculate global illumination 
solutions in real time30. 

In this paper, we propose a rasterization based tech-
nique that implements caustics rendering using texture 
mapping: We discretize the specular surfaces into a set of 
sample points that are treated as reflecting pinhole cameras. 
Each of these “pinholes” projects an image of the incoming 
light onto the receiving objects. The images are blurred by 
an anisotropic filter kernel that is derived from the local 
surface curvature. To allow an efficient implementation, 
the algorithm considers only cases with a single specular 
interaction on each light pass and assumes that the light 
sources are far away from the specular reflectors. The 
spatial relationship between the reflectors and the receivers 
can be arbitrary. An advantage of the rasterization based 
strategy is that the algorithm does not need involved data 
structures and no preprocessing. Thus, it is fairly simple to 
implement robustly and, more important, it can be applied 
to fully dynamic scenes. The light emitters, specular reflec-
tors and receivers can be changed arbitrarily without addi-
tional costs. The coherent, rasterization based strategy also 
allows for an efficient implementation using modern pro-
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grammable graphics hardware: Our implementation uses 
current consumer PC hardware according to the DirectX 9 
specifications. It is able to render caustics in scenes with 
fully dynamic receivers and reflectors and complex, dy-
namically changing lighting environments in real-time. 

In the following, we will first survey related work in 
section 2. Then we will describe the new algorithm more in 
detail in section 3 and present results in section 4. The 
paper concludes with some ideas for future work in section 
5. 

2. Related Work 

The standard technique for rendering caustics is photon 
tracing. The algorithm was introduced by Arvo2 in 1986. 
To calculate caustics, it shoots a set of (random) photons 
from the light sources into the scene and tracks their path 
until they meet a diffuse surface. This is usually more 
efficient for rendering caustics than raytracing from the 
view point15. On the receiving surfaces, a density estima-
tion technique is needed to recover continuous irradiance 
values from the discrete photon hits. Heckbert9 proposes a 
technique that accumulates photon statistics in adaptive 
texture maps. Chen et al.3 use a map corresponding to the 
viewport pixels and an adaptive reconstruction filter based 
on the radius of the k nearest neighbors. Jensen12,13 con-
structs a photon map, i.e. a spatial hierarchy that stores the 
results of the photon tracing and allows efficient neighbor-
hood queries. For caustics, the irradiance at a surface point 
is computed by estimating the surface area covered by its k 
nearest neighbors. The advantage of the nearest neighbor 
techniques is a constant noise ratio independent of the local 
photon density. Ma et al. propose a variant of the algorithm 
based on hash tables that allows for an efficient hardware 
implemenation21. 

Collins4 uses extended ray cones to enhance the ac-
curacy of the photon tracing: The method tries to estimate 
the footprint of the reflected rays using finite differencing. 
A more general framework for ray footprint estimation is 
presented by Ighey10. Our antialiasing scheme is based on 
similar ideas. Watt33 proposes a backward beam tracing 
technique for polyhedral scenes. Another possibility of 
improving the photon tracing technique is bidirectional 
path tracing20,28: Two paths from the viewpoint and the 
light source are shot simultaneously and connected via 
shadow rays. Granier et al.8 and Dmitriev et al.6 describe 
global illumination techniques based on photon tracing that 
allow for efficient dynamic updates. 

Today, it is possible to perform raytracing based 
global illumination algorithms on commodity hardware in 
interactive settings29,30. However, a cluster of several PCs 

is still needed to obtain fluid frame rates. Our rasterization 
based technique for rendering caustics is less flexible than 
the raytracing based techniques but it delivers fluid frame 
rates on a single PC with a modern graphics accelerator 
board. 

Sloan et al.26 describe an approach for static scenes 
with dynamically changing lighting conditions: The de-
pendency between surface irradiance and global lighting is 
precomputed and stored in a spherical harmonics represen-
tation. The method can render low frequency caustics with 
correct shadowing under changing lighting conditions in 
real-time. Our technique neglects shadowing but it is able 
to handle fully dynamic scenes without preprocessing and 
without the restriction to low frequency effects. 

Besides general purpose techniques for global illu-
mination and caustic rendering, there are also some tech-
niques for special cases such as underwater scenes11,14,23. 
The technique of Trendall et al.19 calculates underwater 
caustics on a planar receiver using programmable graphics 
hardware. 

Our algorithm was inspired by the “Instant Radios-
ity” algorithm by Keller17: It computes diffuse radiosity 
solutions by accumulating multiple images with shadows 
from single point light sources. 

Our technique is also related to point based render-
ing: The techniques for sampling the reflector surfaces are 
taken from point based rendering literature24,25,27,31,32. We 
use the “differential point sample” representation by 
Kalaiah et al.16 to estimate the texture footprints for the 
illumination environment maps. 

In the results section, we show examples of caustics 
from natural light environment maps. The idea of using 
high dynamic range photographs for lighting was intro-
duced by Debevec5. The environment maps in our example 
scenes are taken from his web site. 

3. The Algorithm 

The idea of our algorithm is based on a well-known obser-
vation: If you light a reflective disco ball in a room with a 
light bulb you obtain several small light spots on the walls 
that just turn out to be blurred images of the light source. 
The reason for this effect is that the facets of the disco ball 
act as a set of (reflecting) pinhole cameras that project an 
image of the light source onto the receiving surfaces. This 
observation leads to the following strategy for rendering 
caustics: 

We discretize the surface of the specular reflector 
into small regions (analogous to the facets of the disco ball) 
and treat each as a pinhole camera that projects the incom-
ing light onto the surrounding objects. This sampling ap-
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proach is prone to aliasing artifacts: If you mirror a point 
light source at a set of surface points on a smooth surface 
you obtain a set of bright points on the receiver instead of a 
continuous caustic. To avoid these undersampling artifacts, 
we must examine the local curvature at the sample points 
on the reflector to determine an appropriate resampling 
filter for the projected images. Taking surface curvature 
into account, we will obtain different results for a disco 
ball with first-order discontinuities on the surface and a 
smooth sphere. 

3.1. Texture Mapping 

The idea of projecting images of the light sources onto the 
receivers using reflective or refractive pinhole cameras can 
be mapped easily to programmable texture mapping hard-
ware (see Figure 1). The first step is to represent the in-
coming light as an environment map. If all light sources are 
far away from the specular object, it is sufficient to use one 
global environment map for all sample points at once. If 
the light sources become closer to the reflector, it might be 
necessary to compute multiple environment maps, which 
increases the computational efforts. In our implementation, 
we use only one map for all sample points, which is suffi-
cient for most cases. We use a cube environment map that 
can be generated easily on-the-fly from the scene geometry 
using z-buffer rendering. 

Now we assume that we are given a set of sample 
points on the specular object that act as pinhole cameras. 
Thus, the next step is to compute the caustics by adding 
together multiple images reprojected from the sample 
points. To do this, we render the receiving surfaces using a 
z-buffer renderer and a pixel shader program that calculates 
each projection. It takes the vector d from the current raster 
position on the receiver pd to the sample point ps and re-
flects it at the normal ns of the point sample. The resulting 
reflection vector r is then used as direction vector to do the 
cube map texture lookup (Figure 1). The resulting color 
value has to be scaled to account for correct light attenua-
tion. The point samples have to be treated as infinitesimal 
area reflectors. Each point sample represents a small piece 
of surface area that reflects light onto the receiver. This 
means, we must multiply the texture value by the cosines of 
the incident angles at the reflector and the receiver and 
divide by the distance: 

dd
dndn
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ndnsds

,
,,coscos
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=
⋅ αα   (dn = d / || d ||) 

The scalar products are clamped to the range [1,0] to per-
form backface culling. To avoid singularities, we add a 

small positive constant to the denominator. This constant 
should be in the range of the diameter of the surface region 
that is represented by one sample point squared. This ac-
counts for the uncertainty of the position (and thus of the 
distance d) due to the discrete sampling. Additionally, we 
have to normalize the light contribution by dividing the 
total surface area by the number of sample points. 

The computation of the lookup vector, the texture 
lookup, and the computation of the attenuation term is 
implemented as a pixel shader. We employ DirectX9 
2.0/2.x pixel shaders that allow floating point computations 
in the pixel pipeline and programmable (“dependent”) 
texture lookups22. Due to the limitation of the instruction 
count, it is only possible to consider a fixed amount of 
reflector samples in one rendering pass. Using pixel shad-
ers version 2.0 that allow 64 arithmetic and 32 texture 
operations per shader, up to three samples can be handled 
by the graphics hardware in a single pass. For hardware 
according to the extended version 2.x standard, more sam-
ples can be considered (the maximum instruction count is 
here 1024 and the instruction set includes loops). For 
additional rendering passes, we draw the receiver geometry 
again and accumulate the additional contribution in the 
frame buffer using additive blending. 

3.2. Sampling 

To perform the algorithm outlined above, we need sample 
points on the reflector surface that serve as pinhole cam-
eras. We use a uniform sampling, i.e. we try to place sam-
ple points uniformly over the surface. This is done because 
the light contribution of all sample points should be simi-
lar. This avoids adding images with low contribution to the 
final result and thus leads to a better convergence. How-
ever, the contribution of the sample points also depends on 
the orientation of the two surfaces considered and their 
distance. Thus, a more elaborated sampling scheme should 
also consider the normal vectors for sample placement and 
use a spatial hierarchy to assign sample points to receivers 
adaptively. These optimizations have not been imple-
mented yet but will be subject of future work. 

To obtain sample sets with uniform density on the 
reflector surfaces, we employ well known techniques from 
point sample rendering. Four alternatives have been exam-
ined (see e.g. Wand et al.32 for a more detailed analysis of 
the strategies): 

1) Random27,31: The sample points are chosen at 
random with uniform probability across the surface of the 
reflector. This strategy is very easy to implement but leads 
to relatively large noise artifacts in the solution. 
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2) Grid-stratification31: We use a high density ran-
dom sample set and fix a three dimensional grid of cubes in 
space. In each grid cell, we chose only one of the sample 
points and delete all others. The method is comparable to 
jittered sampling7 in stochastic raytracing but we delete 
rather than explicitly place points using the grid. The strati-
fication leads to a more uniform sample distribution and 
thus improves the image quality. However, the sample 
selection is biased: Surfaces parallel to the grid obtain 
more sample points than surfaces in a diagonal direction. 

3) Quantized-grid stratification31: The same as strat-
egy 2, but all sample points are quantized to the grid cells. 
The noise is reduced further but now it is possible to obtain 
aliasing artifacts. Additionally, the strategy can lead to 
considerable displacements of the points for small sample 
sets. Although the strategy is efficient for point based 
rendering, it is unfavorable for our application. 

4) Neighborhood-based stratification32: Starting 
from a random sample set with high density, we remove 
superfluous points in a greedy manner. If a point is still 
covered by a sphere around another point with fixed di-
ameter, it is regarded as superfluous and can be removed 
(similar to Poisson disc sampling7 used for stochastic 
raytracing). This strategy leads to a more uniform distribu-
tion than the grid based techniques, avoids structured 
aliasing and has no bias. Therefore, we use it in all example 
scenes in the following sections. 

For dynamic scenes, the sampling has to be per-
formed at every frame. The initial random sampling can be 
done even with complex reflector models in reasonable 
time. For a complex stratification technique like method 
(4), the running time of the stratification step might be an 
issue. However, it depends only on the number of sample 
points, not on the model complexity. As we only chose a 
small number of sample points (due to the costs of the light 

source reprojection and blending), this is usually no per-
formance problem. 

3.3. Anti-Aliasing 

Up to now, the algorithm still has an important drawback: 
In many cases, one can still see that the caustic is an over-
lay of multiple sample images and not continuous. This is 
an aliasing artifact that is caused by the finite sampling of 
the reflector surface. In order to avoid this effect, we must 
apply an appropriate resampling filter for the texture look-
ups. Theoretically, we would have to consider the reflec-
tion vectors at all surface points in the region around each 
sample point to calculate the exact texture footprint (i.e. the 
region in the texture that is mapped to the current pixel). In 
order to implement the filtering using graphics hardware, 
we must make an approximation: 

Modern programmable graphics hardware according 
to the pixel shader 2.x standard offers programmable ani-
sotropic texture lookups: The lookup instruction 
(“texldd”) takes three arguments: a position texture and 
two gradients fpu and fpv in u and v direction. The three 
vectors define a parallelogram in texture space and the 
hardware tries to approximate the integral over this region 
by choosing a suitable mipmap level and then performing a 
footprint assembly18. The technique can also be used for 
cube maps using three dimensional gradient vectors. 

As the local curvature determines the broadening or 
focusing of the reflected ray bundle, we use a second order 
surface approximation around each sample point (“differ-
ential” point samples16) to determine the footprint paral-
lelogram. To estimate the local curvature, we take a denser 
set of sample points in the region around the main sample 
point. We determine a tangent plane by computing the 
average normal and establish a local coordinate frame u,v 
in this plane. We project all sample points into the plane 

 

 
 

Figure 1: Rendering caustics using 
texture mapping 

Figure 2: Differential point sample Figure 3: Footprint estimation 
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and examine the normals at these points. Using linear 
regression, we fit a linear function n(u,v) = n + u·∂ n/∂ u + 
v·∂ n/∂ v to the sample points, yielding a matrix ∇n = 
(∂ n/∂ u | ∂ n/∂ v). 

The footprint parallelogram is then estimated by fi-
nite differencing: We calculate the reflection vector at three 
points: the center point p and two points pu, pv on the 
tangential plane of the surface with a distance r to the 
center where r is half the sample spacing of the point set 
(Figure 2). The two distant points are chosen in orthogonal 
directions, according to the minimum and maximum curva-
ture of the surface. The directions are computed by an 
eigenspace transformation of the matrix ∇n (yielding a 
modified coordinate frame u,v). The gradients fpu and fpv 
are then set to the differences of the reflection vectors at 
the distant points pu = p + u, pv = p + v to the reflection 
vectors at the center point (Figure 3). To calculate the 
reflection vectors at pu, pv, the normals nu = n + r·∂ n/∂ u 
and nv = n + r·∂ n/∂ v are used. 

4. Results 

In this section, we describe the results obtained with a 
prototype implementation of our algorithm. The implemen-
tation uses DirectX 9 pixel shaders to perform the texture 
mapping operations. We tested two variants of the algo-
rithm: The first uses pixel shader version 2.0 instructions 
and does not perform antialiasing. This variant runs in 
hardware on an ATI Radeon 9700Pro graphics board. The 
second variant uses pixel shaders version 2.x instructions 
to perform programmable anisotropic texture lookups as 
described in section 3.3. This variant cannot be executed in 
hardware on the Radeon 9700 board. The pixel shader 2.x 
instruction set is supported by nVidia GeForceFX graphics 
boards that have become available just recently.  However, 
we were not able to use the “texldd” instruction (anisot-
ropic filtering with explicit footprint specification) with 
cube environment maps on GeForceFX boards. Up to now, 
we were not able to determine if this is a driver problem or 
a hardware restriction. Thus, we ran the 2.x version of the 
algorithm in a software simulation (DirectX reference 
device, 16 × anisotropic sampling). This software simula-
tion is about a thousand times slower than the hardware 
implementation. Therefore, we were not able to demon-
strate interactive applications with antialiasing*. We expect 
that the version with antialiasing will run with a speed 
roughly comparable to that of the unfiltered version once 
the corresponding hardware support becomes available. 

                                                                 
* The accompanying video was also recorded without antialiasing. 

The results will be presented in two subsections: 
The first examines the properties of the different sampling 
strategies. Here, we use a worst-case scene to make the 
differences visible. The second subsection describes results 
from interactive applications. 

4.1. Evaluation 

In order to evaluate the benefits of the different sampling 
strategies, we applied the algorithm to a scene with very 
disadvantageous lighting conditions: A metallic ring lying 
on a flat table is lit by a point light source from above. The 
point light source has a solid angle of only about 0.0008 sr. 
It is a white Gaussian spot of about 5 pixel diameter on a 
2562

 × 6 cube map, using only 1/8 000 of the cube map area. 
In contrast to scenes with complex, extended lighting 
settings, the texture mapping algorithm is not very efficient 
for this scene as it mostly processes black texels. However, 
this “worst-case” scene is well-suited to examine the dif-
ferences between the different sampling strategies. 

Anti-Aliasing: Figure 4 shows the ring scene ren-
dered with 100, 1,000, and 10,000 surface samples on the 
reflector. The first row was rendered in hardware without 
antialiasing (135msec, 1.6sec, and 19sec rendering time). 
The second row was rendered with antialiasing, using the 
pixel shader 2.x software emulation (4 min, 57 min, and 
11h rendering time). The resolution was 512 × 512 pixel. In 
all cases, the rendering without antialiasing clearly reveals 
the discrete nature of the rendering algorithm. Using ani-
sotropic filtering, we already obtain a plausible result for 
very few samples and the image quality of the 1,000 sam-
ples version may be acceptable for interactive applications. 
Even at the high sampling rate of 10,000 light source sam-
ples per fragment, the quality is still strongly improved by 
the anisotropic filtering. 

Sampling Pattern: Figure 5 shows a comparison of 
the four sampling strategies described in section 3.2. The 
metallic ring lit by a point light source is again used as 
benchmark scene with a fixed number of 2,000 reflector 
sample points. In contrast to Figure 4, we disabled the 
attenuation term in the intensity calculation to enhance the 
contrast of the calculated caustic patterns. No antialiasing 
was performed. 

The random sampling strategy leads to an uneven 
distribution of sample points and thus to a noisy solution 
(Figure 5a). Using grid based stratification reduces the 
noise level (Figure 5b and c). Quantization to the grid cells 
leads to a more uniform sampling pattern but it also intro-
duces aliasing artifacts. It can be seen in the left part of the 
caustics in Figure 5c that the caustics are composed of 
discrete rings. Additionally, the area illuminated by the 
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caustic does not exactly match that of the three other solu-
tions. This is due to the artificial displacements of the 
quantization step. The best results are obtained with 
neighborhood based point removal (Figure 5d). The tech-
nique produces less noise than the other three strategies 
and does not suffer from aliasing or displacement prob-
lems. Therefore, this technique was used in all other exam-
ples, too. 

4.2. Applications 

In this section, we apply the technique to typical applica-
tion scenes*. All examples where rendered in real-time 
using a Radeon 9700Pro graphics board and a 2Ghz Pen-
tium 4 System. Due to the problems with pixel shader 2.x 
conformant hardware, all scenes had to be rendered with-
out anti-aliasing. We use lighting environments without too 
much high frequency detail to compensate for the lack of 
correct filtering. 

Natural Light: Figure 6 shows objects that are lit 
with natural light. The lighting situation was modeled as an 
environment map created from high dynamic range images 
(Figure 6a). The images for the environment maps where 
taken from P. Debevec’s web site5. Figure 6(b) and (c) 
show a metallic spoon and Figure 6(d) and (e) show a 
metallic ring reflecting caustics on the ground. All objects 
(reflectors and receivers) can be moved interactively with 
no additional costs (see also the accompanying video). The 
rendering time is about 6-20 fps (frames per second) for the 
test cases. It depends linearly on the projected area on the 
screen and on the number of sample points. 

Self reflectance: Figure 6f and Figure 7b show a re-
flecting teacup. It focuses the light inside and casts caustics 
on itself. The same technique is also used in Figure 6e. In 
these cases, the reflector is also receiver (however, only 
one reflective bounce is evaluated for the caustics). For 
objects reflecting on themselves, it is important to add the 
(aforementioned) small constant to the denominator in the 
distance attenuation term to avoid singularities (section 
3.1). Otherwise, these singularities become visible as small 
bright spots near the sample points. The rendering time is 
6.4fps for the ring and 4.9fps for the cup. The cup scene is 
the slowest example scene because it needs more sample 
points than the others to achieve a realistic effect. 

Dynamic Lighting: A special advantage of our al-
gorithm is that it allows for dynamic scenes with arbitrary 
changes at every frame. Figure 7c shows a scene with 
dynamic lighting generated from geometry. The bright 

                                                                 
* Note that the intensity of the caustics has been exaggerated a bit 
in order to demonstrate the effect. 

spheres in the upper left are the light sources. The light 
geometry is rendered into an environment map at every 
frame. As in all other examples, the reflector samples are 
recomputed at every frame. Thus, it is possible to modify 
the lighting situation, the reflectors and the receivers inter-
actively at every frame. See the accompanying video for a 
real-time demonstration. 

5. Conclusions and Future Work 

In this paper, we presented a new technique for rendering 
caustics at high frame rates of up to 20 frames per second. 
Our technique is based on rasterization with texture map-
ping. This allows an efficient and fairly easy implementa-
tion on current programmable graphics hardware. There are 
some advantages over photon tracing based techniques: 
The algorithm can handle complex lighting situations with 
extended light sources at no additional costs. The algorithm 
does not need a density estimation step, which is often a 
robustness problem as well as an efficiency problem. It 
performs an adequate filtering operation based on an analy-
sis of the mapping process rather than based on a statistical 
estimate. The algorithm can easily be applied to fully dy-
namic scenes as it does not need any preprocessing. 

However, there are still some restrictions. Some of 
them could be diminished in future work: Firstly, the algo-
rithm does not compute any visibility for the light sources 
with the exception of backface culling. If the reflectors are 
far away from the receivers, it is possible to incorporate 
correct shadowing on the receivers by using a cube map 
with depth values as shadow map. A second restriction is 
that the light sources are assumed to be far away from the 
reflector. If this is not the case, it could be necessary to 
compute multiple cube maps for different clusters of sam-
ple points, requiring additional computation time. The third 
restriction is that only one specular bounce can be handled. 
This seems to be an inherent restriction. Except from spe-
cial cases, it seems not to be possible to handle multiple 
specular interactions on a light path with our technique. 

There are also some possibilities to generalize the 
technique. It should be straightforward to apply the algo-
rithm to scenes with a single refractive interaction in the 
light path, such as underwater scenes. The algorithm could 
also be combined with volume rendering (using textured 
slices1) to obtain volumetric caustics.  Another opportunity 
for a generalization would be the use of more complex 
BRDFs. To employ a more general local lighting model for 
the receiving surfaces, one could replace the simple Lam-
bertian cosine law by a more elaborated lighting model 
(e.g. Phong or a more general, lookup table based model). 
The BRDF of the reflector could be altered, too: A simple 
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modulation of the reflected intensity depending on the 
incident angle (e.g. for a Fresnel term) is straightforward. 
More general glossy reflections are not so easy. This could 
probably be achieved by perturbing the reflection direc-
tions in the pixel shader. However, this would introduce 
new aliasing problems that have to be addressed. 

Concerning the performance of the algorithm, we 
believe that it can be improved by using more adaptivity in 
the sampling step: Firstly, the sampling strategy should 
considers the surface normals of the reflector. Secondly, 
clustering of sample points for receivers that are farther 
away could improve the running time for larger scenes. 
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(a) 100 sample points, no filtering (b) 1,000 sample points, no filtering (c) 10,000 sample points, no filtering 

 

   
(d) 100 sample points, 

anisotropic texture lookup 
(e) 1,000 sample points, 

anisotropic texture lookup 
(f) 10,000 sample points, 

anisotropic texture lookup 

Figure 4: A worst case scene. This scene shows a ring illuminated by a point light source of only about 0.0008 sr solid angle 
(1/8 000 of the cube map area). The first row shows conventional texture mapping, the second performs anti-aliasing using 

anisotropic texture lookups. The sampling artifacts are strongly reduced by the anisotropic filtering strategy. 

 

(a) random sampling (b) grid stratification (c) quantized grid 
stratification 

(d) neighbor-removal 
stratification 

Figure 5: A comparison of different sampling strategies. The scene is the same as in Figure 4 but without filtering and with 
light attenuation by distance disabled to enhance the patterns of the reflected light. 2000 sample points are used. The black 
dots show the sample points. Strategy (d) yields the best results; thus it is used in all other example images in this paper. 
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(a) High dynamic range environment 

maps (forest map taken from [5]). Left: 
exposure used for the background. 

Right: exposure used for the caustics. 

(b) A metallic spoon reflecting the 
incoming light on the ground. 

60 samples / 19 fps. 

(c) A metallic spoon. View from 
above. 

60 samples / 15 fps. 

   
(d) A metallic ring reflecting the incoming 
light on the ground (similar to Figure 4, 

only the inner side is reflective). 
103 sample points / 13 fps. 

(e) A solid metallic ring, two sided reflec-
tions and self reflections. 

154 sample points / 6.4 fps. 

(f) A reflecting cup with caustics from 
natural light inside (beach environment 

map taken from [5]). 
354 sample points / 4.9 fps. 

Figure 6: Caustics from natural light. All scenes where rendered at a resolution of 400 × 400 Pixel 
on a Radeon 9700 Pro graphics board. 

   
(a) test scene: a reflective cup 

(diffuse shading). 
(b) Caustic in the cup. Lit from above 

by a point light source. 
354 sample points / 4.9 fps. 

(c) Fully dynamic scene. The light 
source and the reflector are moved 

interactively. 
200 sample points / 9.6 fps. 

Figure 7: Some more examples. All scenes where rendered at a resolution of 400 × 400 Pixel 
on a Radeon 9700 Pro graphics board. 


