
Multi-Resolution Point-Sample Raytracing

Michael Wand Wolfgang Straßer
WSI/GRIS, University of Tübingen

Abstract

We propose a new strategy for raytracing complex
scenes without aliasing artifacts. The algorithm inter-
sects anisotropic ray cones with prefiltered surface sam-
ple points from a multi-resolution point hierarchy. The
algorithm can be extended to capture effects of distrib-
uted raytracing [7] such as blurry reflections, depth of
field, or soft shadows. In contrast to former anti-aliasing
techniques based on cone tracing, the multi-resolution
algorithm can be applied efficiently to scenes of high
complexity. The running time does not depend on the
variance in the image as this is the case for the prevalent
stochastic raytracing techniques. Thus, the new tech-
nique is faster than stochastic raytracing for images with
many high frequency details.

Keywords: Point Sample Rendering, Raytracing,

Multi-Resolution Rendering, Anti-Aliasing.

1 Introduction
Raytracing [5, 29] is a very general image generation
technique that is able to simulate many global lighting
phenomena such as shadows or reflections. The algo-
rithm traces a ray into the scene through each pixel of
the image. This sampling approach is prone to aliasing
artifacts. The common solution to this problem is sto-
chastic supersampling: Multiple rays are shot through
each pixel and the results are averaged using a suitable
filter kernel. The central limit theorem guarantees that
this average will converge to the integral over the pixel
(weighted by the filter kernel) stochastically. The prob-
lem of this approach is slow convergence: In the worst
case, the convergence rate (standard deviation of the
error) is O(σ /√

_
n) for n sample rays and a standard devia-

tion σ of the color estimator [18]. In regions of high
variance, a large sample size of up to some hundred rays
per pixel is needed to avoid noise artifacts.

In some cases, the convergence rate can be im-
proved by stratification or importance sampling [9].
Importance sampling requires a priori knowledge and
therefore, it is often not applicable. In cases of complex,
irregularly structured image signals, stratification also
does not lead to a better convergence rate: Sample sets
from a (in the worst case) purely random image signal

will have the same probability distribution for any set of
sampling positions [18]. This argument applies to quasi-
random samples (such as samples from a Halton se-
quence [15]) as well.

An alternative are methods that trace extended ray
volumes such as cone tracing or beam tracing [3, 10, 11,
16, 25]. These methods do not shoot infinitesimally
small rays into the scene but larger cones with a cross-
section corresponding to a pixel in the image. These
techniques render anti-aliased images using only one
ray per pixel. However, they suffer from a different kind
of complexity problem: In a highly detailed scene, the
cross-section of a ray cone may intersect with an arbi-
trarily large set of primitives. Thus, the intersection
computations become prohibitively expensive. For this
reason, methods following this paradigm are usually
only applied to models of low complexity.

A possible solution is to use a hybrid approach [4,
8]: Extended ray cones are used to detect boundaries in
objects space. Then super-sampling is used to integrate
over the cross-section of the ray. These techniques al-
low a good control of the sampling density used for
oversampling. Nevertheless, in regions of high variance,
they suffer from the same convergence problems as the
purely stochastic methods.

In this paper, we propose a new cone-tracing algo-
rithm that uses a multi-resolution point sample hierar-
chy to speed up the intersection calculations: Instead of
intersecting the extended ray volume with potentially
millions of geometric primitives we use only a few
sample points with a spacing matching the ray footprint.
The sample points store precomputed average color
attributes and differential properties such as an average
normal and curvature information [14, 21]. The ray
footprints are estimated using a ray model similar to ray
differentials [12] for anisotropic antialiasing.

We compare a prototype implementation of our
multi-resolution point hierarchy raytracer with a con-
ventional and a distributed raytracer based on the same
code basis. Our experiments show that the new tech-
nique produces antialiased images at about 4 times the
costs of the simple, non-antialiased raytracer, independ-
ent of the variance of the image. Approximations of
effects like soft shadows and blurry reflections can be

obtained by modifying the ray footprint, at no additional
costs. In images with high variance areas such as soft-
shadow areas or models with high frequency texture, the
new technique is much faster than the distributed ray-
tracer and guarantees images without noise artifacts.

2 Related Work
Cone/beam-tracing techniques: Cone tracing [3, 16]
calculates the interaction of ray cones through each
pixel with the scene geometry. The technique is able to
render antialiased images and to approximate effects
such as soft shadows and blurry reflections. Beam trac-
ing [10, 11] starts with the view frustum as initial beam
and successively clips it to polygonal objects to generate
sub-beams. Shinya et al. discuss models for the interac-
tion of �pencils� of rays with reflecting and refracting
surfaces [25]. A more general and robust model of the
interactions between beams of light and surfaces is de-
scribed by Igehy [12]: The first order derivatives of the
ray properties (origin, direction) with respect to the
screen coordinate system are considered to estimate ray
footprints. The chain rule is used to deal with multiple
surface interactions. The technique is applied to esti-
mate footprints for prefiltered texture mapping. Schil-
ling [24] uses similar techniques to perform antialiasing
of environment maps.

Our new algorithm is based on the conceptual
framework of cone tracing. We use a point based multi-
resolution hierarchy to overcome the complexity prob-
lems of this approach: When large cones have to be
intersected with complex geometry, the multi-resolution
hierarchy allows adapting the model resolution to a
coarser level to bound the computational efforts. Addi-
tionally, we use a more flexible anisotropic ray model
than the original cone tracing algorithm based on some
ideas of the ray differentials model [12] and Schilling�s
technique [24].

Stochastic raytracing: Distributed raytracing [7]
is a standard technique for antialiased raytracing and the
simulation of higher dimensional sampling effects such
as soft shadows from extended light sources or blurry
reflections: The intensity of every pixel is calculated as
a weighted average of irregularly distributed sample
rays. The technique can be implemented efficiently us-
ing adaptive supersampling by either examining image
variance [19, 20] or object space features [4, 8]. The
latter approach leads to a hybrid cone/beam tracing and
supersampling algorithm.

Our algorithm does not try to perform a complete
global illumination simulation that is possible with ad-
vanced stochastic raytracing techniques such as photon
tracing or path tracing [13] but is limited to some spe-
cial effects similar to those described by Cook et al. [7].
In comparison with Cook�s �distributed raytracing�

methods, our algorithm is only able to compute an ap-
proximate solution while distributed raytracing con-
verges stochastically to the exact solution. The advan-
tage of our method is that it produces plausible images
without noise artifacts. This is sometimes more impor-
tant than physical correctness, e.g. for rendering anima-
tions.

Point sample rendering: Multi-resolution point
representations store clouds of surface sample points in
a spatial hierarchy to approximate geometric objects at
different levels of detail [21, 22, 27]. The attributes of
the points can be prefiltered to allow an image recon-
struction without aliasing during rendering [21, 30]. As
every point can store only a fixed set of information, a
point sample can only approximate the original geome-
try it represents. Different models of representation are
possible: We use differential point samples [14] which
include curvature information that is needed to antialias
secondary rays [12]. We use a technique similar to sur-
face splatting [30] to reconstruct pieces of surface for
ray-point and ray-triangle intersections.

Raytracing of point based representations has al-
ready been explored by different authors: Lischinski et
al. and Agrawala et al. [2, 17] describe raytracing tech-
niques for layered depth images using hierarchical ac-
celeration data structures. Our ray-point cloud intersec-
tion algorithm is similar to of that of Schaufler et al.
[23]. Adamson et al. [1] point out that this technique
does not necessarily lead to a uniquely defined surface
between the sample points and propose an enhanced
method based on a local projection operator. For our
algorithm, we do not need a unique surface reconstruc-
tion: Because of the multi-resolution data structure, the
point cloud is never seen under magnification. For
close-ups, the algorithm automatically uses the original
primitives of the geometric model [28].

The remainder of the paper is structured as follows:
In the next section, we describe the multi-resolution
point hierarchy. Section 4 describes the ray model and
the intersection calculations with extended rays. Section
5 puts all components together and describes the multi-
resolution ray tracing algorithm. Afterwards, we present
results obtained with our implementation of the algo-
rithm and conclude with some ideas for future research.

3 The Multi-Resolution Hierarchy
The input to our algorithm is a set of triangles: Each
triangle is tagged with a set of material properties
(color, reflectivity, transparency etc...) and a normal for
each of its vertices.

The multi-resolution hierarchy consists of point
samples that approximate pieces of the surface of the
objects. Besides its position, each point stores average
material and differential surface properties [14]: The

material properties are an average color, reflectivity,
transparency, Phong parameters, surface roughness, and
index of refraction. The differential surface properties
are the average normal and the derivatives of the normal
in two orthogonal tangential directions (Figure 2). This
second order surface approximation will be used by the
raytracer later on to calculate the shape of the secondary
rays.

3.1 Building the Hierarchy
We build the multi-resolution point hierarchy in a pre-
processing step using a technique similar to that de-
scribed by Wand et al. [28] which is a variant of the
surfels data structure [21]. We start preprocessing by
calculating a bounding cube for the triangle set. Then
we choose a set of representative sample points at a
fixed resolution (the point spacing is proportional to the
side length of the box) and estimate average surface
properties for them. If a triangle obtains more than only
a few (say more than 3) representative points, it is
stored in the current octree box and excluded from fur-
ther point sampling. All other triangles are sorted into
the child nodes and the algorithm is continued recur-
sively for the child nodes until all triangles have reached
their sampling limit. After that, we have a spatial hierar-
chy with triangles in the leaf nodes and approximating
point clouds along with some large triangles in the inner
nodes. The root of our hierarchy provides a very rough
approximation of the scene and the resolution is in-
creased when we go down in the hierarchy until we end
up at the original triangles which represent the highest
resolution available (Figure 1).

3.2 Calculating Point Samples
How do we generate the point clouds that approximate
the geometry in the inner nodes? Our sampling strategy
is divided conceptually into two steps: Firstly, the gen-
eration of representative points and secondly, the esti-
mation of their average surface properties.

To choose representative points, we fix a three di-
mensional quantization grid of k3 voxel for the current
octree box. Then we draw a set of random sample points

that are uniformly distributed on the triangles. For each
voxel that contains at least one sample point, a represen-
tative point is created in the center of the voxel. As ana-
lyzed in [28], a relatively small number of random sam-
ples are sufficient to guarantee that the surface is cov-
ered with representatives with a maximum distance of at
least the diagonal voxel distance.

In order to estimate the average surface properties,
we increase the minimum sampling density by an over-
sampling factor of c (typically c = 100). The additional
sample points are then used to compute prefiltered sur-
face properties during preprocessing1: Each representa-
tive point is assigned a Gaussian weighting function
(with a standard deviation of one voxel side length). The
material properties (color, transparency etc...) as well as
the average normal of the representative point are calcu-
lated as weighted average of the properties of the
neighboring points in the sample set.

To obtain the derivatives of the normal, we fix an
(arbitrary) tangential coordinate system (up, vp) orthogo-
nal to the average normal of the representative point and
project all neighboring points into this coordinate sys-
tem yielding points (ui,vi). For each point, we calculate a
two dimensional normal deviation ∆n(ui,vi): The two
components are the deviation to the original normal in
up and vp coordinates for a fixed third component np=1
in normal direction (see Figure 2). This means, we
measure the normal deviation as projection in a plane
parallel to the tangential plane with distance one [24].

To describe the surface curvature, we fit a bilinear
function n(u,v) = n(0,0) + u·∂ n/∂ u + v·∂ n/∂ v to the nor-
mal deviations ∆n(ui,vi) by solving a weighted least
square problem. The derivatives of this function (∂ n/∂ u,
∂ n/∂ v) = ∇n are stored in the representative point along
with the orientation of the tangential coordinate system.
Note that we fit a function to the normal vectors rather
than fitting a height field to the positions of the sample
points. This is necessary because we are using normal
interpolated triangles as input. Thus, the spatial devia-
tion of the sample points might not match the specified
normals. After that, all point properties are quantized to
small integer values (8 bit for material properties and
position, 16 bit for differential properties) so that they
can be stored compactly in the hierarchy.

1 Because of the random sampling, we need a large sample set
to avoid noise artifacts. This is a similar problem as in distrib-
uted raytracing. However, the sampling is done during pre-
processing and in object space. Sampling in object space is
much more efficient than sampling in the image space where
an expensive inverse ray intersection problem must be solved
for every sample. Thus, this is no severe efficiency problem.
Even for larger models, typical preprocessing times are in the
range of a few minutes (see Table 1).

Figure 1: The point hierarchy

Figure 2: Differential
point samples

4 Representing Ray Cones
This section describes our ray cones model that is used
to estimate the ray footprint. Generally, ray footprints
are obtained by approximating the propagation of the set
of all rays through a single pixel through the scene. For
primary rays, this is easy. Dealing with secondary rays
is more involved: There are two different basic ap-
proaches: First, one can estimate the ray footprint by
considering the differences between adjacent rays in
image space [8]. This approach leads to problems at the
boundary of objects, where special processing is neces-
sary. The second opportunity is to use differential in-
formation at the point of intersection, i.e. derivatives of
the normal, to estimate the broadening or focusing ef-
fect of the surface on the incoming ray. We use the sec-
ond strategy in a similar way as Ighegy [12]. This ap-
proach fits especially well in the context of a multi-
resolution renderer where differential properties can be
precomputed for different levels of resolution.

4.1 Footprint Estimation
Our ray model is based on a linear approximation:
Every ray r defines a local coordinate system, consisting
of its origin sr, its normalized direction nr, and two tan-
gential directions ur, vr (see Figure 3). The footprint is
now described in the local ur and vr coordinates: Each
ray stores two 2×2 matrices startDev and incrDev. The
columns of startDev contain two vectors (in ur,vr coor-
dinates) defining the footprint coordinate system at the
ray parameter t = 0. The footprint at larger values of t is
defined as
 fp(t) = startDev + t·incrDev. (1)

The footprint coordinate system is used to associate a
filter kernel with each ray parameter t. We use an ellip-
tical Gaussian filter [30] defined by:

 weight u v e e
fp t

u
v u v fp t

u
v(,)

() (,) ()
= =

−

 −

− −1
2

2

 (2)

Thus, the exponential decay of the filter weight is given
by a quadric form of the coordinates of a point in local
ray coordinates (u,v) using the matrix fp(t)-2. This matrix

is real and symmetric. Therefore, it can be decomposed
into an eigensystem representation

 UUtfp T

=−

2
2

2
1
0

02)(
λ

λ (3)

with an orthogonal Matrix U (see Figure 4). We
will use this decomposition for different purposes, e.g.
to enhance the numeric stability of triangle intersection
calculations or to estimate the minimum diameter of the
ray footprint.

4.2 Ray - Surface Interaction
In the following, we discuss how we obtain ray parame-
ters for primary and secondary rays as well as for
shadow rays:

Primary Rays: Primary rays are constructed by
specifying zero deviation at the ray origin and an incre-
ment matrix that broadens the ray so that it matches the
extents of the pixels in the image plane (Figure 5a). This
also allows to model depth of field effects: The lens
model used by Cook [7] leads to a diameter of the ray
footprint that increases linearly to both sides of the focal
plane (Figure 5b). This effect can be modeled by setting
values for the deviation matrices such that the footprint
coordinates are zero in the focal plane. To avoid aliasing
in the focal plane, we must additionally compare the ray
diameter with that of a conventional primary ray and
take the maximum of both.

Shadow Rays: We allow arbitrary ellipses in
three-space as light sources. The footprint of the shadow
ray consists of two parts: Firstly, an elliptical cone with
the cross-section of the light source at the source and
zero at the current surface intersection point, and sec-
ondly, an elliptical cone with the cross-section of the
footprint of the intersection at the surface and zero di-
ameter at the light source (Figure 5c). The footprint at
the surface intersection point is calculated by projecting
the incoming ray footprint onto the tangent plane of the
surface intersection point. The resulting footprint coor-
dinate vectors are then transformed into ray coordinates.
The footprint at the light source is obtained by trans-
forming the two axes of the light source ellipse in ray
coordinates. We then form two ray cones according to
our linear model (Equation 1). The footprint at any ray
parameter t is given by the convolution of the two foot-
print matrices of the two rays. The convolution can be
computed by simply adding the squared footprint matri-
ces [30] before the evaluation of Equation 2. Another
possibility is to use only one ray and interpolate be-
tween the start and the end coordinate system by match-
ing (also by possibly mirroring) the footprint coordinate
axes with similar direction. This is less exact because
the linear interpolation cannot capture a potentially ro-
tating, asymmetric footprint without distortion. How-

Figure 3: Ray coordinates

Figure 4: Principal
component analysis

ever, the results in practice are satisfactory.
Reflected Rays: We first reflect the center ray of

the incoming ray cone at the normal of the intersection
point. This yields a center ray for the reflected ray cone.
It remains to calculate the ray footprint parameters
startDev and incrDev of the reflected ray cone. To cal-
culate startDev, we project the footprint of the incoming
ray in ray direction onto the local tangent plane of the
intersection point p (Figure 5d). This yields two vectors
ufp, vfp that describe a footprint ellipse on the surface.
Then we express the two vectors ufp, vfp in local ray co-
ordinates ur, vr of the outgoing ray to obtain the columns
of startDev.

To calculate incrDev, we estimate the normal
directions at the points p + ufp, p + vfp using the first order
approximation matrix ∇n for the normals at the point of
intersection. For each of the two points, we compute a
direction of reflection, as shown in Figure 5e. Then the
differences between the central direction of reflection
and the directions at the two points are expressed in the
local ray coordinates ur, vr to obtain the columns of
incrDev.

Transmitted / Refracted Rays: Transmitted rays
are handled the same way as reflected rays. The only
difference is that the incoming vectors are refracted
instead of reflected to calculate the outgoing directions.
A small problem arises with total reflection: It is possi-
ble that a part of the rays in the footprint is reflected
while others are refracted. Currently, we just decide for
refraction or total reflection based on the direction of
the center ray. However, this can lead to aliasing at the
border of reflection and refraction. In such cases, a bet-
ter opportunity would be to send two ray cones and
blend together the results of the two rays.

4.3 Ray-Point Intersection
To compute the intersection between a surface sample
point p and an extended ray r, we first express the point
in ray coordinates: Let d be the difference vector be-
tween the point p and the ray origin. The scalar products
between d and the (orthogonal) ray coordinates nr, ur
and vr (Figure 3) express the point coordinates in ray
coordinates. The nr component is the ray parameter t at

the point of the ray that is closest to the sample point.
Thus, we can evaluate fp(t) (Equation 1) and calculate a
weight for the point p (Equation 2).

4.4 Compositing
If a ray intersects with a piece of surface, there are usu-
ally many sample points with a non-neglectable weight2
that contribute to a local surface reconstruction. We
calculate a weighted average of all point samples using
the weights obtained from the footprint matrix. This
means, we use the Gaussian ellipse as reconstruction
filter for a prefiltered, point sampled signal given by the
points in the hierarchy [30]. This leads to effective an-
tialiasing because the extents of the Gaussian ellipse
correspond to the spacing of the pixels in the image
plane.

The averaging is done by adding together the at-
tributes of the points multiplied with their weight and
then dividing by the weight sum. Special care must be
taken with the differential properties: The matrices with
the two derivative vectors of the normal in up and vp
direction cannot be averaged directly because the refer-
ence directions (up, vp) vary with each point. Therefore,
a coordinate system transformation from the coordinate
system of the point to a common coordinate system
must be performed. A cheaper alternative is to neglect
aliasing of the surface derivatives as it would not lead to
visible artifacts for most scenes and to use nearest
neighbor sampling for the differential properties.

A second issue is occlusion: We must exclude all
occluded points from the reconstruction. Furthermore,
the edges of the objects should be blended with the
background for silhouette antialiasing. To deal with this
problem, we adopted again the strategy proposed by
Zwicker et al. [30]: Each ray stores a simplified one
pixel A-buffer. The buffer consists of a list of surface
fragments, sorted in depth order. Each fragment stores
all point attributes, its current sum of weights and a

2 For efficiency reasons, the Gaussian filter is clipped to zero
for all points that would yield a small weight (although it has
theoretically infinite support). We clip at a weight below 2%
(=̂ 2 × standard deviation as argument).

a) primary rays b) depth of field c) shadow rays d) footprint projection e) reflected rays

Figure 5: Ray parameter setup for primary and secondary rays

depth interval. When we encounter a new point-ray in-
tersection, we search the list for the matching depth:
Each point is initially assigned a depth tolerance interval
proportional to the point spacing in the hierarchy node it
has been taken from. If this interval overlaps with an
interval in the list, the point is merged with the fragment
(i.e. the attributes and weights are added) and the depth
intervals are united. If the point does not overlap with a
fragment in the list, it is inserted as a new fragment. The
depth interval of the new fragment is set to its depth
tolerance interval corresponding to its point spacing.

After all points have been inserted into the list and
probably merged to larger fragments, the remaining
fragments are blended together by alpha-blending: The
point hierarchy is constructed to guarantee that any
fragment in the interior of any surface has at least a
weight of one. Therefore, we can interpret weight sums
of less than one as alpha values to blend edges. Early
ray termination is achieved by tracking the resulting
alpha value for the whole ray at each ray intersection
event and terminating the ray when a value of one is
reached.

4.5 Ray-Triangle Intersection
Our multi-resolution hierarchy uses the original trian-
gles to represent the highest resolution of the model.
Thus, we must also compute anti-aliased intersections of
extended rays and triangles.

This is done in three steps: Firstly, we transform
the vertices of the triangle in ray coordinates. Then we
evaluate the footprint matrices at the nr-components.
These matrices define a coordinate system in which the
reconstruction filter is just a unit Gaussian. Therefore, in
the second step, we transform the coordinates of the
three vertices of the triangle in the footprint coordinate
systems at the three points. We end up with a two di-
mensional triangle and a unit Gaussian around the cen-
ter of the coordinate system. In the last step, we calcu-
late the distance d of the closest point of the triangle to
the origin and set the weight of the intersection to exp(-
(d - 0.5)2). This leads to triangles with a boarder blurred
by the ray footprint. The interpolation of the footprint
along the edges of the triangle is done implicitly as we
use three different matrices for the transformation of the
three vertices. The ray intersections are then treated like
point samples in the compositing step.

4.6 Ray-Bounding Volume Intersection
To perform the hierarchy traversal, we also need to
compute intersections of extended rays with bounding
volumes. A conservative intersection test can be per-
formed using similar techniques as for the intersection
with triangles: The vertices of the bounding volume
(e.g. axis aligned bounding boxes) are transformed into

ray-footprint coordinates. We obtain a 2-dimensional
polygon and we must determine whether it intersects a
circle around the origin, representing the drop-off radius
of the Gaussian filter.

However, this test is quite expensive (e.g. 8 trans-
formations for bounding boxes). Thus, we use a cheaper
test in the current implementation: A bounding sphere is
used as bounding volume. The center of the sphere is
projected into the orthogonal unit coordinates of the
filter (the main axes of the ellipse, matrix U in Equation
3). The eigenvalues of the filter coordinates form an
axis aligned rectangle around the origin. The rectangle
is tested for intersection with the projected bounding
sphere, which is approximated by an axis aligned
square, too. For the performance of the algorithm, it is
very important to do the intersection test with elliptical
ray cones (no circular approximation). Otherwise, que-
ries with highly anisotropic ray cones become very ex-
pensive. The simple test accounts for this using the main
axis transformation.

5 Multi-Resolution Raytracing

5.1 The Algorithm
Now we can put all things together and describe the
complete multi-resolution raytracing algorithm. The
algorithm starts at the root bounding box and then re-
cursively performs the following steps:

1. intersection test current bounding box ⇔ ray
2. if no intersection then return
3. calculate ray ⇔ triangle intersections
4. compare min. ray footprint with sample spacing
5. if point samples are dense enough then
 calculate ray ⇔ point intersections
 else
 recursively traverse child nodes

The algorithm traverses the hierarchy downwards until
the spacing of the point samples is no larger than the
minimum ray footprint. Then the point samples are in-
tersected with the ray. Large triangles that are found on
the way down in the hierarchy are tested, too. In the
worst case, the algorithm terminates in the leaf nodes,
where the remaining triangles are found. Finally, frag-
ment compositing is done.

Mipmapping is done by traversing the hierarchy
one step deeper after the matching resolution is found
and then linearly blending together the result. Blending
is performed automatically by the fragment compositing
step; it suffices to provide the corresponding weights.

To calculate the minimum ray footprint (step 3),
we perform again an eigenvalue computation (Equation
3) and determine the minimum diameter of the footprint
ellipse. When the right level of detail is found, the

points and their intersection weights are inserted into the
ray A-buffer. This leads to a footprint assembly [24]
using prefiltered sample points with spacing just below
the minimum diameter. The technique can lead to per-
formance problems if the ray is very asymmetric be-
cause the bounding volumes of the octree as well as the
sample point spacing are all symmetric. Therefore, we
limit the anisotropy of the ray: If the minimum eigen-
value is smaller than a constant fraction (typically 1/4 -
 1/16) of the maximum eigenvalue, we bound its value
to this fraction of the maximum.

5.2 Stability and Efficiency
All intersection tests need an eigenvalue decomposition
of the 2×2 ray footprint matrix (Equation 3), which is a
quite expensive operation. The decomposition is needed
to limit the spectral radii of the footprint as described
above. Some tests like the triangle intersection test
could theoretically be performed using the original
footprint matrices. However, for the triangle test, this
leads to wrong results in some cases due to numerical
stability issues: If the two footprint coordinates are
nearly colinear, the projection into footprint coordinates
and evaluation of the edge-ray distances is numerically
unstable. The eigenspace transformation allows us to
perform the test using orthogonal coordinates avoiding
the stability problems.

In order to reduce the number of expensive eigen-
value decompositions, one can perform the decomposi-
tion once per octree box and use the result for all inter-
section tests in the box. For our test scenes, usually no
visible difference was observed in comparison to the
exact version of the algorithm that performs the eigen-
space transformation for every vertex using the exact
footprint matrix at that point. This optimization was
used for all example renderings and led to a speedup
factor of about 2-3.

6 Results

We implemented a prototype of the multi-resolution
raytracing algorithm in C++. The implementation has
not been optimized for speed: We did not perform any
cache or SIMD optimizations and only straightforward
arithmetic optimizations. Therefore, the absolute speed
cannot be compared with highly optimized raytracing
packages such as the real-time raytracer of Wald et al.
[26]. To allow a fair comparison of our technique with

other raytracing techniques, we implemented a conven-
tional raytracer based on the same code basis.

Special care was taken to implement both algo-
rithms with a similar amount of optimizations. The con-
ventional raytracer also uses an octree hierarchy (with-
out points) and bounding sphere intersection tests for
ray traversal. Auxiliary data structures such as mail-
boxes or geometric data structures use the same code in
both implementations.

To compare the image quality with stochastic ray-
tracing methods, we extended the conventional raytracer
to an adaptive distribution raytracer. It uses two passes:
In the first pass, an image with fixed oversampling is
constructed (usually 1-3× oversampling, jittered rays).
The resulting samples are used to estimate the image
variance by examining the local neighborhood (usually
5×5 pixel). In the second pass, additional samples are
placed in regions of high variance. The additional sam-
ples use stratified sampling: Each pixel is divided into a
small grid and a jittered sample ray is shot in each grid
cell. The elliptic area light sources are sampled uni-
formly with random ray positions. All tests were per-
formed on a 2 GHz Pentium 4 with 1 GB of RAM.

We applied the different variants of the raytracing
algorithms to different benchmark scenes. Table 1
summarizes the preprocessing costs. The rendering re-
sults are shown in Figure 6-8.

Low Complexity: The first scene (Figure 6) shows
a reflective and a refractive sphere on a checker board,
similar to the scene from the original cone tracing paper
[3]. Our algorithm is able to render an antialiased solu-
tion that is nearly indistinguishable from the distributed
raytracing result. The only difference that is slightly
visible is the limitation of the ray anisotropy for the
reflected rays that can be seen in the close-up of the red
sphere. The overhead compared with non-antialiased
standard raytracing is a factor of 4. The image contains
a lot of sharp edges but only a few regions with highly
uncorrelated noisy image content. Thus, the adaptive
distributed raytracing is able to remove nearly all noise
artifacts in the same time that is used by the multi-
resolution algorithm.

High Complexity: The second benchmark scene is
a model of higher complexity: Some well known
meshes (the cow and the stanford bunny) are placed on
a large checker board along with some procedural
plants. The scene consists of about 8.7 million triangles3
and the rendered images contain large areas of high
variance. Especially the parts of the checker board and
the plants that are farther away lead to high frequency
details in the image. All elements of the scene, includ-
ing the checker board, are modeled using geometry.

3 The scene is described using hierarchical instantiation. The
instantiated objects consist of 110 231 unique triangles.

triangle octree point hierarchy scene #triangles
unique / overall preproc. memory preproc. memory

 two spheres 7 440 / 7 440 0.46 s 3.2 MB 5.7 s 2.3 MB
 bunny-cow 110 231 / 8.7M 11.8 s 158 MB 443 s 106 MB

Table 1: Preprocessing time and storage costs

Therefore, techniques like texture prefiltering [12] can-
not be used to remove noise artifacts.

The conventional raytracing solution shows severe
aliasing artifacts (Figure 7). Our multi-resolution ray-
tracer avoids most of the aliasing artifacts. The render-
ing time is again about 4 times larger than non-
antialiased rendering. We rendered the same scene with
the distribution raytracer and adjusted the oversampling
parameters so that it used roughly the same amount of
time as the multi-resolution raytracer. The resulting
image still contains a considerable amount of noise. In
contrast to the �low complexity� scene, the distribution
raytracer is in this case not able to adapt the sampling
density to save time as most of the image shows high
frequency details. Sub-pixel stratification does not im-
prove the convergence rate as it did in the first scene
because the structure of the details is nearly random
[18]. To obtain a noise free solution with stochastic
sampling, we had to increase the rendering time by an
order of magnitude (Figure 7d). This shows that the
multi-resolution rendering algorithm provides an effi-
cient technique for anti-aliased rendering of scenes con-
taining highly detailed geometry. The algorithm delivers
plausible images but there are still some issues:

The first issue is that the algorithm tends to overes-
timate the silhouettes of the objects. This is especially
visible for the soft shadows and the silhouettes of the
plant models. The problem is caused by the compositing
step. The simple alpha blending with alpha values de-
rived from the weight sums often overestimates the
opacity of ray-surface intersections (although we al-
ready take into account the orientation and spacing of
the sample points for the weight computation). A better
solution would be to use subpixel masks for each ray
(similar to the original A-buffer [6]) to estimate the mu-
tual visibility of the fragments during compositing. This
will be subject of future work.

A second issue is robustness: The base of the
bunny in Figure 7b shows some holes. They appear be-
cause the compositing step merges the floor and the
base of the bunny into a single fragment. Here, a refined
criterion for fragment merging is needed. Some dark
pixels at the back of the specular cow are caused by
self-intersections of the outgoing ray cones with the
reflecting surface. Currently, we use a threshold value
for the minimum intersection distance based on the an-
gle and the diameter of the outgoing ray cone. A more
refined criterion would be necessary to avoid these arti-
facts.

Classic Cone Tracing: We also compare the run-
time of the algorithm with classic cone tracing. For this
purpose, we use our multi-resolution raytracer and dis-
able the usage of point primitives. Thus, it is forced to
intersect the ray cones with all triangles in the cone. For

the low complexity scene, the running time was similar
to the multi-resolution version. For the high complexity
test scene the running time increases by a factor of 2.8 if
we trace primary rays only. If we enable tracing of sec-
ondary rays, the performance of the purely triangle
based cone tracer drops dramatically: The reflective and
refractive secondary ray cones cover very large volumes
in the scene and thus lead to an enormous amount of
intersection tests. Therefore, we were not even able to
measure a running time as the algorithm did not termi-
nate within a reasonable amount of time. This shows
that (recursive) cone tracing of complex scenes is not
possible without a multi-resolution scene representation.

Special Effects: Figure 8 shows different special
effects that can be implemented by altering the ray foot-
print. Image (a) shows approximate soft shadows. In
comparison with the distributed raytracing solution (im-
age (b)), the shadow region is again overestimated but
the result image shows a plausible effect. Image (c)
shows a depth of field effect. The three images in Figure
8d show blurry reflections with different roughness pa-
rameters. The roughness corresponds to an extra radial
increment component in the incrDev ray parameter (see
section 4.1). The special effects are not rendered as ex-
actly as with distributed raytracing but appear to be
plausible and do not show any noise artifacts. The main
problem that remains is again the overestimation of
opacity at the silhouette edges.

7 Conclusions
We presented a new approach for anti-aliased raytrac-
ing. The algorithm performs anisotropic cone tracing for
a multi-resolution hierarchy of prefiltered points. In
comparison to conventional raytracing, our algorithm is
slower (by a factor of 4 for our implementation) but
provides images without noise and aliasing artifacts. In
contrast to classic cone tracing, the multi-resolution
approach is able to deal with highly complex scenes for
which the classic algorithm becomes prohibitively slow.
In comparison with distributed raytracing [7], the new
algorithm renders noise free solutions much faster, es-
pecially if the scene contains extended areas of unstruc-
tured content with high color variance. In such cases,
the stochastic raytracer needs at least an order of magni-
tude more time to remove all noise artifacts. However,
the image generated by the multi-resolution algorithm is
only an approximation to the correct solution. The most
important issue here is the overestimation of opacity at
silhouette edges. In future work, we want to apply sub-
pixel masks in the ray A-buffer to improve the accuracy
of the silhouettes as well as that of soft shadows and
depth-of-field effects.

Another direction for future work is an enhanced
model for the ray surface interaction: Currently, the

point samples store only second order derivative infor-
mation. Thus, it is not possible to capture reflective ef-
fects from noisy surfaces correctly (such as waves on
the water seen from far away). We plan to include
roughness information in the point samples, as proposed
by Schilling [24] for the case of bump maps. Currently,
the surface roughness is described by a material parame-
ter.

Another direction is optimization for speed: The
main reason for the larger rendering times of the multi-
resolution algorithm in comparison with conventional
raytracing is the higher arithmetic complexity of the
different intersection tests. Most of the arithmetic con-
sists of linear transformations that can be mapped di-
rectly to SIMD instructions. The expensive square root
operations in the eigenspace decompositions can be
accelerated using lookup tables or iterative approxima-
tions. The hierarchy traversal could be accelerated by a
better memory layout and more efficient bounding vol-
umes and intersection tests [26].

Acknowledgements
The authors wish to thank Matthias Zwicker for valu-
able discussions concerning the fragment merging strat-
egy, the anonymous reviewers for their helpful com-
ments, and Michael Hauth for proofreading the paper.

References
[1] Adamson, A., Alexa, M.: Ray Tracing Point Set Surfaces.

To appear in: Shape Modelling International 2003.
[2] Agrawala, M., Ramamoorthi, R., Moll, A.H.L.: Efficient

Image-Based Methods for Rendering Soft Shadows. In:
SIGGRAPH 2000 Proceedings, 375-384, 2000.

[3] Amanatides, J. Ray Tracing with Cones. In: SIGGRAPH
84 Proceedings, 18(3), 129-135, 1984.

[4] Amanatides, J., Object-Space Variance Estimators. In:
Proceedings of the Seventh Western Computer Graphics
Symposium, 85-87, 1996.

[5] Appel, A.: Some Techniques for Shading Mashine Ren-
derings of Solids. In: Proceedings of the Spring Joint
Computer Conference, 37-45, 1968.

[6] Carpenter, L.: The A-Buffer, an Antialiased Hidden Sur-
face Method. In: SIGGRAPH 84 Proceedings, 103-108,
1984.

[7] Cook, R.L., Porter, T., Carpenter, L.: Distributed Ray-
tracing. SIGGRAPH 84 Proceedings, 137-145, 1984.

[8] Genetti, J., Gordon, D, Williams, G.: Adaptive Super-
sampling in Object Space Using Pyramidal Rays. In:
Computer Graphics Forum, 17(1), 29-54, 1998.

[9] Glassner, A. S.: Principles of Digital Image Synthesis.
Morgen Kaufmann Publishers, 1995.

[10] Ghanzanfarpour, D., Hasenfratz, J.M.: A Beam Tracing
Method with Precise Antialiasing for Polyhedral Scenes.
In: Computer & Graphics, 22(1), 103-115, 1998.

[11] Heckbert, P., Hanrahan, P.: Beam Tracing Polygonal
Objects. In: SIGGRAPH 84 Proceedings, 119-127, 1984.

[12] Igehy, H.: Tracing Ray Differentials. In: SIGGRAPH 99
Proceedings, 179-186, 1999.

[13] Jensen, H.W., Arvo, J., Fajardo, M., Hanrahan, P.,
Mitchel, D., Pharr, D., Shirley, P.: State of the Art in
Monto Carlo Ray Tracing for Realistic Image Synthesis.
In: SIGGRAPH 2001 Course Notes, Course 29, 2001.

[14] Kalaiah, A., Varshney, A.: Differential Point Rendering.
In: Rendering Techniques '01, 2001.

[15] Keller, A: Quasi-Monte Carlo Radiosity. In: Rendering
Techniques �96, 101�110. Springer, 1996.

[16] Kirk, D., The Simulation of Natural Features Using Cone
Tracing. In: The Visual Computer, 3(2), 63-71, Springer,
1987.

[17] Lischinski, D., Rappoport, A.: Image-based rendering for
non-diffuse synthetic scenes. In: Rendering Techniques
�98, 301-314, 1998.

[18] Mitchell, D.P.: Consequences Of Stratified Sampling In
Graphics. In: SIGGRAPH 96 Proceedings, 354-376,
1996.

[19] Mitchell, D.P.: Generating Antialiased Images at Low
Sampling Densities. In: SIGGRAPH 87 Proceedings, 65-
72, 1987.

[20] Painter, J., Sloan, K.: Antialiased ray tracing by adaptive
progressive refinement. In: SIGGRAPH 89 Proceedings,
23(3), 281-288, 1989.

[21] Pfister, H., Zwicker, M., van Baar, J., Gross, M.: Surfels:
Surface Elements as Rendering Primitives. In:
SIGGRAPH 2000 Proceedings, 335-342, 2000.

[22] Rusinkiewicz, S., Levoy, M.: Qsplat: A Multiresolution
Point Rendering System for Large Meshes. In:
SIGGRAPH 2000 Proceedings, 343-352, 2000.

[23] Schaufler, G., Jensen, H.W.: Ray tracing point sampled
geometry, Rendering Techniques 2000, 319-328,
Springer, 2000.

[24] Schilling, A.: Antialiasing of Environment-Maps, In:
Computer Graphics Forum, 20(1), 5-11, 2001.

[25] Shinya, M., Takahashi, T., Naito, S.: Principles and ap-
plications of pencil tracing. In: SIGGRAPH 87 Proceed-
ings, 45-54, 1987

[26]Wald, I., Slusallek, P., Benthin, C., Wagner, M.: Interac-
tive Rendering with Coherent Raytracing. In: Computer
Graphics Forum, 20(3), 153-164, 2001.

[27] Wand, M., Fischer, M., Peter, I., Meyer auf der Heide, F.,
Straßer, W.: The Randomized z-Buffer Algorithm: Inter-
active Rendering of Highly Complex Scenes, In:
SIGGRAPH 2001 Proceedings, 361-370, 2001.

[28] Wand, M., Straßer, W.: Multi-Resolution Rendering of
Complex Animated Scenes. In: Computer Graphics Fo-
rum, 21(3), 483-491, 2002.

[29] Whitted, T.: An Improved Illumination Model for Shaded
Display, Communications of the ACM, 23(6), 343-349,
1980.

[30] Zwicker, M., Pfister, H., van Baar, J., Gross, M.: Surface
Splatting. In: SIGGRAPH 2001 Proceedings, 371-378,
2001.

(a) conventional raytracing

(25 sec)
(b) multi-resolution raytracing

(99 sec)
(c) distributed raytracing

(99 sec)

Figure 6: Comparison between conventional, multi-resolution, and distributed raytracing (512 × 512 pixel).
Note that the scene consists of triangles only (the checker board is geometry, not a texture).

(a) conventional raytracing

(295 sec)
(b) multi-resolution raytracing

(1 284 sec)

(c) distributed raytracing

(1 444 sec)
(d) reference solution: distributed raytracing with

large oversampling (15 412 sec)

Figure 7: A more complex scene: �Specular Cows, Transparent Bunnies and Plants� (640 × 480 pixel).
The scene consists of 8.7 million triangles, modeled using scene graph based hierarchical instantiation.

a) soft shadows (multi-
resolution raytracing)

b) soft shadows
(distributed raytracing)

c) depth of field d) blurry reflections
(increasing surface roughness from left to right)

Figure 8: Special Effects (512 × 512 pixel)

