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Abstract

This paper introduces a novel technique for joint surface reconstruction and registration. Given a set of roughly

aligned noisy point clouds, it outputs a noise-free and watertight solid model. The basic idea of the new technique is

to reconstruct a prototype surface at increasing resolution levels, according to the registration accuracy obtained

so far, and to register all parts with this surface. We derive a non-linear optimization problem from a Bayesian

formulation of the joint estimation problem. The prototype surface is represented as a partition of unity implicit

surface, which is constructed from piecewise quadratic functions defined on octree cells and blended together

using B-spline basis functions, allowing the representation of objects with arbitrary topology with high accuracy.

We apply the new technique to a set of standard data sets as well as especially challenging real-world cases. In

practice, the novel prototype surface based joint reconstruction-registration algorithm avoids typical convergence

problems in registering noisy range scans and substantially improves the accuracy of the final output.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-

tion

1. Introduction

Recent improvements in laser rangefinder technology and

digital geometry processing allow us to accurately digitize

the shape and appearance of many physical objects. The

pipeline of creating a 3D model from real-world data is typ-

ically comprised of three separate stages. In the acquisition

stage, we obtain range scans of a real object by scanning it

from multiple view points. Next, in the registration stage, we

find the rigid body transformations that relate the coordinate

system associated with each view point to the world coor-

dinate system. These rigid body transformations unify the

range scans into a single surface, and we use this surface in

the final data reconstruction stage to generate a mesh model.

One may easily observe that the quality of the recon-

structed models depends heavily on the accuracy of the

data registration. State-of-the-art registration algorithms are

able to align tens of range scans with very good quality

[Neu97, HFG∗06]. However, the registration problem be-

comes unstable as the number of scans reach the order of a

few hundreds [KLMV05]. Moreover, in the presence of sig-

nificant noise levels, standard methods often fail due to the

absence of proper surface normals or the difficulty of defin-

ing a suitable distance field during registration.

In this paper, we introduce a novel joint registration and

reconstruction technique for multiple range scans which

overcomes above limitations. The proposed technique iter-

atively optimizes a prototype surface, which will eventually

be the reconstructed surface, as well as the transformations

that align the range scans. We start by computing a low res-

olution surface reconstruction from roughly aligned scans

(which we expect as input) and use this surface as a pro-

totype surface to align all range scans to. This improved

alignment allows for a more detailed surface reconstruction,

which in turn is then used to improve the alignment. This

process is iterated until convergence.

The new formulation of simultaneous scan alignment and

prototype surface optimization has several advantages com-

pared to previous methods. Using the new approach, range

scans are always aligned to a smooth prototype surface us-

ing a well-defined distance field. Other approaches typically

rely on a distance field which is directly derived from the

range scans, and as a result can not achieve the desired re-
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Figure 1: The pipeline of our registration and reconstruction framework. The algorithm is initialized by computing a coarse

prototype surface from the roughly aligned range scans. Next, the prototype surface control parameters and range scan align-

ments are improved by joint optimization. The prototype surface is refined and detail is introduced. Optimization and refinement

are iterated until a desired accuracy is reached. Finally, the resulting prototype surface is meshed using a marching cubes

algorithm.

construction accuracy in the presence of strong noise ar-

tifacts. The proposed multi-resolution approach further in-

creases the stability and efficiency for large and noisy input

data and reduces the risk of getting stuck in local minima. In

addition, the usage of the prototype surface avoids the diffi-

culty of determining overlapping regions, because each data

point is naturally associated to its closest point on the pro-

totype. The ambiguities of determining the exact regions of

partial overlap can introduce bias to the registration results

that again reduce the obtained accuracy. Finally, our quadric-

based prototype surface combines the strengths of implicit

and explicit surface representations, such as fast point corre-

spondence queries, high approximation power and flexibility

in handling changing topology during the optimization pro-

cess.

We apply our technique to a set of real-world data sets and

show that our technique substantially increases the accuracy

of the scan alignment and the quality of the reconstruction

result in comparison to related state-of-the-art techniques.

1.1. Related work

Both registration and reconstruction algorithms have been

studied considerably in the past. A complete survey of these

two areas is beyond the scope of this paper and we refer

to [BM92, Neu97, RL01, HH03, BR04, GMGP05, PHYH06,

HFG∗06] for state-of-the-art registration algorithms and to

[CL96,ABK98,ACK01,OBA∗03,NRDR05,HK06,KBH06,

SLS∗06] for recent advances in surface reconstruction.

Only few techniques exist that consider the registration

and reconstruction problems together. Jin et al. [JDH∗95]

proposed a framework for iterative scan registration and

mesh reconstruction from multiple input scans. The success

of this method relies heavily on a successful mesh extrac-

tion, which in their method can be extremely difficult for

large and noisy input scans, due to the necessary topology

estimation step.

More recently, Tubic et al. [THL03] proposed a method

to iteratively register the range scans to a reference surface

that is defined by averaging the input scans’ distance fields.

A problem with this approach is that an average distance

field is not well-defined in the presence of noise, and it is

also not apparent how one can handle the cases where holes

are present in the scans. Computation of the averaged dis-

tance field is also very expensive if this framework is used

to process a large number of scans, or scans that have a large

number of data points.

Both [JDH∗95] and [THL03] still separate the registra-

tion and mesh reconstruction procedure. The nature of such

optimization strategy is expectation minimization which can

result in poor efficiency and convergence rate due to the pos-

sible different objectives of registration and reconstruction.

In contrast, we overcome these problems by optimizing the

objective function directly in terms of both the transforma-

tions and the shape of the prototype surface.

Two other related methods are presented in [MD97,

LPW06]. Both methods fit a template surfaces to the input

data. They need the topology as well as a rough initialization

of the control parameters as input. In contrast, we compute

the prototype surface automatically from the roughly aligned

input data; our method does not require the user to specify a

template surface.

Two algorithms for Bayesian surface reconstruction from

range measurement are presented in [DTB06, JWB∗06].

However, both of these techniques can only handle a single

range scan. Moreover, to ease the formulation, these algo-

rithms associate each data point with a corresponding point

on the reference surface. Things are much more complicated

in our setting since we have multiple range scans and the

number of data points is huge such that we can not make

direct associations.

Our prototype surface representation is similar to

the multi-level partition of unity implicit definition of

[OBA∗03]. The surface is locally represented in each octree

cell as a quadratic patch and patches are blended together

using appropriate weight functions. This representation fa-

cilitates point to surface distance computation as well as ob-

taining curvature information used during the optimization

process.
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Figure 2: Illustration of the different steps in our algorithm. The input is a roughly aligned set of range scans. From these

range scans we compute a smooth initial prototype surface at octree depth 7. This prototype surface and the scan alignments

are iteratively optimized and refined. In this example the final prototype is defined at depth 10. Note how detail is gradually

introduced and also note that the final scan alignment has considerably improved compared to the input data.

1.2. Overview

The pipeline of our approach is illustrated in Fig. 1. We be-

gin by constructing a prototype surface from the input range

scans. Then, we alternate between optimizing the prototype

as well as poses of range scans and subdividing the surface,

until its resolution is satisfactory or convergence is detected.

Finally, we output the mesh generated by triangulating the

prototype. Fig. 2 shows an example reconstruction obtained

with the proposed algorithm.

The remainder of this paper is organized as follows. In

Sec. 2, we introduce the Bayesian surface reconstruction

framework, which is the foundation of our joint registration

and reconstruction technique. Then, in Sec. 3, we describe

the prototype surface definition and discuss how to initialize

it from the input scan data and how to refine its representa-

tion to include more detail information. In Sec. 4, we discuss

how to formulate the optimization problem, given our partic-

ular prototype surface definition. We summarize the surface

reconstruction pipeline in Sec. 5. Results and comparisons

with other approaches are given in Sec. 6. We end our paper

in Sec. 7 with conclusions and a discussion of future work.

2. Bayesian Framework

The input of our algorithm is a set of N range scans Si. Each

such scan consists of Ni measurement points whose Carte-

sian coordinates in the scan’s local coordinate system Σi are

given by s0i j . During the surface reconstruction process, we

maintain and optimize a prototype surface P , which is com-

pletely defined by its control vector Q. The specific form of

the control vector depends on the choice of surface repre-

sentation and could be something like the vector of control

points for a B-spline surface or a vector of vertex positions

for a triangular mesh. We will discuss its particular expres-

sion for our setting in Sec. 3, where we define the prototype

surface in detail.

During registration, we want to find the relation between

the coordinate system Σi of each scan Si and the world coor-

dinate system Σ. The relation is supposed to be a rigid body

transformation αi. In other words, the Cartesian coordinates

of each data point are given in the world coordinate system

Σ by si j = αi(s
0
i j). In this paper, we fix the first scan during

the reconstruction process, so that Σ = Σ1.

The Bayesian surface reconstruction framework is de-

scribed as follows. In probabilistic terms, we seek to find

the most likely control vector Q for the prototype surface

and the most likely rigid body transformation αi for each

scan given the measurements s0i j . Hence, we want to maxi-

mize P(Q,{αi}|{s
0
i j}). Using Bayes’ rule, we can invert this

probability as:

P(Q,{αi}|{s
0
i j}) =

P({s0i j}|Q,{αi})P(Q,{αi})

P({s0i j})
. (1)

We can ignore the denominator in this expression from now

on as it is independent of both Q and {αi}. P({s0i j}|Q,{αi})
is the probabilistic model of the measurement formulation

process, and P(Q,{αi}) is a prior probability distribution

over the prototype surface and possible scan poses.

The process of reconstruction amounts to finding the con-

trol vector Q and the rigid body transformations {αi} that

maximize the posterior probability in Eq. 1. We adopt the

standard technique of optimizing the negative logarithm of

the likelihood:

arg min
Q,{αi}

{

− logP({s0i j}|Q,{αi})− logP(Q,{αi})
}

. (2)

To simplify Eq. 2, we make the standard assumption that
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Figure 3: Prototype surface P and an input sample si j.
The footpoint fi j along the viewing ray vi j is the most likely

originating point on the surface. However, to ease computa-

tions, we approximate the likelihood using the distance and

angle parameters derived from the orthogonally projected

footpoint f
p
i j.

data points s0i j are sampled independently. Moreover, we as-

sume that the distribution of the prototype surface and the

distribution of scan poses are independent. As a further sim-

plification, we assume that scan poses are distributed uni-

formly. We can now rewrite Eq. 2 as:

arg min
Q,{αi}

N

∑
i=1

Ni

∑
j=1

{

− logP(s0i j|Q,αi)
}

− logP(Q). (3)

Thus, the argument to be minimized decomposes

into two additive parts, namely the likelihood terms

− logP(s0i j|Q,αi), and the prior term − logP(Q). The prior

term considers the smoothness of the prototype surface and

will be discussed in Sec. 4.2 once the representation of the

prototype surface is known.

The likelihood term formulates the probability of the mea-

surement, given the prototype surface and viewing parame-

ters. An accurate model for this problem tends to be very

complicated [Cur97]. In this paper, we derive a model that

takes the viewing parameters and local surface geometry into

account, while allowing efficient optimization of Eq. 3.

The likelihood term for a sample s0i j is derived as fol-

lows (see also Fig. 3). Given the viewing direction vi j of

the (transformed) sample si j , we can find the intersection

of this ray with the prototype surface P . Denote this inter-

section point as fi j and the local surface normal as ni j. As

is described in [DTB06], the deviation of a sample from its

original surface point is roughly along the viewing direction.

Thus, we assume that si j is sampled from fi j:

− logP(s0i j|Q,αi) = σi jd
2
i j, (4)

where di j = ‖si j− fi j‖ and σi j is the variance which depends

on the prototype’s geometry and the viewing direction. In

this paper, we model σi j to be proportional to the cosine of

the angle between the viewing direction vi j and the local

surface normal ni j at fi j:

σi j = (cosθi j)
γ, (5)

where γ is a user-specified parameter which controls the de-

cay of the variance. The proposed likelihood model agrees

with the intuition that variance is small if θi j is small and

vice-versa.

In practice, determining the intersection point fi j given the

prototype surface and the sample point’s viewing direction

ray, is time-consuming and we approximate above deriva-

tion by using the footpoint f
p
i j, obtained by orthogonally pro-

jecting si j onto the surface. This yields the angle θ
p
i j ≈ θi j ,

distance d
p
i j ≈ di j cosθi j (see Fig. 3), and thus the final like-

lihood expression:

− logP(s0i j|Q,αi) = (d
p
i j)

2(cosθ
p
i j)

γ−2. (6)

Thus, a measurement point has a high probability if it lies

close to the prototype surface and if the viewing (or scan-

ning) direction is almost perpendicular to the surface. If no

viewing information is available, we will set γ to 2, so that

the dependence on viewing direction disappears. We refer to

Sec. 6 for more discussion on the choice of γ.

3. Prototype Surface Definition

The prototype surface is defined as a collection of quadratic

patches, defined on octree cells, which are blended together

using appropriate weight functions to obtain a smooth im-

plicit surface definition, similar to [OBA∗03]. For efficiency

reasons, we treat the prototype surface during optimization

as the collection of quadratic patches restricted to their con-

trol cubes (i.e., we do not blend them together). We first dis-

cuss this representation and then discuss how these patches

are initialized given the scan data points. Next, we show

how patches can be combined using partition of unity weight

functions to yield a smooth surface for reconstruction pur-

poses. Finally, we describe how the prototype can be reini-

tialized after octree refinement.

3.1. Quadric Patches

The quadric patches are defined locally on octree cells.

Given an octree of depth N, we call a subset Sc of its

leaf nodes control cubes. Conceptually, these are the leaf

nodes which intersect with the surface of the original model.

We will show in Sec. 3.2 how these control cubes are ob-

tained. We denote the control cubes by OI , where I = i, j,k,
0 ≤ i, j,k ≤ 2N − 1 corresponds to the indices of the cell in

the corresponding uniform grid.

In each control cube, we define a local coordinate system

and a quadratic bivariate function which approximates the

local geometry (see also Fig. 4). The local coordinate frame

is given by the orthonormal vectors (e1I , e
2
I , nI), where nI is

chosen to be the surface normal direction and e
1,2
I describe

corresponding tangent vectors. The origin of the coordinate

system is fixed at oI . We explain in Sec. 3.2 how the origin

is determined. In this local frame, the quadric is expressed

as the function:

z(x,y) =
1

2
(aIx

2 +2bIxy+ cIy
2 +dI). (7)
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Figure 4: Control quadric QI in the control cube OI . The

quadric is defined with respect to a local orthonormal frame

at origin oI . The distance of a point xi j to the quadric is

approximated as the distance d
p
i j to the tangent plane at x

p
i j

with normal n
p
i j .

We will not restrict the control quadric’s center oI + dInI
to lie in its associated control cube. This offers more flexi-

bility during the optimization process. As will be discussed

in Sec. 3.4, the refinement step will reinitialize the quadrics

and thus constrain them to the correct control cube.

As will be shown in Sec. 4, during the optimization pro-

cess, we want to minimize the distance between the range

scans and the prototype surface. Hence, we need an effi-

cient way to compute point–to–quadric distances. Because

computing these distances is at the core of our algorithm,

we use following efficiently computable approximation (see

also Fig. 4). Given a point xi j = (xi j,yi j,zi j) in the local

coordinate frame, we obtain its projection on the quadric

along the z-axis: x
p
i j = (xi j,yi j,z(xi j,yi j)). The (unnormal-

ized) normal vector at this point to the quadric is given by

n
p
i j = (aIxi j + bIyi j,bIxi j + cIyi j,−1). Finally, we approxi-

mate the distance to the quadratic surface by the distance to

the tangent plane at x
p
i j (cf. [Tau94]):

d(xi j,QI) = n
p
i j · (xi j−x

p
i j) =

z(xi j,yi j)− zi j

‖n
p
i j‖

, (8)

with n
p
i j = n

p
i j/‖n

p
i j‖.

3.2. Initialization

We first determine the octree domain by computing a slightly

enlarged bounding cube of the input data points. Given an

initial depth dmin, the octree is built by recursively inserting

points. Leaf nodes which contain data points are marked as

control cubes. For each cube OI , we apply a range query to

collect all the points within a distance to its center of at most

3 times the size of the leaf node. We use these data points to

determine the control parabola QI . To ensure a stable fitting,

we remove a control cube if the number of data points found

is less than 6.

Given the data points, the reference frame (e1I , e
2
I , nI) is

estimated using the technique proposed in [HDD∗92]. The

weighted centroid of the data points (with respect to the

cube’s center) gives us the frame’s origin oI . Note that the

initialization is performed at a coarse octree level. And thus,

even in the case of noisy and incomplete scan data, we are

able to obtain consistently oriented frames.

We then optimally fit the proposed quadric to the data

points. This amounts to determining the parameters aI ,bI ,cI
and dI of Eq. 7 through minimization of the following

quadratic function:

k

∑
i=0

wi(
1

2
aIx

2
i +bIxiyi+

1

2
cIy

2
i +dI− zi)

2, (9)

where wi are the same weights as used for the centroid and

reference frame computations. Note that we use the alge-

braic distance, instead of the approximative orthogonal dis-

tance as discussed in Sec. 3.1.

3.3. Implicit Surface

The above discussed collection of patches is used in our

framework during the scan alignment and prototype opti-

mization process. However, as can be easily seen, the union

of these restricted quadratic patches, does not yield a contin-

uous or smooth surface, necessary for reconstruction. There-

fore, the final surface is defined as the zero level set f−1(0)
of the implicit function f obtained by smoothly blending dis-

tance functions of overlapping quadrics:

f (x) = ∑
I

BI(x)d(x,QI) = 0. (10)

The weights BI(x) are chosen to be the quadratic B-

spline basis functions defined as a multiplication of uniform

quadratic B-spline basis functions for each coordinate axis:

BI(x) = Bi(x)B j(y)Bk(z). The distance function is the ap-

proximation derived in the previous section. The BI(x) are

compactly supported by [i− 1, i+ 2]× [ j− 1, j+ 2]× [k−
1,k+2] and form a partition of unity.

3.4. Refinement

After optimizing the control quadrics and the scan align-

ments, we refine the prototype surface by increasing the oc-

tree depth by one. This allows us to gradually include more

detail in the prototype and to improve the scan alignments.

The refinement process is very similar to the initialization

described in Sec. 3.2. However, instead of fitting the new

quadrics against the data points, we consider the implicit

surface definition of Sec. 3.3 defined on the old octree as

the surface to approximate.

Control cubes are defined in the new octree as those cells

which intersect the zero level set as defined in Eq. 10. We

can easily detect this by evaluating f at the cell’s corners.

Next, we determine the local frame by projecting the cen-

ter of the control cube onto the zero level set. This can be

easily performed by walking in the gradient direction of the

level set function. This yields the origin oI of the local frame.

c© The Eurographics Association 2007.



Huang, Adams & Wand / Prototype Surface Reconstruction

The z-axis is again defined by the local surface normal, now

given by: nI = ∇ f (oI)/‖∇ f (oI)‖. The tangent vectors e
1,2
I

are again chosen to form an orthonormal basis with nI .

Given the local frame, the shape of the control quadric is

obtained by minimizing following quadratic function:

∑
J∈N(I)

(
1

2
aIx

2
oJ +bIxoJ yoJ +

1

2
cIy

2
oJ − zoJ )

2, (11)

where the summation is over the neighbors of control cube I

and oJ = (xoJ ,yoJ ,zoJ ) is the frame center of the neighboring

cube, defined in the local frame of cube I. Note that we set

dI to zero, and hence force the quadric to pass through oI ,

which indeed lies on the zero level set.

4. Optimization

Given the specific prototype surface representation of Sec. 3,

we can now refine the optimization problem. We first discuss

the likelihood term for a measurement point. Next, we derive

a suitable prior term for the prototype surface. Finally, we

give the resulting optimization problem.

4.1. Likelihood Term

Recall that the likelihood term describes the probability of

a measurement point s0i j , given the prototype surface and

corresponding scan transformation parameters. We derived

following expression in Sec. 2:

− logP(s0i j|Q,αi) = (d
p
i j)

2(cosθ
p
i j)

γ−2. (12)

Again, as in Fig. 4, we approximate the normal at the clos-

est point on the prototype surface by the (normalized) nor-

mal of the tangent plane n
p
i j found by projecting the trans-

formed measurement point xi j (expressed in the local coor-

dinate frame) along the z-axis onto the closest quadric QIi j .

Similarly, the distance d
p
i j is approximated by the distance to

this tangent plane. This yields for the likelihood term:

− logP(s0i j|Q,αi) = d(xi j,QIi j )
2(n
p
i j ·vi j)

γ−2 = Φ2
i j. (13)

The nearest quadric query is accomplished using a simi-

lar data structure as the d2-tree [LPZ03]. Each octree node

stores the nearest control quadric to its center and data points

simply use the quadric associated to the octree cell they lie

in. We initialize this data structure by assigning each quadric

to the corresponding control cube and by propagating this in-

formation to neighboring octree cells using a fast sweeping

algorithm [hRT02].

4.2. Prior Term

The prior term constrains the prototype surface. In this paper,

the prior term consists of two parts, the smoothness Ts and

consistency Tc:

− logP(Q) = λ1/|Sc|Ts+λ2/|Sc|Tc, (14)

(a)

(c)

(b)

(d)

Figure 5: Different reconstructions for the O088 model.

The prior term consists of a smoothness and a consistency

term. The smoothness is varied by λ1 and the consistency

by λ2. By changing these weights, we can obtain a dif-

ferent smoothness of the reconstructed model. (a) The in-

put consisting of 15 scans. (b) λ1 = 1.8e5, λ2 = 1.8e4. (c)
λ1 = 1.8e6, λ2 = 1.8e5. (d) λ1 = 1.8e7, λ2 = 1.8e6.

with λ1 and λ2 scaling parameters to trade-off both contri-

butions. We refer to Fig. 5 for an illustration of the effect

of varying these parameters. The scaling by 1/|Sc| is nec-

essary, because after each refinement the number of control

quadrics |Sc| will increase as well as the contribution of the

prior term if no such scaling is done. This would result in

incorrectly scaling down the likelihood term after each re-

finement step.

The smoothness term Ts approximates the integral of the

squared sum of principal curvatures over the surface, which

is given by

Ts =
1

2
∑
I∈Sc

(a2
I +2b

2
I + c

2
I ) = ∑

I∈Sc
ΨTI ΨI , (15)

where ΨI = ( 1√
2
aI ,bI ,

1√
2
cI) is introduced to simplify fur-

ther discussion. The summation is over all control cubes.

The consistency term will prevent the trivial smooth solu-

tion, i.e., avoid incorrectly reconstructing flat surfaces.

The consistency term Tc is introduced to force neighbor-

ing quadrics to join nicely. More specifically, we want the

origin of each quadric to lie as close as possible to quadrics

in neighboring control cubes:

Tc = ∑
I∈Sc

∑
J∈N(I)

wIJd
2(oI+dInI ,QJ) = ∑

I∈Sc
∑
J∈N(I)

wIJΨ
2
IJ .

(16)

Here, the outer sum is over all control quadrics and the inner

sum is over all neighboring control quadrics. More precisely,

we say that two control quadrics QI and Q
I
′ are adjacent if

|I− I
′

| = |i− i
′

|+ | j− j
′

|+ |k− k
′

| ≤ 2. The weight func-
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tions wIJ are introduced to deal with sharp edges or thin fea-

tures. Here we use a simple heuristic by choosing wIJ = 1

if nI · nJ > 0 and wIJ = ε otherwise. In this paper, we set

ε = 0.01 for all examples.

4.3. Objective Function

Substituting Eq. 13, 15 and 16 into Eq. 3 yields following

energy function:

E =
N

∑
i=1

Ni

∑
j=1

Φ2
i j+

1

|Sc|
∑
I∈Sc

(λ1ΨTI ΨI+λ2 ∑
J∈N(I)

wIJΨ
2
IJ).

(17)

The goal is to obtain the control quadric parameters and and

range scan rigid transformations which minimize above en-

ergy function. The energy function is non-linear in the pa-

rametrization and we propose to use preconditioned non-

linear conjugate gradient, because it is both fast, stable and

memory efficient. Another possibility would be to use a

Gauss-Newton method. However, memory storage and com-

putation time become a bottleneck for large-scale problems,

e.g., we are typically dealing with more than 200k control

quadrics.

We refer to Appendix A for a detailed discussion of

our parametrization of the unknowns Q and αi and to Ap-

pendix B for a detailed derivation of the preconditioners used

in the conjugate gradient algorithm.

5. Summary

To summarize, our surface reconstruction pipeline (as de-

picted in Fig. 1 and illustrated in Fig. 2) starts from a

roughly aligned set of scans and initializes the prototype

surface as described in Sec. 3.2. Next, we optimize the pro-

totype’s shape and the scan alignments by minimizing the

energy function which is summarized in Sec. 4.3. After op-

timization, we refine the prototype by subdividing the oc-

tree one more level and by recomputing the control cubes

and quadrics as discussed in Sec. 3.4. This refinement yields

suboptimal control quadrics and we iterate and invoke a new

optimization which in turn yields optimal quadrics and rigid

scan transforms for this octree level. This alternation of opti-

mization and refinement is repeated until convergence. Dur-

ing this process we prune outliers by deleting sample points

which lie at a threshold distance away from the prototype

(we set this distance to 4 times the width of the smallest oc-

tree cubes). Finally, the algorithm outputs a triangular mesh

from the implicit surface defined in Sec. 3.3 using the oc-

tree version [WG92, WKE99] of the marching cubes algo-

rithm [LC87].

6. Results and Discussion

We conducted a series of experiments to evaluate our ap-

proach on different synthetic and real-world data sets. All

BUNNY DRAGON O088 O209 O005

#scans 10 71 15 27 119

#points 0.36M 1.8M 5M 11M 59M

λ1 6e5 4.5e5 1.8e5 1.4e6 3.8e6

λ2 6e1 4.5e1 1.8e4 7e3 1.9e4

γ 4 4 2 2 2

dmin 8 8 7 8 7

dmax 9 9 8 9 10

#quadrics 600k 450k 180k 715k 1891k

#triangles 1624k 1124k 331k 1237k 3541k

time 16m20s 29m21s 15m45s 45m11s 6h21m

Table 1: Statistics and parameters for the different exam-

ples shown in this paper.

results are obtained on a 3GHz Intel CPU with 2GB of mem-

ory. Table 1 summarizes the statistics of the input data, the

parameters used, the properties of the resulting model and

the total reconstruction time. To obtain a rough alignment

of the input scans, we used the multi-view global matching

method of [HFG∗06]. Due to lack of features in the O005

model, 4 scans were matched manually and the poses of all

119 scans were then computed using the local registration

method of [Neu97]. If we are not given viewing directions

per sample point or when scanning was performed under

difficult circumstances such as for the archaeological pieces,

we set γ = 2, so that the dependence on viewing direction in

Eq. 13 disappears, and likelihood only varies with distance

to the surface. For the the data where viewing directions are

available, experiments showed that γ = 4 is a good choice.

Fig. 2 shows the different steps in the reconstruction of

the O005 model. This model, as well as the O088 and O209

models, are from an archaeological data set, which are par-

ticularly challenging, because of the incomplete and noisy

scans. The input consists of 119 roughly aligned scans and

a total of 59M data points. From this initial point cloud, we

compute the prototype surface at octree depth 7. Then we it-

eratively optimize and refine until octree depth 10 is reached.

The final output of the algorithm is the reconstructed trian-

gle mesh (consisting of 3541k triangles) and the final poses

of the range scans. We will give for this example a detailed

reconstruction quality comparison with the state-of-the-art

mesh reconstruction method of [KBH06] below.

Fig. 5 shows different reconstruction results of the O088

model for varying coefficients of the prior term. As dis-

cussed in Sec. 4.2, our prior term is composed of two parts:

the smoothness and consistency term. The contribution of

both with respect to the likelihood term can be varied by ad-

justing the λ1 and λ2 parameters. Fig. 5 illustrates the effect

for different choices for these parameters. As can be seen in

the figure, by increasing these parameters, the final recon-

structed object becomes smoother.

6.1. Comparison to Prior Work

As our approach jointly aligns range scans and reconstructs

triangular meshes, we present comparisons to state-of-the-

art registration and mesh reconstruction algorithms.

c© The Eurographics Association 2007.
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(d)(c)

(a) (b)

Figure 6: Our approach exhibits better performance

than standard registration algorithms in aligning the O209

model. (a) The input obtained from multi-view global match-

ing. (b) Registration result of [Neu97]. (c) Registration result

of [THL03]. (d) Registration result using our approach.

Registration Quality Fig. 6 compares our approach with

standard registration algorithms. The input data are the 27

scans of the O209 model. We compare our method with the

multi-view version of the ICP method [BM92], which is de-

scribed in [Neu97], where registration is performed by min-

imizing the sum of pairwise distances between overlapping

scans, and the method of [THL03], which aligns scans to

an implicit surface defined by averaging distance fields. We

also applied the techniques described in [RL01] to improve

the performance of these two algorithms. Because the input

scans of the O209 model are very noisy and bumpy, both

methods get stuck in local minima, resulting in poor align-

ment quality. However, as we align scans to a smooth pro-

totype surface with a well-defined distance field, we obtain

improved registration quality as can be seen on the figure.

Reconstruction Quality We compare our surface re-

construction quality, for a different number of examples,

with the Poisson Surface Reconstruction (PSR) method of

[KBH06]. The surface normals used in the PSR method were

obtained using the technique presented in [HDD∗92]. We

also tried other surface reconstruction algorithms such as the

ones presented in [ACK01, OBA∗03], however these meth-

ods failed due to the large input size and high noise lev-

els. To make a fair comparison, we take the alignment ob-

tained by our approach as the input for the PSR algorithm.

Fig. 7 shows the result for the dragon model. Both algo-

rithms produce similar quality results, although at different

octree depths (depth 9 for ours compared to depth 10 for

PSR).

However, when the input scans are noisy, we found that

our method is more accurate and stable than PSR. This is

illustrated in Fig. 8 for synthetic data. We generated 10 vir-

tual range scans from the Stanford bunny model, and added

Figure 7: Reconstruction of the dragon model. Left: Result

of our method at octree depth 9. Right: Result of [KBH06]

at octree depth 10.

(c) 0.000051

(f) 0.000138

−1e−3

1e−3

0

−3e−4

3e−4

0

(a) 0.8%

(d) 1.6%

(b) 0.000034

(e) 0.000101

Figure 8: Comparison of the reconstruction quality of

our method (middle column) with the method presented in

[KBH06] (right column). The top row shows the result for

noise level 0.8%, the bottom row for noise level 1.6%. The

standard deviation is color coded on the resulting geometry

(green is zero standard deviation, and red and dark blue are

high deviations).

different amounts of noise. In the top row of the figure, we

show the standard deviation for a noise level of 0.8%, while

in the bottom row we increase the noise to 1.6%. As can be

seen, both methods reconstruct roughly the same geometry.

However, our reconstruction is closer to the original model

as indicated by the deviations. Moreover, when increasing

the noise level up to 3.2%, our method is still able to recon-

struct the bunny, but PSR fails because it is hard to estimate

good normals from the noisy input point cloud.

Fig. 9, finally, compares our method to PSR for real-world

data that has significant noise, outliers and holes. As indi-

cated by the arrows on the figure, our method has better re-

construction quality near corners and in noisy regions.

6.2. Discussion

The most time consuming part of our algorithm is the com-

putation of the derivatives of the energy function as de-

scribed in Appendix B. Our current implementation allows

to process 0.8M data points on average per second. Exper-

iments showed that our approach is computationally more

expensive than the PSR algorithm [KBH06]. For the O005

model of 59M points as input, our approach took 6 hours to

c© The Eurographics Association 2007.
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Figure 9: Comparison of our method (right column) with

[KBH06] (left column) for the O005 model. As indicated by

the arrows in the two closeups, our method better resolves

noisy and missing input data.

reconstruct a mesh of 3.5M triangles, while the PSR algo-

rithm completed in 1 hour.

When the input data is clean and complete, both PSR and

our approach can reconstruct the geometry accurately. How-

ever, when measurement errors become more pronounced,

our approach becomes superior, mainly because we con-

sider this error in the optimization and try to control the

final shape by the priors. In this case, the additional com-

putation time can be justified. Also, when the original model

is complicated, standard registration algorithms have diffi-

culties aligning the range scans and we found in practice that

our approach yields better results than standard two-stage al-

gorithms which first do registration and then reconstruction.

A limitation of our approach is that we assume a single

noise level of the original model. This can result in good

detailed reconstructions for one part of the model, but can

at the same time smooth out too much detail in other parts.

Adapting the smoothing parameters locally should prevent

this problem.

7. Conclusions and Future work

We have presented a Bayesian approach for joint surface

reconstruction and registration. It takes a set of coarsely

aligned range scans as input and produces a watertight solid

surface as well as a high-accuracy alignment of the origi-

nal partial scans. In comparison to previous work, the new

approach improves substantially on the accuracy of the re-

construction and alignment results.

There are some opportunities for future research. First

of all, one could try to preserve sharp features or preserve

user specified topology information during the meshing pro-

cess. As our goal is to reconstruct high quality 3D models

from large data sets, it would be very useful to devise an

out-of-core implementation that allows us to handle gigan-

tic data sets such as those from the Digital Michelangelo

Project [LPC∗00].
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Appendix A: Parametrization

This section describes the parametrization of the unknowns in the

optimization problem of Eq. 17. We also give expressions for the

first order derivatives, which are used to build the final system of

equations.

Quadric Parametrization

We parametrize each control quadric QI near initial values (which

are obtained from the previous iteration step or in the beginning after

initialization). Each quadric has 6 degrees of freedom. Basically, we

allow the normal direction nI of the local frame to move in the plane

spanned by e1I and e2I . This yields two degrees of freedom, given by

t1I and t2I :

nI =
n0
I + e

1
I

0
t1I + e2I

0
t2I

‖n0
I + e

1
I

0
t1I + e2I

0
t2I ‖

, (18)

where (e1I
0
, e2I

0
, n0
I ) is the initial frame before optimization. The

new tangent vectors e1I and e2I are easily obtained from nI (and hence

also parametrized by t1I and t2I ):

e1I =
e1I

0
− nI nTI e

1
I

0

‖e1I
0
− nI nTI e

1
I

0
‖

, e2I = nI× e
1
I . (19)

Our optimization solver requires derivatives with respect to the un-

knowns. This yields (with 1 ≤ k ≤ 2):

∂nI

∂tkI
=

(I3 − nI n
T
I )e
k
I

0

‖n0
I + e

1
I

0
t1I + e2I

0
t2I ‖

, (20)

∂e1I
∂tkI

=
(e1I e

1
I

T
− I3)(n

T
I e

1
I

0
+ nI e1I

0T
)

‖e1I
0
− < e1I

0
, nI > nI‖

∂nI

∂tkI
, (21)

∂e2I
∂tkI

= −e1I ×
∂nI

∂tkI
+ nI×

∂e1I
∂tkI

. (22)

The 4 remaining degrees of freedom define the quadric in its local

coordinate frame:

aI = a
0
I + t

3
I , bI = b

0
I + t

4
I , cI = c

0
I + t

5
I , dI = d

0
I + t6I . (23)

c© The Eurographics Association 2007.



Huang, Adams & Wand / Prototype Surface Reconstruction

Here, the initial quadric is defined by a0
I , b

0
I , c

0
I and d0

I . The deriva-

tives are trivial.

Rigid Transform Parametrization

We parametrize αi = (Ri,Ti) around an initial transformation α0
i =

(R0
i ,T

0
i ). The rotation Ri is parametrized using standard lie-group

parametrization. This gives, together with its derivatives (1 ≤ k ≤
3):

Ri(ci) = exp(ci×) ·R0
i ,

∂Ri

∂cik
= EkRi, (24)

where ci = (ci1,ci2,ci3) are the parameters and E1,E2,E3 is the ba-

sis of 3×3 antisymmetric matrices given by:




0 0 0

0 0 −1

0 1 0



 ,





0 0 1

0 0 0

−1 0 0



 ,





0 −1 0

1 0 0

0 0 0



 .

The parametrization of Ti and its derivatives are given by

Ti(ci) = T 0
i + ci,

∂Ti

∂ci
= I3. (25)

This yields a total of 6 unknowns for each rigid body transformation.

Because the first range scan is fixed, we finally have 6(|Sc|+N−
1) unknowns to solve for. Recall that N is the number of scans and

|Sc| is the number of control quadrics.

Appendix B: Preconditioned Non-Linear Conjugate

Gradient

To optimize the derived energy function of Eq. 17, we use a precon-

ditioned non-linear conjugate gradient (cg) algorithm with Polak-

Ribière update. The algorithm is described in detail in [She94].

Here, we limit the discussion to the construction of the precondi-

tioner.

For the non-linear cg algorithm, we use an approximation HGN
of the Hessian to precondition the gradient ∇E , used for line-

searching. As will be shown below, HGN has following block struc-

ture:

HGN =

(

A6|Sc|×6|Sc| B6|Sc|×6(N−1)

BT
6|Sc|×6(N−1) C6(N−1)×6(N−1)

)

. (26)

Then, we construct the preconditioner as:

M =

(

diag(A6|Sc|×6|Sc|) 0

0 C6(N−1)×6(N−1)

)

. (27)

Note that, C6(N−1)×6(N−1) consists of (N − 1) 6 × 6 diagonal

blocks, so the inverse of M can be computed efficiently. We also

tried other preconditioning matrices and found that M exhibits the

best tradeoff between memory concern and convergence rate of the

optimization.

The line search is accomplished using a Gauss-Newton method.

We found in practice that this strategy is extremely efficient. For

all the models we have tested, we only needed 2-3 Gauss-Newton

iterations on average to finish a line search.

The gradient ∇E of the energy and Gauss-Newton approxima-

tion HGN of its Hessian are computed by using the chain rule. To

simplify our discussion, we denote the derivative of a function f in

terms of the parameters as ∇ f . If f is a vector of size m, then ∇ f
is a matrix of size 6(|Sc|+N−1)×m.

Our goal here is to represent ∇E and HGN in terms of

∇aI ,∇bI ,∇cI ,∇dI ,∇nI ,∇e1,∇e2,∇ci,∇ci which are given di-

rectly by their parameterizations.

We can first compute ∇E and HGN as

∇E = 2
N

∑
i=1

Ni

∑
j=1

∇Φi jΦi j+ 2 1
|Sc|

∑
I∈Sc

(λ1∇ΨIΨI

+ λ2 ∑
J∈N(I)

wIJ∇ΨIJΨIJ),
(28)

and

HGN =
N

∑
i=1

Ni

∑
j=1

∇Φi j∇ΦTi j+
1

|Sc|
∑
I∈Sc

(λ1∇ΨI∇ΨTI

+ λ2 ∑
J∈N(I)

wIJ∇ΨIJ∇ΨTIJ).
(29)

As ∇ΨI is trivial, we only discuss how to compute ∇Φi j and ∇ΨIJ
in the following. Applying the chain rule, we can expand ∇ΦI as

∇ΦI = ∇d(si j,QIi j ) · (n
p
i j · vi j)

γ−2
2

+ γ−2

2
d(si j,QIi j ) · (n

p
i j ·∇vi j+ vi j ·∇n

p
i j)

(30)

∇vi j and ∇npi j can be calculated easily as

∇vi j = −(vi j×)∇ci, (31)

∇npi j = ((1 + npi j
y
n
p
i j
y
)∇npi j

x
− npi j

x
n
p
i j
y
∇npi j

y
,

(1 + npi j
x
n
p
i j
x
)∇npi j

y
− npi j

x
n
p
i j
y
∇npi j

x
,

n
p
i j
x
∇npi j

x
+ npi j

y
∇npi j

x
)/‖npi j‖

3.

(32)

where

∇npi j
x
= −(aIi j∇xi j+ xi j∇aIi j +bIi j∇yi j+ yi j∇bIi j )

∇npi j
y
= −(bIi j∇xi j+ xi j∇bIi j + cIi j∇yi j+ yi j∇cIi j )

Given a point x = (x,y, z) expressed in the local coordinate system

of its nearest control quadratics QI . We can compute ∇d(x,QI) as

∇d(x,QI) = 1
|np|

(∇dI−∇z− (npx− npxaI+n
pybI

‖np‖
d(x,QI))∇x

−(npy− npxbI+n
pycI

‖np‖
d(x,QI))∇y

−( 1
2
x2 + (npxaI+n

pybI )x
‖np‖

d(x,QI)))∇aI

−(xy+ (npxaI+n
pybI )y+(npxbI+n

pycI )x
‖np‖

d(x,QI)))∇bI

−( 1
2
y2 + (npxbI+n

pycI )y
‖np‖

d(x,QI)))∇cI)

(33)

Recall that the local coordinates of si j in QIi j are given by

(xi j,yi j, zi j). Suppose oI inQJ is expressed as (xIJ ,yIJ , zIJ). To com-

pute ∇d(si j,QIi j ) and ∇d(oI+dinI ,QJ), we only need to compute

∇zi j = (si j− oIi j ) ·∇nIi j + nIi j ·∇ci+(si j× nIi j ) ·∇ci
∇xi j = (si j− oIi j ) ·∇e

1
Ii j

+ e1Ii j ·∇ci+(si j× e1Ii j ) ·∇ci

∇yi j = (si j− oIi j ) ·∇e
2
Ii j

+ e2Ii j ·∇ci+(si j× e2Ii j ) ·∇ci

(34)

and

∇zIJ =< nI , nJ > ∇dI +dI(nJ ·∇nI)−dJ
+(oI− oJ +dInI) ·∇nJ

∇xIJ =< nI , e1J > ∇dI +dI(e1J ·∇nI)
+(oI− oJ +dInI) ·∇e1J

∇yIJ =< nI , e
w
J > ∇dI +dI(e2J ·∇nI)

+(oI− oJ +dInI) ·∇e2J

(35)
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