
Volume xx (200y), Number z, pp. 1–16

Meshless Shape and Motion Design for
Multiple Deformable Objects

Bart Adams1, Martin Wicke2,3, Maks Ovsjanikov2, Michael Wand3, Hans-Peter Seidel4, Leonidas J. Guibas2

1 Katholieke Universiteit Leuven
2 Stanford University

3 Max Planck Center for Visual Computing and Communication
4 Max Planck Institut für Informatik

Abstract
We present physically based algorithms for interactive deformable shape and motion modeling. We coarsely sam-
ple the objects with simulation nodes, and apply a meshless finite element method to obtain realistic deformations
at interactive frame rates. This shape deformation algorithm is then used to specify keyframe poses and a smooth
interpolating motion is obtained by solving for an energy-minimizing trajectory. We show how to handle collisions
between different deformable objects as well as with static or moving scene objects. Secondary motion is added as
a post-process by running a meshless elastic solid simulation. We enforce precomputed trajectories using control
forces computed using shape matching. Key to the efficiency of our method is a sparse deformation representa-
tion and an adaptive optimization algorithm that automatically introduces new degrees of freedom in problematic
regions. An accurate temporal interpolation scheme that exactly recovers rigid motions keeps the number of un-
knowns low and achieves realistic deformations with very few keyframes. We also show how the algorithm allows
combining purely physical simulation with keyframe-based scripted animation. The presented results illustrate
that our framework can handle complex shapes at interactive rates, making it a valuable tool for animators to
realistically model deformable 3D shapes and their motion.
Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Animation I.3.5 [Computational Geometry and Object Modeling]: Physically based modeling

1. Introduction

Deformable shapes are used extensively in physics-based
simulations for the animation of elastic and plastic solids.
Although recent advances allow for interactive simulations,
controlling the behavior of the deforming objects (for ex-
ample by tweaking the physical forces) is difficult. Often, a
tedious process of trial and error is necessary to generate a
specific result. Instead of using physics-based simulations,
one can explicitly model keyframe poses of the deformable
object at certain points in time, and interpolate a smooth mo-
tion between the keyframes (cf. Fig. 1).

We first present an efficient modeling framework for com-
plex deformable shapes. From a coarse set of strategi-
cally placed sample points, called nodes, a continuous de-
formation field is computed that adequately represents the
desired shape deformation. After specifying handle con-
straints, meshless finite elements are used to compute the
energy-optimal deformation that aims to respect the origi-
nal shape, minimizing internal strain and change in volume.

An efficient surface deformation algorithm enables model-
ing with high resolution meshes.

We extend this shape modeling framework to enable motion
design of deforming shapes. Given user-specified keyframe
poses at discrete time instances, we compute energy-optimal
shape trajectories. As before, the meshless elasticity con-
straints ensure that objects deform naturally. To facilitate
modeling of complex scenes, we propose to add energies to
the optimization that enforce smooth trajectories, and handle
collisions with other deformable objects as well as static or
moving rigid scene objects. An adaptive optimization adds
degrees of freedom where necessary, allowing us to effi-
ciently model scenes with many objects and scene obstacles.

To further enhance realism, we run a dynamic elasticity sim-
ulation as a post-process. Using control forces that are gener-
ated from the computed energy-optimal trajectories, the sim-
ulated dynamics add secondary effects such as jiggling and
high-frequency vibrations to the objects. This technique also

submitted to COMPUTER GRAPHICS Forum (7/2009).

2 Adams et al. / Meshless Shape and Motion Design for Multiple Deformable Objects

Figure 1: Our method allows rapid modeling of deformable shapes
and their motion. Left: keyframe poses obtained using our deforma-
tion algorithm. Right: smooth interpolated motion obtained using
our shape interpolation algorithm.

allows us to switch between designed and simulated motion
by enabling or disabling the control forces.

Contributions We propose a method for interactive and
realistic deformation modeling of highly complex shapes in
real-time and use it as the basis for a novel algorithm for
computing optimized trajectories of multiple deformable ob-
jects given keyframe poses specified by an animator. We ex-
tend existing work on meshless finite elements by introduc-
ing a novel node coupling based on material distance. We
propose an efficient temporal interpolation scheme based on
shape matching and motion interpolation using spherical cu-
bic splines of unit quaternions that exactly recovers rigid
motions. We propose a collision handling algorithm to en-
able the design of collision-free motion paths for multiple
deformable objects. We discuss methods to add secondary
dynamics to designed motion paths and to combine designed
with simulated animations.

This paper is an improved and extended version of
[AOW∗08]. For sake of completeness, we discuss all compo-
nents and indicate the differences and improvements where
appropriate.

2. Related Work

This paper is related to a large body of work in geomet-
ric shape modeling, inverse kinematics, shape interpolation,
motion planning and animation control. We limit the discus-
sion to the most relevant work in these areas.

2.1. Shape Modeling

The core component of this paper is a deformation algorithm
that allows to realistically deform a shape by specifying han-
dle constraints. This problem has received considerable at-
tention in recent literature. In the following we summarize
the most closely related work and refer to [NMK∗05, BS08]
for extensive surveys on other deformation models.

A number of related methods perform shape deforma-
tions by direct mesh optimization such as [SK04, SYBF06,
LSCO∗04, SLCO∗04]. The underlying motivation of these
methods is to explicitly preserve the local shape properties
while applying user-specified deformations. In a conceptu-
ally similar way, inverse-kinematics based methods restrict

the space of natural deformations by either exploring the set
of example poses [SZGP05] or by inferring the deforma-
tions on the skeleton structure of the shape [SZT∗07]. Al-
though mesh-based methods give a high degree of freedom
in manipulating the shape, they suffer from the restrictive
complexity of constraining and estimating per-vertex defor-
mations. Multiresolution methods such as [BK03, SYBF06,
BSS07] have been designed to improve efficiency.

Motivated by the intuition that in many scenarios, shape
deformations can be encoded using only a few motion pa-
rameters, researchers have proposed techniques that use de-
formable models with a significantly reduced dimensionality
as compared to the full geometric complexity (e.g., [JP02,
JT05, DSP06, AFTCO07]). In this paper we use a reduced
space deformation technique that allows computing long an-
imation sequences for highly detailed deformable shapes.
Of the large body of work in this area, the most immedi-
ately pertinent are [BPGK06] in which a prism based shell
energy is formulated and solved efficiently, and [BPWG07]
where a similar elastic energy is extended to rigid volumetric
cells. Although the latter provides a simplified deformation
field, it is both topology unaware and employs an interpo-
lation scheme that results in solving a large sparse linear
system making it prohibitively slow in our setting. Huang
et al. [HSL∗06] present a gradient domain mesh deforma-
tion technique that preserves volume and rigidity of limb
segments of articulated figures. They propose a subspace
technique by solving the problem on a control mesh. Some-
what differently, Funck et al. [vFTS06] design a set of vector
field based deformation tools that guarantee non-intersecting
and volume-preserving shape deformations. Their system
seems to be more geared towards model creation as op-
posed to shape deformations. Our work is most similar in
spirit to [SSP07] where the deformation field is discretized,
solved for and interpolated using a sparse topology graph.
Although we use a similar paradigm, we avoid estimating
the rotation and translation components of the deformation
field separately, and employ an interpolation scheme which
guarantees first-order consistency. Moreover, our method in-
troduces less unknowns for the same number of nodes. Fi-
nally, Stoll [Sto07] presents a tetrahedral deformation ap-
proach that iterates between a linear Laplacian step and a
differential update step. Again, their deformation interpola-
tion method is not guaranteed to be consistent.

Note that our deformation algorithm is also related to work
that uses barycentric-like coordinates to interpolate the de-
formation field inside a coarse control mesh (see [FKR05,
LKCOL07, JMD∗07] for different flavors). Unlike these
methods, however, we restrict the space of possible defor-
mations to only include realistic, shape-preserving deforma-
tions. This facilitates the animator’s task and allows intuitive
shape modeling by only constraining or dragging points on
the shape itself, without having to model and deform a cage.

submitted to COMPUTER GRAPHICS Forum (7/2009).

Adams et al. / Meshless Shape and Motion Design for Multiple Deformable Objects 3

2.2. Motion Design

Rigid (Multi-)Body Motions A significant number of re-
searchers have tackled the problem of designing and control-
ling animations involving rigid bodies. Among others, Isaacs
and Cohen [IC87] and Barzel and Barr [BB88] propose ways
to control rigid body simulations using control forces and
inverse dynamics. The seminal work of Witkin and Kass
[WK88] allows the animator to specify a sparse set of space-
time constraints and the resulting motion is computed us-
ing sequential quadratic programming. Witkin and Popovic
[WP95] present a simple technique for editing keyframe an-
imations based on warping. Popovic et al. [PSE∗00] present
an intuitive interface that allows interactive editing of rigid
body positions and velocities, while the system interactively
updates the computed motion. They propose a way to han-
dle collisions by separating the simulation function in a pre-
collision, collision and post-collision part. In [PSE03], a
sketching interface is presented that extends [PSE∗00] and
allows intuitive motion sketching for multiple rigid bod-
ies possibly connected with joints. More recently, Hofer et
al. [HPR04, Hof04] solve the problem of finding a smooth
rigid body motion that interpolates given keyframes using
curve design algorithms. They obtain smooth collision-free
motions for multiple rigid bodies. Twigg and James [TJ07]
present a method to obtain the desired result of a multibody
simulation by computing many slightly perturbed example
simulations in parallel on a cluster while the user is allowed
to browse and modify them interactively. In [TJ08], the au-
thors go against the usual flow of time and propose methods
to allow backward time-stepping for rigid body simulations.
This makes their method particularly useful for specifying
final and intermediate states, but the method cannot be con-
strained by user-designed initial and final states.

A large body of literature treats the problem of motion plan-
ning in robotics. A recent overview can be found in [LaV06].

Motion Design for Deformable Objects With the
emergence of efficient shape deformation algorithms
(cf. Sec. 2.1), authors have worked to extend motion mod-
eling algorithms to handle deformable objects. Kondo et
al. [KKiA05] present a dynamic simulation method for de-
formable objects that lets the user specify keyframes or mod-
ify trajectories which are then used to guide the physics-
based deformable simulation. Exact keyframe interpolation
is hard to achieve and keyframes have to be spaced relatively
far apart in order to obtain realistic and stable results. Wojtan
et al. [WMT06] blend user defined constraints with physi-
cally based simulation by seeking an optimal set of external
control forces to minimize a non-linear least squares sys-
tem. A force is defined per particle per frame, which makes
the system rather large for long animations and many parti-
cles. Jeon and Choi [HJ07] present a control technique for
deformable objects represented as mass-spring systems. Xu
et al. [XZY∗07] propose a gradient domain based method
for editing deforming mesh sequences. To maintain scalabil-

ity, their method requires a manually designed coarse control
mesh. The work of Kilian et al. [KMP07] allows for design-
ing deformable motions by morphing between shapes along
geodesic paths in shape space. Their method is computation-
ally too expensive to handle many deformable objects.

This paper extends the work of [AOW∗08] in which the au-
thors present a non-linear optimization strategy to compute
motions given user-defined constraints. Their temporal mo-
tion representation lacks consistency and does not recover
rotations, which results in an excessive number of tempo-
ral sample points to represent even simple deformable mo-
tions, making animation of many objects intractable. We
solve these problems by introducing an improved tempo-
ral interpolation method that exactly recovers rigid motions
and hence drastically reduces the number of necessary un-
knowns.

Secondary Dynamics Bergou et al. [BMWG07] present a
process, dubbed tracking, which enhances a rough animation
or simulation of a surface with physically simulated detail.
Kass and Anderson [KA08] solve the spacetime constraints
problem over the domain of complex numbers where the
imaginary part of the solution defines a phase angle that the
authors use to control and generalize the oscillatory behav-
ior of a deformable animation. The resulting wiggly splines
allow intentional oscillations that are easy to control with
familiar tools by the animators. Our work is also related to
the volumetric formulation in Capell et al. [CGC∗02], where
skeletal deformations are extended to the entire shape in a
way that simulates secondary motion. In this work, we also
propose a technique to add secondary dynamics such as jig-
gling, but use a method more closely related to the one of
Shi et al [SZT∗08], where the authors present an approach
to enrich skeleton-driven animations with physically-based
secondary deformations using stable target forces. The pro-
posed technique in this paper not only allows adding sec-
ondary dynamics to an existing motion, but it also allows
seamless switching between purely physical animations and
designed animations.

3. Overview

This paper discusses a modeling framework for shape de-
formations and motions of deformable objects. Both com-
ponents rely on the same meshless spatial discretization of
an object, which we describe in Sec. 4. We represent defor-
mations as a vector field discretized at sample points, called
nodes, that are carefully chosen, such that only few samples
are needed even for complex objects.

Sec. 5 discusses how to use the deformation representation
for interactive shape modeling. Given modeling constraints
set by the user, we minimize a quasi-static continuum elas-
ticity energy to find a natural deformation that satisfies these
constraints.

submitted to COMPUTER GRAPHICS Forum (7/2009).

4 Adams et al. / Meshless Shape and Motion Design for Multiple Deformable Objects

In Sec. 6, we generalize the optimization approach for shape
modeling to motion modeling. We discretize the deformation
field in space and time, and optimize for a time-dependent
field which minimizes an energy measuring both deforma-
tions and smoothness of the trajectory. We also add energy
terms for collision handling, both between deformable ob-
jects and with static or moving scene objects. We describe an
adaptive optimization scheme that refines the temporal sam-
pling only where necessary, thus allowing for simulation of
large scenes with many objects.

Since the motions obtained by optimization are smooth,
there are no dynamic effects such as jiggling and vibrations.
In Sec. 7, we show how secondary dynamics effects can be
added by running a dynamic simulation on the deformable
objects. The computed trajectories are then only used to ob-
tain control forces that steer the dynamic simulation. This
also allows us to seamlessly combine motions obtained by
keyframe design and pure simulation: By simply switching
the control forces on and off, we can choose between de-
signed and simulated motions.

4. Shape Representation

Our deformation representation is based on classical mesh-
less finite elements (see [FM03] for a good overview), that
were recently introduced in computer graphics for physically
based animations (e.g., [MKN∗04, PKA∗05, GQ05, GP07]).
We use a similar formulation as [MKN∗04], but instead of
computing the dynamic behavior, we solve for the defor-
mation field given user-specified position constraints. More-
over, in the work of [MKN∗04], nodes are coupled based
on Euclidean distance, which does not allow adequate defor-
mation modeling for nearby, but topologically separated fea-
tures (e.g. two adjacent fingers in a hand model). This prob-
lem was addressed by Pauly et al. [PKA∗05] for the simula-
tion of fracturing materials by using a visibility driven trans-
parency criterion [OFTB96]. However, this method only al-
lows separating parts cut by a crack surface and does not
allow defining an appropriate nodal coupling for general
shapes. To resolve these problems, we propose a novel algo-
rithm that defines an adequate nodal coupling by using dis-
tances within the material. A similar technique was proposed
by Steinemann et al. [SOG06]. However, they approximate
the material distances using a graph structure, resulting in
distances that are not smooth and do not converge towards
the continuous solution. We however propose to approxi-
mate the material distances using the fast marching method
[Set99] which indeed results in a smooth distance field and
convergence towards the correct solution. Even for low sam-
pling densities, this technique results in proper deformations,
while maintaining the flexibility of traditional meshless al-
gorithms such as easy (re-)sampling and a smooth and con-
sistent deformation field representation.

In the remainder of this section, we first discuss the mesh-
less deformation field representation in Sec. 4.1. We then

u(x)

Figure 2: We represent the shape’s deformation at discrete nodes
xi and use meshless shape functions to approximate the deformation
field over the whole shape as u(x) = ∑i Φi(x)ui.

describe the nodal sampling and coupling algorithm in
Sec. 4.2. Finally, Sec. 4.3 shows how the shape’s boundary
mesh can be efficiently deformed using the deformed nodes.

4.1. Deformation Field

We follow [MKN∗04,AOW∗08] and represent a shape’s de-
formation field by a coarse set of N nodes, strategically sam-
pled over the shape’s volume using the algorithm detailed in
Sec. 4.2. Each node at position xi ∈ R3 is assigned a dis-
placement vector ui ∈R3. Using meshless function approxi-
mation theory [FM03], we define a continuous displacement
field from these vectors as (see also Fig. 2)

u(x) =
N

∑
i=1

Φi(x)ui. (1)

Hence, a point x in the undeformed shape is matched to the
position f(x) = x + u(x) in the deformed shape. The shape
functions Φi(x) are defined as

Φi(x) = pT (x)[M(x)]−1wi(x)p(xi), (2)

where p(x) is a complete polynomial basis of order n in
R3 and wi(x) = max(0,(1−d2(x,xi)/r2

i)3) is a smoothly
decaying locally supported weight function (with the nodal
support radius ri and a suitable distance function d(·, ·)). The
moment matrix M(x) is defined as

M(x) =
N

∑
i=1

wi(x)p(xi)pT (xi). (3)

By using compactly supported weight functions the defor-
mation field is locally only defined by a limited set of nodal
deformations. We will use n = 1 and hence p(x) = [1 x]T

as the basis to guarantee linear consistency in the meshless
deformation field approximation.

The shape deformation algorithms that will be presented in
this paper, use constraints and forces that require the gradient
∇u of the displacement field, where∇= (∂/∂x,∂/∂y,∂/∂z).
These partial derivatives to the k-th component of x (k =
1,2,3), are obtained as

∂u(x)
∂x(k)

=
N

∑
i=1

∂Φi(x)
∂x(k)

ui, (4)

submitted to COMPUTER GRAPHICS Forum (7/2009).

Adams et al. / Meshless Shape and Motion Design for Multiple Deformable Objects 5

Figure 3: Topology aware nodal sampling of the shape’s interior.
Left: the set of candidate points consists of the mesh vertices and
a dense set of interior grid points. Middle: nodes are created itera-
tively by picking the point furthest away from all previously created
nodes. A grid-based fast marching method is used to compute dis-
tances within the shape. The figure shows the first node and its in-
fluence region. Right: the resulting nodal coupling adequately sep-
arates parts that are close in Euclidean distance, but far in topolog-
ical sense such as the legs in the picture.

where ∂Φi(x)/∂x(k) is computed from Eq. 2 using the prod-
uct rule as

∂Φi(x)
∂x(k)

=
∂w(x)
∂x(k)

pT (x)M(x)−1p(xi)

+w(x)pT (x)
∂M(x)−1

∂x(k)
p(xi)

+w(x)
∂pT (x)
∂x(k)

M(x)−1p(xi),

(5)

and by using the fact that

∂(M−1)
∂x(k)

=−M−1(
∂M

∂x(k)
)M−1 (6)

with ∂M/∂x(k) obtained from Eq. 3.

4.2. Nodal Sampling & Coupling

Given a sampling of the object with N nodes, there are 3N
parameters in the deformation field representation. Our goal
is to keep this number as low as possible, while allowing re-
alistic shape deformations. When using a coarse set of nodes,
it is important to appropriately define the nodal influence re-
gions (i.e., the non-zero extent of the weight functions wi(x)
in Eq. 2). Using Euclidean distances introduces undesirable
undersampling artifacts when nodes influence parts of the
shape that are not connected (for example, a node in one
leg of a human would incorrectly influence the other leg). In
this section we propose a fast nodal sampling algorithm that
strategically covers the shape with a low number of nodes
while guaranteeing appropriate nodal coupling.

We use farthest point sampling to create nodes from a set of
candidate points defined as the union of the mesh vertices
and a dense set of interior grid points (see Fig. 3, left). Our
method iteratively picks the point xi from this set that is far-
thest away from the already created nodes xi−1, xi−2,. . . , x0
until the whole shape is sufficiently covered (the first node
is picked randomly). The distance d(x,xi) to the node xi is
computed within the shape by solving the Eikonal equation

Figure 4: Nodal sampling for the dragon model. The right image
shows the coupling of the nodes as their shortest connecting paths
within the dragon. The lengths of these paths are computed using a
fast marching algorithm and are used in the shape function compu-
tations. Note that this results in a nodal coupling that respects the
topology of the object.

using a grid-based fast marching method [Set99] (see also
the middle image in Fig. 3). This distance represents the ma-
terial distance and corresponds to the length of the shortest
path from x to xi without leaving the shape. Using this dis-
tance in the weight function wi(x) to define the nodal shape
functions (Eq. 2) ensures that nodes influence the appropri-
ate regions. As noted above, this allows adequate modeling
of shape deformations with nearby features such as the fin-
gers of a hand, or the legs of a human.

In the current implementation we prescribe a uniform nodal
influence radius ri = r. Note that to guarantee non-singular
moment matrices, necessary for deformation interpolation
(cf. Eq. 3), every vertex x in the shape has to be within the
support radius r of at least 4 non-planar nodes. We ensure
this criterion during the node creation by keeping a count,
for every x, of the number of its covering nodes, i.e., those
nodes xi that are within a material distance ri of x. The sam-
pling algorithm ends if every point is covered by at least 4
non-planar nodes. The proposed strategy results in a roughly
uniform and sufficiently dense nodal sampling.

Note that the fast marching algorithm produces a first order
accurate approximation to the in-material distances [Set99]
and therefore it converges to the true distances if the grid res-
olution is increased. Moreover, the computed approximate
distances are continuous, which guarantees smooth shape
and surface deformations. Because the nodal sampling and
coupling is computed in a preprocessing step and does not
change during interaction, performance is not a real issue.
Typical samplings take on the order of 1 to 5 seconds. Fig. 4
shows the resulting sampling for the dragon.

4.3. Surface Deformation

The approximation scheme described in Sec. 4.1 defines a
space deformation: We can evaluate the deformation field at
any position x that lies in the support of the nodes. Hence,
we can use a high resolution surface and deform it using the
deformation defined by the nodal displacements. In our algo-
rithms we use triangle meshes, but the discussed surface de-
formation algorithm extends trivially to other explicit bound-
ary representations, such as point-sampled surfaces repre-
sented as sets of surfels [PZvBG00].

submitted to COMPUTER GRAPHICS Forum (7/2009).

6 Adams et al. / Meshless Shape and Motion Design for Multiple Deformable Objects

In a preprocessing step, we compute for each mesh vertex
x the set of nodes that have non-zero support at the ver-
tex. Given these nodes, the shape functions Φi(x) and the
gradient of the shape functions ∇Φi(x) are computed using
Eq. 1 and Eq. 4 respectively. This computation is only done
once before beginning a modeling session. During model-
ing, the deformed vertex position x′ is computed using Eq. 1
as x′ = f(x). Note that this amounts to computing a linear
combination of the neighboring nodes’ deformation vectors
using the precomputed shape functions. Similarly, the up-
dated (unnormalized) vertex normal n′(x) can be computed
from the gradient of the deformation field as [Bar84]

n′(x) =∇f−1T
(x)n(x). (7)

Updating the vertex normals using the above equation can be
quite expensive since it involves one 4× 4 matrix inversion
for each boundary mesh vertex. During interactive manipu-
lation we therefore use the following approximation

n′(x) =∇f(x)n(x). (8)

This is a good approximation as long as the deformation
field is locally rigid, i. e., in the absence of shearing or
(anisotropic) scaling. Since this approximation is made lo-
cally for each mesh vertex separately, it is sufficiently accu-
rate in practice.

Using this approximation, we can further improve per-
formance and reduce the matrix-vector multiplications to
scalar-vector multiplications by expanding (8) to

n′(x) = n(x)+
N

∑
i=1

(∇Φ
T
i (x)n(x))ui, (9)

where the scalars ∇Φ
T
i (x)n(x) are constant and can be

precomputed. Again, this amounts to adding to the unde-
formed normal a weighted sum of the displacement vectors
ui, where the weights are the precomputed∇Φ

T
i (x)n(x).

The deformed vertex position and normal can be efficiently
computed on the GPU. We store for each vertex x the indices
to the node neighbors and the accompanying scalars Φi(x)
and ∇Φ

T
i (x)n(x) in GPU texture memory. During model-

ing, we only have to send the computed nodal displacement
vectors ui to the graphics board. Due to the coarse sampling
with nodes, this data is typically several orders of magnitude
smaller than the number of vertices. Using multiple render
passes and fragment shaders, we compute and write the po-
sition and normal deformation for each vertex to interme-
diate texture memory. In a final render pass, we update the
vertex position and normal in a vertex shader using two final
texture lookups to retrieve this information.

A similar GPU implementation in the context of skeletal de-
formations based on ideas of [PBMH02] and [LHK∗04] is
detailed in [RLN06].

Figure 5: Illustration of the effect of the different shape modeling
constraints. Left: handle constraints are specified to fix the bottom
of the box and to move the top to the desired position. Middle: with
only the strain minimization constraint the total volume is increased
by 53%. Right: the total volume remains within 3% of the original
when the volume constraint is added.

5. Shape Deformations

We use the deformation discretization introduced in the last
section for interactive shape modeling. We define energy
terms that penalize strain and changes in the shape’s vol-
ume, while enforcing the user’s input constraints. We then
find the deformation by minimizing this energy. The com-
plexity of the resulting optimization problem only depends
on the number of nodes. Thus, the resulting deformation
framework can be used to interactively model even com-
plex shapes. It will also serve as the core component in the
keyframe interpolation and motion planning framework that
we will discuss in Sec. 6.

The goal for shape modeling is to find a continuous deforma-
tion field f(x) = x+u(x) that maps the shape to its deformed
pose given following constraints (see also Fig. 5).

Handle Constraints Handle constraints restrict the move-
ment of certain points of the shape. For example, the user
may want to fix the legs while pulling one of the arms of the
model to deform its shape. Thus, a handle constraint simply
states that the deformation field f(xk) should move a given
point xk to a prescribed target position x′k. Given a set of K
handle constraints (xk,x′k), we will minimize:

Ehandle =
K

∑
k=1
‖f(xk)−x′k‖

2. (10)

Minimal Strain Given a deformation field f, the
Green-Saint-Venant’s non-linear strain tensor is defined as
∇fT (x)∇f(x)− I, where ∇ = (∂/∂x,∂/∂y,∂/∂z). Hence, to
obtain realistic shape deformations that have minimal strain,
we will minimize:

Estrain =
Z

x∈V
‖∇fT (x)∇f(x)− I‖2

F dx, (11)

where the integration is over the (undeformed) shape’s vol-
ume V and ‖ · ‖F is the Frobenius norm. To facilitate opti-
mization, we will only penalize strain at the nodal positions.
This leads to the discretized equation

Estrain =
N

∑
i=1

Vi‖∇fT (xi)∇f(xi)− I‖2
F . (12)

submitted to COMPUTER GRAPHICS Forum (7/2009).

Adams et al. / Meshless Shape and Motion Design for Multiple Deformable Objects 7

Figure 6: Deformation of the dragon model obtained using a coarse
set of only 60 nodes. The nodal deformations are computed on the
CPU, while the high resolution surface is deformed faithfully on the
GPU. The interaction was performed at a rate of 55 fps for the model
with 100k vertices and 10 fps for the model with 500k vertices.

Here, ∇f(x) = I +∇u(x), where ∇u(x) is computed using
the analytic derivative formula of Eq. 4. The scaling by the
node volume Vi = 4/3πr3

i can be omitted when using uni-
form node radii (ri = r). In the following we will write down
the discretized equation (cf. Eq. 12) and leave out the con-
tinuous one (cf. Eq. 11) for the sake of brevity.

Volume Preservation The deformation field preserves the
shape’s volume if and only if |∇f(x)| = 1 over the whole
shape. Thus, the deformed shape’s volume matches its orig-
inal volume as closely as possible if we minimize

Evolume =
N

∑
i=1

Vi(|∇f(xi)|−1)2. (13)

The optimal deformation field f(x) can now be found by
minimizing the total sum of constraint energies:

E1 = λ1Ehandle +λ2Estrain +λ3Evolume, (14)

where the parameters λ1, λ2 and λ3 vary the contribution of
each of the different constraints. It can be easily seen from
Eq. 10, 12 and 13 that E1 is a multivariate polynomial of total
degree 6 in the unknowns (the fictitious nodal displacements
ui). Minimizing Eq. 14 hence requires a non-linear solver.
Note however that taking analytic derivatives with respect
to the unknowns is straightforward, since f(x) is linear with
respect to the unknown ui’s.

An example of a deformation of a high resolution dragon
model is shown in Fig. 6.

6. Deformable Shape Motions

The meshless approximation discussed in Sec. 4.1 provides
us with an efficient representation of the deformation of an
object. In order to represent a time-varying deformation field
of a deformable shape in motion, we sample the shape’s de-
formation at discrete frames j ∈ {1, . . .T}. At each frame,
the deformation is described in terms of the nodal displace-
ments using Eq. 1.

f(x, t j) = x+u(x, t j) = x+
N

∑
i=1

Φi(x)ui,t j , (15)

t2t1

u(x, t)

t
t3

keyframe 1 keyframe 2 keyframe 3

Figure 7: The goal is to find a smooth motion of the deformable
shape that interpolates the keyframes. We solve for one displacement
vector ui,t j for each node i in each frame t j .

where ui,t j is the deformation of node i in frame j. See Fig. 7
for an illustration. The motion of the deformable object is
completely defined by these nodal displacements ui,t j , which
are the unknowns we will solve for using an energy mini-
mization approach.

6.1. Temporal Interpolation

Eq. 15 describes the deformation field at discrete frames j.
To allow continuous evaluation, this deformation field has
to be interpolated in time. We presented a temporal interpo-
lation scheme based on meshless approximations similar to
the one used in Sec. 4.1 in [AOW∗08]. However, as illus-
trated in Fig. 8, the interpolation scheme from [AOW∗08]
has the inherent problem that it does not recover rigid body
motions exactly: Given rigidly transformed keyframes, the
temporal interpolation might not describe a rigid transfor-
mation. We improve on this method and propose an inter-
polation algorithm based on shape matching and quaternion
interpolation. Contrary to [AOW∗08], the new interpolation
scheme recovers rigid motions exactly. Moreover, it is inter-
polating at the frames, greatly simplifying the motion opti-
mization algorithm.

To interpolate the motion given by a set of frames, we factor
out the rotational component of the deformation and interpo-
late it separately. For each frame, we compute the rotational
part R j = R(t j) of the deformation using shape matching
against the undeformed shape as proposed in [Hor87]. The
deformation can then be described as the sum of rotation and
detail deformation

f(x, t j) = R(t j)(x− c0)+ cf(t j)+d(x, t j), (16)

where the average of node positions in the original shape, c0,
is the center of the rotations R j, and cf(t) = 1/N ∑i f(xi, t)
denotes the average of the deformed node positions at time
t. After the per-frame rotations are obtained, we compute
the detail deformation at the frames, d(x, t j), and interpolate
both separately using spherical cubic Hermite splines and
Catmull-Rom splines, respectively. The interpolated defor-
mation f(x, t) at an arbitrary time t can then be computed
with Eq. 16 using the interpolated quantities.

The interpolation of the non-rotational parts of the defor-
mation, cf(t j) and d(x, t j), is performed using Catmull-Rom

submitted to COMPUTER GRAPHICS Forum (7/2009).

8 Adams et al. / Meshless Shape and Motion Design for Multiple Deformable Objects

Figure 8: Left: The user specifies 3 keyframes. Middle: Interpolated motion between the 3 keyframes using the method of [AOW∗08]. The
armadillo’s shape is not well preserved. Right: Interpolation result using the method presented in this paper. The salto motion is nicely recovered
even with only 3 frames.

Figure 9: Computing a collision-free motion for 100 deformable objects. Top left: User-specified begin and final keyframe poses. Top middle:
Each object has to move up to the opposite side as illustrated by the linearly interpolated motion. Top right: Resulting collision-free trajectories
computed by our algorithm. Bottom row: 6 frames of the computed motion.

splines, providing C1 continuity as well as continuous, ana-
lytic derivatives.

Interpolating the rotations is more involved: We repre-
sent the rotations as quaternions, and interpolate them us-
ing spherical cubic Hermite splines. These splines are C1-
continuous, interpolating, and lead to closed-form expres-
sions [Sho85,Ebe09]. Of particular importance for our algo-
rithm is the ability of taking analytical derivatives to eval-
uate angular velocities. All relevant equations are given in
App. A.

To evaluate the energy function, we need to compute not
only positions, but also velocities of each node. Using Eq. 34
in the appendix, we can compute the angular velocity ω(t)
represented by the time-varying quaternion R(t). The inter-
polated velocity is then

v(x, t) = ω(t)× (x− c)+
∂d(x, t)

∂t
. (17)

It is easy to see that this interpolation strategy indeed recov-
ers all rigid motions exactly. The temporal deformation field
representation also has the nice property that space and time
are decoupled. As a result, spatial shape functions are not
affected when up-sampling the temporal resolution.

Fig. 8 compares our new interpolation algorithm with the
one proposed in [AOW∗08] where temporal interpolation is
performed using the meshless approximation equations. As
can be seen in the image, a much improved motion is ob-
tained using the shape matching approach.

6.2. Deformable Motion Field Optimization

Once we define an energy function, we have all ingredi-
ents for finding time varying motion fields by optimization.
Within a frame t j, we use the strain and volume preserving
penalties as defined before in Sec. 5. To solve for a tempo-
rally changing deformation field, we add temporal smooth-

submitted to COMPUTER GRAPHICS Forum (7/2009).

Adams et al. / Meshless Shape and Motion Design for Multiple Deformable Objects 9

Figure 10: Illustration of the effect of the different temporal con-
straints. Top left: smooth interpolation between two keyframes using
the keyframe and acceleration constraints. Lower left: result after
prescribing the velocity in the first frame (gray arrow). Top right:
result after adding an obstacle. Bottom right: result after adding the
velocity and obstacle constraints.

ness constraints as well as collision avoidance and handling
constraints. See Fig. 10 for an illustration.

Since a scene can contain multiple deformable shapes s, we
will write fs for the deformation field, Ns for the number of
nodes and Ts for the number of frames of shape s. The total
number of shapes is denoted by S.

Position Constraints At any frame, we can constrain the
position of any node to an arbitrary point.

Eposition =
S

∑
s=1

Ts

∑
j=1

∑
k
‖fs(xk, t j)−x′k,t j‖

2, (18)

where x′k,t j
is the desired position of node k in frame j (at

time t j). The index k runs over all nodes that are constrained
at t j.

We use position constraints to implement keyframes: A
keyframe locks an object in a desired shape at a certain time.
In the system, the user specifies keyframes by simply mov-
ing and deforming the shape using the deformation algo-
rithm described in Sec. 5. We can also constrain individual
nodes to allow for partial deformations.

Shape Preservation In each frame and for all shapes, we
minimize the strain energy (12) to obtain realistic shape de-
formations

Estrain =
S

∑
s=1

Ts

∑
j=1

Ns

∑
i=1
‖∇fT

s (xi, t j)∇fs(xi, t j)− I‖2
F . (19)

To avoid shape inversions and to preserve the original vol-
ume, we also minimize the volume preservation energy (13)

Evolume =
S

∑
s=1

Ts

∑
j=1

Ns

∑
i=1

(|∇fs(xi, t j)|−1)2. (20)

Temporal Smoothness To obtain smooth deformable mo-
tions, we minimize the following energy that penalizes ac-
celerations

Eacceleration =
S

∑
s=1

Ts

∑
j=1

Ns

∑
i=1

(
∂

2fs(xi, t j)
∂t2

)2

. (21)

The second derivatives are approximated using finite differ-
ences. Since we use cubic Hermite interpolation to compute
the node trajectories, the second derivatives are not well-
defined at the frames, and cannot be evaluated analytically.
We opted against using splines with higher-order continu-
ity (for example natural cubic splines) since those would
give each frame global influence, which greatly degrades
optimization performance, while adding no visible improve-
ment.

Whenever a discontinuity in the motion is desired, this en-
ergy is disabled.

Velocity Constraint Velocity constraints simply constrain
the velocity of a node k at frame j to a fixed value vk,t j :

Evelocity =
S

∑
s=1

Ts

∑
j=1

∑
k
‖vs(xk, t j)−vk,t j‖

2, (22)

where k again runs over all constrained nodes and the veloc-
ity of a node is given by Eq. 17. Velocity constraints are used
for example to obtain smooth transitions from a physically
simulated animation to a user-designed motion path.

Collision Avoidance We add collision avoidance energies
to adequately resolve motion paths for different kinemati-
cally scripted and deformable objects.

Assuming that scene obstacles can be represented by a time
dependent signed distance field d(x, t) and that a point x is
penetrating at time t if d(x, t) ≥ 0, we obtain the following
energy function that prevents nodes to penetrate obstacles

Eobstacles =
S

∑
s=1

Ts

∑
j=1

Ns

∑
i=1

max[0,d(fs(xi, t j), t j)]
2. (23)

Fig. 11 illustrates this collision avoidance energy for a mov-
ing obstacle.

The above approach can be extended to avoid collisions be-
tween deformable shapes. Assume a signed distance field
ds(x, t) is given for each shape s in its undeformed state, we
can then avoid shape-shape collisions by minimizing

Edeformables =
S

∑
s,t=1
s 6=t

Tt

∑
j=1

Nt

∑
i=1

max[0,ds(f−1
s (ft(xi, t j), t j), t j)]

2.

(24)
Evaluating f−1

s at arbitrary positions requires computation
of shape functions, which can be expensive during optimiza-
tion. To avoid unnecessary computations we use a bounding
sphere hierarchy that is constructed from the deformed node
positions. Eq. 24 is only evaluated when a sphere-sphere

submitted to COMPUTER GRAPHICS Forum (7/2009).

10 Adams et al. / Meshless Shape and Motion Design for Multiple Deformable Objects

Figure 11: The dragon deforms to avoid the moving obstacle. Note
how the dragon anticipates the impact of the ball thanks to the ac-
celeration constraint.

collision between two shapes is reported. Since each shape
is represented by only a small number of nodes, updating
the sphere hierarchies can be performed efficiently. Fig. 9 il-
lustrates the deformable collision avoidance constraint for a
scene with 100 deformable objects.

Given a discrete spatial and temporal sampling for possibly
multiple deformable objects, the optimal temporal shape de-
formations fs(x, t) are found by minimizing a weighted sum
of the different energies, similar to Eq. 14:

E2 = λ1Eposition +λ2Estrain +λ3Evolume

+λ4Eacceleration +λ5Evelocity

+λ6Eobstacles +λ7Edeformables.

(25)

Again, E2 is a polynomial of degree 6 in the unknowns, the
nodal deformations of all nodes of all shapes in all frames.
Since the temporal interpolation algorithm is interpolating
and since finite differences in time are used to approximate
accelerations, optimizing E2 proceeds very similar to opti-
mizing E1.

Note however that ensuring a collision-free state for exam-
ple at the discrete frames t j, does not guarantee this prop-
erty at every time instance, since the interpolation algo-
rithm is collision oblivious. Similar considerations hold for
the shape preservation energies. In the following we discuss
the adaptive temporal sampling strategy that we introduced
in [AOW∗08] that resolves these issues.

6.3. Adaptive Temporal Sampling

In the (single object and single frame) deformation model-
ing part of Sec. 5, the total number of unknowns to solve
for is 3N, where N is the number of nodes. In the motion
planning setting, the total number of unknowns increases to
∑

S
s=1 3NsTs, where S is the number of shapes, Ns the num-

ber of nodes and Ts the number of frames used for shape
s. To keep this number sufficiently low, we use an adaptive
time sampling strategy that introduces frames iteratively in
problematic regions (see Fig. 12 for an illustration with one
deformable shape).

Initially, we only have frames t j that correspond to the
keyframes specified by the user (see top left image in
Fig. 12). We optimize the displacement field as discussed
above and evaluate the error for each shape at a dense num-
ber of frames in between the frames t j (we typically eval-

uate at 10 intermediate frames). We then introduce for each
shape a new frame t j at the time instance tmax where the error
is maximal. We solve again and iterate until a desired accu-
racy is obtained. Note that in each step when we introduce a
new frame at time tmax, we initialize the nodes’ deformation
vectors at the new frame using the temporal interpolation al-
gorithm of Sec. 6.1. This yields a good initial guess for the
subsequent solve.

The proposed adaptive sampling strategy greatly reduces the
number of unknowns and introduces frames only at problem-
atic regions, for example when there is high acceleration, or
when the deforming shape is penetrating an obstacle (see for
example Fig. 12).

6.4. Local Minima

Since we formulate the problem of finding the optimal shape
motions as a non-linear, non-convex optimization problem,
it is quite possible that the solution we find is a local min-
imum of the energy function, rather than a global one. In
addition, in some situations it is not possible to distinguish
between a set of equally plausible trajectories using the ob-
jective function alone. For instance, if an obstacle is located
exactly between two poses of a deforming object, the solu-
tions that avoid the obstacle on either of its sides are equally
likely.

The tight coupling of our deformation module with the mo-
tion optimization facilitates the resolution of these scenar-
ios. In particular, we solve the problem of local minima by
giving the user control over the initial state of the optimiza-
tion. The user can specify the intermediate positions of the
deformable objects without specifying keyframe correspon-
dence constraints. These intermediate positions are given to
the optimization procedure as an initial value for the mini-
mizer of the objective function. This moves the optimization
out of one local minimum, and into another, which is closest
to the manually specified initial value. In simple scenarios,
such as the one described above, this procedure allows to
disambiguate between a set of, possibly local, minima. This
is particularly useful during adaptive temporal sampling, be-
cause it allows the user to control the general direction of the
motion without specifying handle constraints.

7. Adding Dynamics

The shape and motion optimization algorithms presented in
this paper use the same meshless deformation field represen-
tation as used before in the graphics community for physi-
cally based simulation of elastic materials [MKN∗04]. Be-
low we show how such physical simulations can be used in
a post-process to add secondary effects such as jiggling to
a designed deformable shape motion and how designed and
purely physically simulated motion can be combined to offer
additional flexibility in designing realistic animations.

submitted to COMPUTER GRAPHICS Forum (7/2009).

Adams et al. / Meshless Shape and Motion Design for Multiple Deformable Objects 11

 50
 100
 150
 200
 250
 300
 350
 400

time time

 1

 2

 2.5

 3

 3.5

 0.5
 5000

 20000

 15000

 10000

time

energy energyenergy

Figure 12: The user wants to find a smooth motion between two de-
formed shapes of the armadillo, that are specified as keyframes in
the top left image. The linearly interpolated motion between these
two frames is inadequate and has high energy where the armadillo
moves through one of the obstacles (left column). Our algorithm
adds a new frame and solves for the armadillo’s deformed shape
at this time step. The resulting motion largely avoids the obstacles
(middle column). This process is iterated until a sufficiently low en-
ergy is obtained for 10 frames (right column).

7.1. Secondary Dynamics

Given an object’s computed temporal deformation field, we
can add secondary motion effects by running a meshless
elastic solid simulation. This simulation is run as a post-
process, and control forces make objects follow the precom-
puted trajectories.

Assume the temporal shape deformation field computed in
Sec. 6.2 is given by g(x, t), the goal is to compute a mod-
ified deformation field f(x, t) that closely follows g, but in-
cludes secondary motions. Starting with the deformed shape
f(x,0) = g(x,0) we advance f forward in time using a com-
bination of shape matching and explicit force-based time in-
tegration.

Shape Matching In a first step we rigidly move f as close
as possible to the goal shape g by rigidly matching the nodes
f(xi, t) to the target node positions g(xi, t) [Hor87]. The best
match for node i is given by

f̃(xi, t) = R(t)(f(xi, t)− cf(t))+ cg(t)

= g(xi, t)−d(xi, t),
(26)

where cf(t) and cg(t) are the average node positions of f
and g, respectively, and R(t) and d(x, t) are defined as in
Sec. 6.1. Before computing any forces, we kinematically
move the nodes to their best rigid match f̃.

Force Computation We compute nodal control forces that
attract the nodes to their precomputed trajectory similar to
[MHTG05,SZT∗08], using g as the target positions. Given a

Figure 13: Illustration of the effect of secondary dynamics and the
combination of designed and physically simulated motion. Top left:
The user specifies 3 keyframes for each of the 5 armadillos. Lower
left: Resulting motion computed using the algorithm of Sec. 6.2.
Right: 4 frames of the resulting motion including secondary dynam-
ics and continued physical simulation.

time-step ∆t, the control forces are

Ftarget
i =

d(xi, t)
∆t2 . (27)

Besides these target forces, we add shape preservation forces
that try to restore the deformed shape to its rest shape. These
forces will give rise to secondary motions such as wiggling.
Following [MKN∗04], the elastic force is given by

Felastic
i =−σ∇ũi ε, (28)

with strain ε =∇f̃T (xi, t)∇f̃(xi, t)− I (cf. Eq. 12) and stress
σ = Cε where C a constitutive matrix that defines the stress-
strain relationship. We also add volume conservation forces
to avoid undesirable shape inversions (cf. Eq. 13)

Fvolume
i =− kv

2
∇ũi(|∇f̃(xi, t)|−1)2, (29)

where kv is user-defined constant.

With external forces such as gravity and penalty-based colli-
sion response forces, we obtain the total force Fi = Ftarget

i +
Felastic

i +Fvolume
i +Fexternal

i which is used in an explicit Euler
step to compute the final node positions.

7.2. Combining Designed and Simulated Motion

If we omit the control forces, the above formulation is a reg-
ular physical simulation similar to [MKN∗04]. We can there-
fore seamlessly extend a computed motion trajectory contin-
uing to run the physics simulation after the last keyframe.
The added secondary effects ensure that the designed and
simulated motion parts transition smoothly. An example of

submitted to COMPUTER GRAPHICS Forum (7/2009).

12 Adams et al. / Meshless Shape and Motion Design for Multiple Deformable Objects

100k 4.6/4.4 9.5/4.6 15.2/4.7 31.6/5.5

250k 4.9/51.5 9.6/52.2 14.5/51.8 33.0/55.2

500k 5.1/95.9 9.4/94.8 15.6/97.6 32.5/102.9

20 50 100 200nodes
vertices

Table 1: Timing statistics (ms) for the dragon deformation of Fig. 6
for different numbers of vertices and nodes. Each entry shows the
average time spent solving on the CPU and on deforming and ren-
dering the triangle mesh on the GPU.

combined designed and simulated motion for multiple de-
formable objects is shown in Fig. 13.

Reversely, one can also design a motion path to follow the
result of a purely physically based simulation. This can be
done by taking the last frame of the simulation and using it
to define the boundary conditions of the first keyframe for
the designed part. The node positions and velocities can be
set using the constraints of Eq. 18 and Eq. 22 respectively to
ensure a smooth transition.

8. Results & Discussion

We implemented our algorithms in C++ and used Cg for
the fragment and vertex shaders that compute the deformed
mesh vertices. Our models are given as triangle meshes. In
the preprocessing step we compute a regular distance field
and use the same grid for the nodal sampling and the fast
marching. Inversion of the moment matrices is performed
using the Cholesky decomposition code of the JAMA/C++
linear algebra package. The energy minimization problems
are solved using the non-linear LBFGS solver from OPT++.

Fig. 6 shows the result of a real-time deformation of the
dragon model. We obtain an interaction rate of 10 fps for
the model of 500k vertices and at least 55 fps for the deci-
mated model of 100k vertices, both sampled with 60 nodes.
Detailed timings for varying numbers of vertices and nodes
are given in Table 1. This result was obtained on a 3.2 GHz
Intel Pentium D CPU with an NVIDIA GeForce 8800 graph-
ics board.

Fig. 1 shows the designed motion from 7 keyframe poses of
the armadillo represented by a triangle mesh of 166k vertices
and sampled with 66 nodes. To obtain realistic bouncing be-
havior, we allow C1 discontinuities in the resulting motion
path. This is achieved by omitting the acceleration constraint
at the respective frames. Fig. 11 shows the resulting motion
of a deforming dragon in the presence of a moving obsta-
cle. The initial and final keyframe are set to the undeformed
dragon and its back feet are fixed over the whole time in-
terval. The intermediate motion is computed automatically.
The dragon is sampled with 59 nodes. Fig. 9 illustrates the
scalability of our approach. 100 objects in a grid exchange
positions. Our algorithm is able to resolve all collisions, and
computes smooth, energy minimal motion paths for all ob-
jects. Each object is sampled with 20 nodes.

Fig. 13 shows how we can combine a designed keyframe ani-
mation with a purely physical simulation when no keyframes

Figure 15: Interpolating a smooth motion from 6 keyframes.

are given. Added secondary dynamics effects make the de-
signed motions appear more dynamic, and render the tran-
sition from designed to simulated motion smooth. The ar-
madillos are each sampled with 46 nodes. We can also
switch back to designing motions if the physical simulation
does not arrive at a satisfactory solution. Fig. 14 shows an ex-
ample in which a motion path is designed using keyframes,
part of the motion is computed using a physical simulation,
before switching back to keyframe animation to achieve a
particular outcome. The girl character is sampled with 31
nodes.

Table 2 shows timings for the motion examples, all of which
were measured on an Intel 2.53GHz CPU.

We used the setting of Fig. 15 to compare our improved
interpolation algorithm with the one of [AOW∗08]. In
this example a smooth motion is computed interpolating 6
keyframes. Using the algorithm presented in this paper, the
solver converges after introducing 9 more frames, resulting
in 15 frames and 2070 unknowns to solve for (the armadillo
is sampled with 46 nodes). Using the method of [AOW∗08],
the algorithm converges with the same energy only after in-
serting 46 frames, making the number of unknowns 7176.
The solve time was 8 seconds and 20 seconds respectively.

8.1. Limitations

As discussed earlier, one of the principal limitations of our
motion design system is that the energies that we formulate
may have several global and local minima. Our method of
manually controlling the initial guess for the deformation at
any intermediate frame allows to partly overcome this prob-
lem. However, finding the global minimum of a non-convex,
non-linear function is a hard problem, and there are certainly
pathological cases where manual control will not lead to the
desired result.

scene # variables solve time
Fig. 1 2772 7.2 seconds

Fig. 11 2478 6.7 seconds
Fig. 9 102000 18.6 minutes

Fig. 13 6210 6.1 seconds
Fig. 14 1581 2.3 seconds
Fig. 15 2070 8.0 seconds

Table 2: Statistics for the examples shown in this paper.

submitted to COMPUTER GRAPHICS Forum (7/2009).

http://developer.nvidia.com/page/cg_main.html
http://math.nist.gov/tnt/download.html
http://csmr.ca.sandia.gov/opt++/

Adams et al. / Meshless Shape and Motion Design for Multiple Deformable Objects 13

physics

designed

designed

designed

physics

Figure 14: Illustration of the combination of designed motion and motion generated from a physics simulation. Left two images: The user
specifies 3 keyframes and lets the physics take over after the last keyframe (these frames are colored in light blue on the right). Right two
images: The user wants the character to land on its feet instead of falling flat on the ground plane. Our system allows stopping the physics
simulation at a certain time and inserting new keyframes that describe the desired motion. This sequence consists of 3 different parts: designed,
simulated and finally designed again. We also add secondary dynamics in this example to obtain dynamic behavior and a smooth transition
between the different motion parts.

In this paper we opted for using a low-dimensional defor-
mation model, while allowing for high resolution boundary
surfaces. Since the optimization algorithm only depends on
the number of nodes and not on the number of mesh vertices,
this enables motion design for high quality surfaces at rea-
sonable rates. However, the choice of the number and place-
ment of nodes limits the possible deformations. An adaptive
nodal sampling would allow the animator to introduce more
nodes where more degrees of freedom are required or to dy-
namically adapt the nodal sampling during optimization if
more flexibility is desired.

The added secondary motion mostly consists of high-
frequency vibrations around the shape’s rest pose. Low fre-
quency modes are typically not present since the designed
animation is optimized to be energy optimal and shape
matching is performed on all nodes to align the simulated
shape before computing elastic forces. An approach simi-
lar to TRACKS [BMWG07] could resolve this issue by per-
forming the shape matching step on a coarser set of nodes,
allowing more freedom in the original nodes. The added sec-
ondary effects also result in a motion that not necessarily
aligns with the keyframes. Small deviations from the speci-
fied keyframes are possible and hard to control.

Combining physically simulated and scripted motion can
still be tricky and requires some training by the anima-
tor, particularly when the scripted motion follows the sim-
ulated one. When scripting the end of an animation, the first
keyframe of the designed sequence has to exactly correspond
to the final frame of the simulated sequence. This prohibits
changing the first part of the animation after the final part
is designed. Also, manual adjusting of the timing and frame
rate of the different motion parts is necessary when combin-
ing different motions. In particular, discontinuities in the ve-
locities and accelerations have to be avoided. Smooth veloci-
ties can be enforced using the velocity constraints described
in Sec. 6.2. However, even discontinuities in accelerations
can lead to visual artifacts. Currently, only careful modeling
can ensure no such discontinuities are visible when switch-
ing between designed to simulated motion.

Finally, our current energy formulation does not contain a
term for preservation of angular momentum, which would

increase the overall realism of the motion. Formulating such
a term should be relatively straightforward, given the for-
mula for angular velocity in the Appendix. We leave this for
future work.

9. Conclusion

We have presented a shape modeling and motion design
framework that allows users to quickly and easily generate
new poses and motion paths for many objects. A novel nodal
and an adaptive temporal sampling algorithm ensure ade-
quate sampling while keeping the number of unknowns low.
At all times during the shape and motion modeling process
the objects are guaranteed to preserve their shape thanks to
the physically inspired modeling constraints. Collisions be-
tween the objects and the environment, as well as among
the objects, are avoided. We have also described a method
for adding secondary physical deformations to the generated
motions, improving the dynamic behavior, and creating the
possibility of combining designed and simulated motion.

Acknowledgments The authors wish to acknowledge the
support of NSF grants ITR 0205671 and FRG 0354543, NIH
grant GM-072970, DARPA grant HR0011-05-1-0007, and
the Max-Planck Center for Visual Computing and Commu-
nication. Bart Adams is funded as a post-doctoral researcher
by the Fund for Scientific Research, Flanders (F.W.O.-
Vlaanderen). We would like to thank the Stanford University
Computer Graphics Laboratory for providing the armadillo
model and XYZ RGB Inc. for providing the dragon model.

References

[AFTCO07] AU O. K.-C., FU H., TAI C.-L., COHEN-
OR D.: Handle-aware isolines for scalable shape editing.
ACM Trans. Graph. 26, 3 (2007).

[AOW∗08] ADAMS B., OVSJANIKOV M., WAND M.,
SEIDEL H.-P., GUIBAS L. J.: Meshless modeling of
deformable shapes and their motion. In ACM SIG-
GRAPH/Eurographics Symposium on Computer Anima-
tion (2008).

[Bar84] BARR A. H.: Global and local deformations
of solid primitives. SIGGRAPH Comput. Graph. 18, 3
(1984), 21–30.

submitted to COMPUTER GRAPHICS Forum (7/2009).

14 Adams et al. / Meshless Shape and Motion Design for Multiple Deformable Objects

[BB88] BARZEL R., BARR A. H.: A modeling system
based on dynamic constraints. Computer Graphics (Pro-
ceedings of ACM SIGGRAPH 88) 22, 4 (1988).

[BK03] BOTSCH M., KOBBELT L.: Multiresolution sur-
face representation based on displacement volumes. Com-
puter Graphics Forum 22, 3 (2003).

[BMWG07] BERGOU M., MATHUR S., WARDETZKY

M., GRINSPUN E.: Tracks: toward directable thin shells.
ACM Trans. Graph. 26, 3 (2007), 50.

[BPGK06] BOTSCH M., PAULY M., GROSS M.,
KOBBELT L.: Primo: coupled prisms for intuitive surface
modeling. In Proceedings of the fourth Eurographics
symposium on geometry processing (2006), Eurographics
Association.

[BPWG07] BOTSCH M., PAULY M., WICKE M., GROSS

M.: Adaptive space deformations based on rigid cells.
Computer Graphics Forum 26, 3 (2007).

[BS08] BOTSCH M., SORKINE O.: On linear variational
surface deformation methods. IEEE Transactions on Vi-
sualization and Computer Graphics 14, 1 (2008).

[BSS07] BOUBEKEUR T., SORKINE O., SCHLICK C.:
Simod: Making freeform deformation size-insensitive. In
IEEE/Eurographics Symposium on Point-Based Graphics
2007 (2007).

[CGC∗02] CAPELL S., GREEN S., CURLESS B.,
DUCHAMP T., POPOVIĆ Z.: Interactive skeleton-driven
dynamic deformations. ACM Trans. Graph. 21, 3 (2002),
586–593.

[DSP06] DER K. G., SUMNER R. W., POPOVIĆ J.: In-
verse kinematics for reduced deformable models. ACM
Trans. Graph. 25, 3 (2006).

[Ebe09] EBERLY D.: Quaternion algebra and calculus.
http://www.cs.brown.edu/courses/cs224/papers/eberly99.pdf,
1999, retrieved September 2009.

[FKR05] FLOATER M. S., KÓS G., REIMERS M.: Mean
value coordinates in 3d. Comput. Aided Geom. Des. 22, 7
(2005).

[FM03] FRIES T.-P., MATTHIES H. G.: Classification
and Overview of Meshfree Methods. Tech. rep., TU
Brunswick, Germany Nr. 2003-03, 2003.

[GP07] GROSS M., PFISTER H.: Point-Based Graphics
(The Morgan Kaufmann Series in Computer Graphics).
Morgan Kaufmann Publishers Inc., 2007.

[GQ05] GUO X., QIN H.: Real-time meshless deforma-
tion: Collision detection and deformable objects. Comput.
Animat. Virtual Worlds 16, 3-4 (2005).

[HJ07] HONGJUN JEON A. M.-H. C.: Interactive mo-
tion control of deformable objects using localized optimal
control. In International Conference on Robotics and Au-
tomation (2007).

[Hof04] HOFER M.: Variational motion design in the
presence of obstacles. PhD thesis, Vienna University of
Technology, 2004.

[Hor87] HORN B. K. P.: Closed-form solution of absolute
orientation using unit quaternions. J. Opt. Soc. Am. A 4, 4
(1987), 629–642.

[HPR04] HOFER M., POTTMANN H., RAVANI B.: From
curve design algorithms to the design of rigid body mo-
tions. Vis. Comput. 20, 5 (2004).

[HSL∗06] HUANG J., SHI X., LIU X., ZHOU K., WEI

L.-Y., TENG S.-H., BAO H., GUO B., SHUM H.-Y.:
Subspace gradient domain mesh deformation. ACM
Trans. Graph. 25, 3 (2006).

[IC87] ISAACS P. M., COHEN M. F.: Controlling dy-
namic simulation with kinematic constraints. In SIG-
GRAPH ’87: Proceedings of the 14th annual conference
on Computer graphics and interactive techniques (New
York, NY, USA, 1987), ACM, pp. 215–224.

[JMD∗07] JOSHI P., MEYER M., DEROSE T., GREEN

B., SANOCKI T.: Harmonic coordinates for character ar-
ticulation. ACM Trans. Graph. 26, 3 (2007).

[JP02] JAMES D. L., PAI D. K.: Dyrt: dynamic response
textures for real time deformation simulation with graph-
ics hardware. ACM Trans. Graph. 21, 3 (2002).

[JT05] JAMES D. L., TWIGG C. D.: Skinning mesh ani-
mations. ACM Trans. Graph. 24, 3 (2005).

[KA08] KASS M., ANDERSON J.: Animating oscillatory
motion with overlap: wiggly splines. In SIGGRAPH ’08:
ACM SIGGRAPH 2008 papers (New York, NY, USA,
2008), ACM, pp. 1–8.

[KKiA05] KONDO R., KANAI T., ICHI ANJYO K.: Di-
rectable animation of elastic objects. In Proceedings of
the 2005 ACM SIGGRAPH/Eurographics symposium on
computer animation (2005), ACM.

[KMP07] KILIAN M., MITRA N. J., POTTMANN H.: Ge-
ometric modeling in shape space. ACM Trans. Graph. 26,
3 (2007).

[LaV06] LAVALLE S. M.: Planning Algorithms. Cam-
bridge University Press, 2006.

[LHK∗04] LUEBKE D., HARRIS M., KRÜGER J., PUR-
CELL T., GOVINDARAJU N., BUCK I., WOOLLEY C.,
LEFOHN A.: Gpgpu: general purpose computation on
graphics hardware. In SIGGRAPH ’04: ACM SIGGRAPH
2004 Course Notes (New York, NY, USA, 2004), ACM,
p. 33.

[LKCOL07] LIPMAN Y., KOPF J., COHEN-OR D.,
LEVIN D.: Gpu-assisted positive mean value coordinates
for mesh deformations. In Proceedings of the fifth Euro-
graphics symposium on geometry processing (2007), Eu-
rographics Association.

[LSCO∗04] LIPMAN Y., SORKINE O., COHEN-OR D.,
LEVIN D., RÖSSL C., SEIDEL H.-P.: Differential co-
ordinates for interactive mesh editing. In Proceedings
of Shape Modeling International (2004), IEEE Computer
Society Press.

[MHTG05] MÜLLER M., HEIDELBERGER B.,
TESCHNER M., GROSS M.: Meshless deforma-

submitted to COMPUTER GRAPHICS Forum (7/2009).

Adams et al. / Meshless Shape and Motion Design for Multiple Deformable Objects 15

tions based on shape matching. ACM Trans. Graph. 24, 3
(2005), 471–478.

[MKN∗04] MÜLLER M., KEISER R., NEALEN A.,
PAULY M., GROSS M., ALEXA M.: Point based anima-
tion of elastic, plastic and melting objects. Proceedings of
2004 ACM SIGGRAPH Symposium on Computer Anima-
tion (2004).

[NMK∗05] NEALEN A., MÜLLER M., KEISER R., BOX-
ERMAN E., CARLSON M.: Physically Based Deformable
Models in Computer Graphics. In Eurographics: State of
the Art Report (2005).

[OFTB96] ORGAN D., FLEMING M., TERRY T., BE-
LYTSCHKO T.: Continuous meshless approximations for
nonconvex bodies by diffraction and transparency. Com-
put. Mechanics 18 (1996).

[PBMH02] PURCELL T. J., BUCK I., MARK W. R.,
HANRAHAN P.: Ray tracing on programmable graph-
ics hardware. ACM Transactions on Graphics 21, 3 (July
2002), 703–712. ISSN 0730-0301 (Proceedings of ACM
SIGGRAPH 2002).

[PKA∗05] PAULY M., KEISER R., ADAMS B., DUTRÉ

P., GROSS M., GUIBAS L. J.: Meshless animation of
fracturing solids. ACM Trans. Graph. 24, 3 (2005).

[PSE∗00] POPOVIĆ J., SEITZ S. M., ERDMANN M.,
POPOVIĆ Z., WITKIN A.: Interactive manipulation of
rigid body simulations. In Proceedings of ACM SIG-
GRAPH 2000 (2000), ACM Press/Addison-Wesley Pub-
lishing Co.

[PSE03] POPOVIĆ J., SEITZ S. M., ERDMANN M.: Mo-
tion sketching for control of rigid-body simulations. ACM
Trans. Graph. 22, 4 (2003).

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR J.,
GROSS M.: Surfels: Surface elements as rendering prim-
itives. In Proceedings of ACM SIGGRAPH 2000 (2000),
pp. 335–342.

[RLN06] RHEE T., LEWIS J. P., NEUMANN U.: Real-
time weighted pose-space deformation on the gpu. Com-
put. Graph. Forum 25, 3 (2006), 439–448.

[Set99] SETHIAN J. A.: Level Set Methods and Fast
Marching Methods. Cambridge University Press, 1999.

[Sho85] SHOEMAKE K.: Animating rotation with quater-
nion curves. SIGGRAPH Comput. Graph. 19, 3 (1985),
245–254.

[SK04] SHEFFER A., KRAEVOY V.: Pyramid coordinates
for morphing and deformation. In Proceedings of the 3D
Data Processing, Visualization, and Transmission, 2nd In-
ternational Symposium (2004), IEEE Computer Society.

[SLCO∗04] SORKINE O., LIPMAN Y., COHEN-OR D.,
ALEXA M., RÖSSL C., SEIDEL H.-P.: Laplacian sur-
face editing. In Proceedings of the Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing (2004),
Eurographics Association.

[SOG06] STEINEMANN D., OTADUY M. A., GROSS M.:
Fast arbitrary splitting of deforming objects. In 2006 ACM

SIGGRAPH / Eurographics Symposium on Computer An-
imation (Sept. 2006), pp. 63–72.

[SSP07] SUMNER R. W., SCHMID J., PAULY M.: Em-
bedded deformation for shape manipulation. ACM Trans.
Graph. 26, 3 (2007).

[Sto07] STOLL C.: A Volumetric Approach to Interactive
Shape Editing. Research Report MPI-I-2007-4-004, Max-
Planck-Institut für Informatik, June 2007.

[SYBF06] SHI L., YU Y., BELL N., FENG W.-W.: A fast
multigrid algorithm for mesh deformation. ACM Trans.
Graph. 25, 3 (2006).

[SZGP05] SUMNER R. W., ZWICKER M., GOTSMAN C.,
POPOVIĆ J.: Mesh-based inverse kinematics. ACM Trans.
Graph. 24, 3 (2005).

[SZT∗07] SHI X., ZHOU K., TONG Y., DESBRUN M.,
BAO H., GUO B.: Mesh puppetry: cascading optimiza-
tion of mesh deformation with inverse kinematics. ACM
Trans. Graph. 26, 3 (2007).

[SZT∗08] SHI X., ZHOU K., TONG Y., DESBRUN M.,
BAO H., GUO B.: Example-based dynamic skinning in
real time. ACM Trans. Graph. 27, 3 (2008), 1–8.

[TJ07] TWIGG C. D., JAMES D. L.: Many-worlds brows-
ing for control of multibody dynamics. ACM Trans.
Graph. 26, 3 (2007).

[TJ08] TWIGG C. D., JAMES D. L.: Backward steps in
rigid body simulation. ACM Trans. Graph. 27, 3 (2008),
1–10.

[vFTS06] VON FUNCK W., THEISEL H., SEIDEL H.-
P.: Vector field based shape deformations. ACM Trans.
Graph. 25, 3 (2006).

[WK88] WITKIN A., KASS M.: Spacetime constraints.
In SIGGRAPH ’88: Proceedings of the 15th annual con-
ference on Computer graphics and interactive techniques
(New York, NY, USA, 1988), ACM, pp. 159–168.

[WMT06] WOJTAN C., MUCHA P. J., TURK G.:
Keyframe control of complex particle systems using the
adjoint method. In SCA ’06: Proceedings of the 2006
ACM SIGGRAPH/Eurographics symposium on Com-
puter animation (Aire-la-Ville, Switzerland, Switzerland,
2006), Eurographics Association, pp. 15–23.

[WP95] WITKIN A., POPOVIC Z.: Motion warping. In
Proceedings of ACM SIGGRAPH 95 (1995), ACM.

[XZY∗07] XU W., ZHOU K., YU Y., TAN Q., PENG Q.,
GUO B.: Gradient domain editing of deforming mesh se-
quences. ACM Trans. Graph. 26, 3 (2007).

Appendix A: Quaternion Splines

A good derivation of this material can be found in [Ebe09].
For reference, we only include the equations necessary for
implementation.

Given a set of n frame rotations R1 . . .R j . . .Rn, we want to
compute an interpolated rotation R(t). Let t j < t < t j+1, such
that R(t) lies in the spline segment connecting R j = R(t j)
and R j+1 = R(t j+1).

submitted to COMPUTER GRAPHICS Forum (7/2009).

16 Adams et al. / Meshless Shape and Motion Design for Multiple Deformable Objects

If two rotations are given as unit quaternions p and q, a
spherical linear interpolation between them can be expressed
as

S0(p,q,α) = p(p−1q)α, (30)

where α ∈ [0,1] is the blending parameter. Similar to the
de Casteljau algorithm, we can construct a higher-order
curve by concatenating several spherical linear interpola-
tions, yielding

S(p,a,b,q,α) = S0(S0(a,b,α),S0(p,q,α),2α(1−α)).
(31)

It can be shown that the derivative of Eq. 31 is given by

S′(p,a,b,q,α) = U
[
(2−4α)Wβ log(W)+βWβ−1W′

]
+ U′

[
Wβ
]
, (32)

where β = 2α(1−α), U = S0(p,q,α), V = S0(a,b,α), and
W = U−1V. Then U′ = U log(p−1q), V′ = V log(a−1b),
and W′ = U−1V′+U−2U′V.

Turning back to the interpolation problem outlined above,
we will now connect the rotations R j and R j+1 using a
spline segment S j(t) = S(R j,a j,b j,R j+1,

t−t j
t j+1−t j

). In order

to ensure C1-continuity, we have to choose a j and b j such
that the tangents at the frames match: S′j(t j+1) = S′j+1(t j+1).
While there are several ways of achieving this, using central
differences works well and yields a j = b j−1, where

a j = R j exp

(
−

log(R−1
j R j+1)+ log(R−1

j R j−1)

4

)
. (33)

Thus, R(t) = S(R j,a j,a j+1,R j+1,
t−t j

t j+1−t j
) for t j < t < t j+1,

and the spline segments connect in a C1-continuous manner.

Angular Velocity

Given a time-dependent rotation represented by a quaternion
Q(t), we can compute the angular velocity represented by
this rotation as

ω = 2
∂Q(t)

∂t
Q−1(t). (34)

Note that ω is a purely virtual quaternion, which can be triv-
ially converted to a 3-vector.

submitted to COMPUTER GRAPHICS Forum (7/2009).

