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Abstract 
In this paper, we describe a system for the reconstruction of deforming geometry from a time 
sequence of unstructured, noisy point clouds, as produced by recent real-time range scanning 
devices. Our technique reconstructs both the geometry and dense correspondences over time. 
Using the correspondences, holes due to occlusion are filled in from other frames. Our 
reconstruction technique is based on a statistical framework: The reconstruction should both 
match the measured data points and maximize prior probability densities that prefer smoothness, 
rigid deformation and smooth movements over time. The optimization procedure consists of an 
inner loop that optimizes the 4D shape using continuous numerical optimization and an outer 
loop that infers the discrete 4D topology of the data set using an iterative model assembly 
algorithm. We apply the technique to a variety of data sets, demonstrating that the new approach 
is capable of robustly retrieving animated models with correspondences from data sets suffering 
from significant noise, outliers and acquisition holes. 

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: 
Three-Dimensional Graphics and Realism – Animation, I.3.3 Picture/Image Generation – Digitizing 
and scanning 

 

1. Introduction 
Modeling of realistic three dimensional objects is one of the fundamental problems in computer 
graphics. Despite many advances in interactive modeling, the creation of high quality geometric 
models is still a very time consuming task that requires substantial artistic and technical skills. 
Consequently, a lot of research in recent years has focused on 3D shape acquisition by measuring 
real-world objects, allowing the creation of models of those objects with drastically reduced 
manual effort. Recently, several approaches have been proposed to extend such techniques to 
capture animated scenes in real-time. Common approaches are based on active stereo or 
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structured light techniques [RHL02, ZSC*04, DNR*05, FB05], passive multi-view stereo 
[CTM*03, ZKU*04, WLS*03], or time-of-flight measurement systems (such as [PMD, CSEM]). 
Animation scanning devices open up a large variety of interesting new applications, such as 
creating special effects for movies or content creation for interactive applications and games. 
However, currently available technology imposes some significant restrictions: Due to the real-
time capturing requirements, dynamic acquisition techniques suffer especially badly from noise 
problems. In addition to that, any optical acquisition technique is limited by occlusions so that it is 
usually not possible to capture hole-free models. Typical data sets have large unknown regions 
and these holes move over the acquired object over time. Currently, there is no obvious way to 
solve these problems by hardware improvements in scanner technology. Consequently, the 
reconstruction of noise-free and hole-free animated models is a necessary prerequisite for being 
able to make use of these exciting new acquisition techniques. A second, very important problem is 
the lack of correspondences: The scanning device only outputs a series of 3D measurements 
without keeping track of the movement of the physical object. However, many processing and 
editing techniques (such as changing geometry or texture in multiple frames simultaneously) 
demand correspondences over time. Therefore, an automated mechanism for establishing dense 
and stable correspondences is also required. As an additional benefit, the correspondence 
estimates will also provide additional information to improve the reconstruction quality: Geometry 
from adjacent frames can be used to fill in holes and to remove noise more reliably, being based on 
more data. 

In this paper, we consider the problem of reconstructing an animated model with dense 
correspondences from real-time range scanner data. We assume that the surface measurement is 
given by a sequence of point clouds sampled at a series of discrete time steps as this is the output 
of almost any range scanning device. We also assume that the point cloud is distorted by 
measurement noise and outliers. In addition, we expect the measurement to be incomplete, with 
large holes moving over the surface. Our reconstruction technique is based on a Bayesian 
statistical model, extending ideas from [JWB*06, DTB06]. We represent surfaces as a graph of 
oriented particles or “surfels” [STT93] that move over time, thus implicitly defining 
correspondences. Position and orientation of the surfels are controlled by statistical potentials that 
trade off fitting the data and prior assumptions on surface smoothness. To reconstruct the latent 
(not directly measured) correspondences between surfels over time, we add priors that penalize 
non-rigid movements and acceleration. As an additional prior, we assume the existence of a latent 
rest state of the shape that can be deformed optimally in this sense into all other frames and 
compute such a shape based on the rigidity priors. The resulting “urshape” serves as a template 
model and as such improves the reconstruction quality substantially. It is computed automatically 
from the data. In contrast to previous work, no prior knowledge of the class of objects being 
considered is needed; the “urshape” is not an input to but an output of our algorithm. We show 
how to divide the statistical maximum a posteriori reconstruction of the deforming geometry into 
two subproblems: The first is the discrete problem of computing the 4D connectivity structure of 
the data set, which describes the spatial proximity of surface points and their correspondence over 
time. The second subproblem is the continuous problem of computing the most likely geometry 
given the 4D connectivity. We derive a non-linear least-squares formulation for the second, 
continuous problem that can be solved efficiently using a Gauss-Newton-based optimization 



Figure 1: An overview of the animation reconstruction pipeline: A preprocessing step extracts 3D pieces of 
geometry in each frame. Adjacent frames are then iteratively merged using a statistical model to align pieces and 
optimize their shape as well as fill-in holes. Finally an animated triangle mesh is created by a marching cubes 
based surface extraction algorithm. 

procedure. For the first problem of finding the discrete connectivity structure, we use a heuristic 
iterative model assembly algorithm that repeatedly aligns pieces of the animation sequence in 
order to form larger chunks of reconstructed geometry with dense correspondences. This is done 
using the continuous optimization as a subroutine. We evaluate the proposed method by applying 
it to a range of synthetic and real-world data sets, acquired with different acquisition devices, 
showing that the reconstruction algorithm is able to robustly reconstruct animated models from 
real-world data sources. 

The key contribution of this paper is a complete and practical animation reconstruction 
pipeline that reconstructs topology, shape and correspondences as well as a deformable template 
model from unstructured point clouds. To our knowledge, this has not yet been done in similarly 
general form. 

2. Related Work 
Our technique combines previous work in 3D surface reconstruction from point clouds and 
deformation modeling. We also discuss the relation to existing techniques that reconstruct 
animation sequences from certain types of data. 

3D Reconstruction: A large number of techniques have been proposed to reconstruct 
surfaces from point clouds; a full survey is beyond the scope of this paper. Our technique is an 
extension of the statistical point-based reconstruction method proposed by [JWB*06], which in 
turn is based on [STT93]. In contrast to these previous techniques, we incrementally construct a 
graph of surface points that explicitly describes the topology of the point set based on observations 
in several frames rather than using simple distance criteria, which do not yield stable results 
under strong noise artifacts. A similar statistical model has been proposed by Diebel et al. 
[DTB06], requiring however knowledge of a mesh topology as part of the input to the algorithm. 
For the final meshing stage in our algorithm, we use a variant of the moving least squares (MLS) 
technique of Shen et al. [SOS04]. We also adopt the approach of Lu et al. [LZJ*05] of 
preprocessing point clouds with tensor voting [MLT00] to identify well-behaved regions and 
remove outliers. 

Deformation Modeling:  As part of the statistical priors, we need to quantify deformation 
induced by reconstructed correspondences. From a differential geometry perspective, deformations 
of corresponding surfaces can be characterized by deviations in their first and second fundamental 
forms [TPB*87]. Alexa et al. [ACL00] introduce a deformation gradient model to describe least-



deforming shape interpolation. Allen et al. [ACP02] compute correspondences between different 
range scans of a person by fitting a skeleton controlling a displaced template surface to the data. 
In follow-up work [ACP03], the authors use smoothness of local affine deformations to fit a 
template surface to range scans of different subjects. Sumner and Popovi� [SP04] use a similar 
approach to transfer deformations between meshes. All these techniques need a topologically 
equivalent and geometrically similar template mesh as input. Related deformation models are also 
used by Hähnel et al. [HTB03] in a non-rigid variant of ICP and Pauly et al. [PMG*05] to complete 
scans from pieces of similar objects. None of the aforementioned techniques considers the problem 
of reconstructing a multi-frame animation sequence. Our deformation model is a variant of 
Sumner and Popovi�’s technique [SP04]. We add additional orthonormality constraints as we are 
dealing with one and the same object deforming over time. Recently, several multi-grid methods 
have been proposed to improve the performance of deformation models [HSL06, SYB*06]. Our 
method currently does not use a multi-resolution representation but we would expect performance 
improvements from such an approach in future work. 

Animation Reconstruction: Up to now, only few approaches to reconstructing animations 
with correspondences in general settings have been published. A common strategy is to fit 
template meshes to the data [MGR00, CTM03, ZSC*04]. Anuar and Guskov [AG04] use 
hierarchical optical flow on adaptively sampled distance fields to propagate a template model over 
multiple frames. Using templates typically yields good results but requires the user to provide a 
suitable model. Our approach assembles a suitable template model as part of the reconstruction 
process, thus allowing for general input data sets, making only low low-level prior assumptions 
(spatio-temporal smoothness rather than knowledge of the class of shapes). Sand et al. [SMP03] 
reconstruct animations of humans using a combination of motion capture and silhouette-based 
reconstruction. Their method yields impressive results but is restricted to this specific acquisition 
setup as well as prior knowledge of the model skeleton. Park and Hodgins [PH06] reconstruct high 
quality animated meshes from dense motion capture data with several hundred markers. The 
main difference to our approach is that their sampling (given by the markers) needs to be fixed 
over time. In addition, the processed marker point clouds are of low complexity, low noise and high 
temporal resolution, which is not the case for general scanner data. Anguelov et al. [ASP*04] 
consider the problem of automatically matching geometry to (complete) template models. They 
model the problem as a Markov random field that tries to match local geometry descriptors while 
preserving geodesic distances. In follow up work [ASK*05], the algorithm is employed to learn 
deformation and shape models of humans in different poses. Shinya [Shi04] reconstruct 
animations using an energy function based on deformation and data matching. By triangulating 
the first frame, an initial mesh is obtained that is subsequently tracked over time to perform the 
reconstruction. This restricts the method to inputs where complete geometry is obvious in the first 
frame. The influence of noise is not modeled. The optimization is based on gradient descent, which 
causes numerical issues in terms of performance and stability [BW98]. 

3. The Reconstruction Pipeline 
Our reconstruction pipeline consists of four major components (Figure 1): Preprocessing, iterative 
model assembly, (continuous) statistical optimization, and triangle mesh construction. For clarity, 



we will describe the statistical model and the corresponding continuous optimization procedure 
first (Section 3.1). The continuous optimization assumes that the 4D topology of the data set 
(spatial connectivity and correspondences) are already known. After that, we discuss the outer 
optimization pipeline: the iterative assembly procedure that actually determines the full 4D 
topology (Section 3.2). The assembly process makes use of different variants of the continuous 
optimization procedure to align and globally optimize shape and correspondence, as well as to fill 
in holes. Finally, Section 3.3 explains how a globally consistent mesh is obtained from the point-
based representation that will be employed within the rest of the pipeline. 

3.1. Statistical Model and Continuous Optimization 
We start the discussion of the statistical model by introducing some notation. The input to our 
system is a set of unstructured point clouds d 

(t) sampled at discrete time intervals t = t0, …, tN. We 
refer to the individual data points as di(t), i = 1…#d(t). The complete data set is referred to as D, its 
reconstruction is denoted by S. We employ a Bayesian approach to surface reconstruction [DTB06, 
JWB*06]: Given a data set D, we compute the posterior probability Pr(S|D) for a candidate 
reconstruction S as: 

 Pr(S|D) ~ Pr(D|S) Pr(S) (1) 

The likelihood term Pr(D|S) models how well the data is explained by the candidate 
reconstruction and the prior Pr(S) quantifies how likely the reconstruction itself is a priori, not 
considering the data. This last term is crucial; it describes additional domain knowledge about the 
object being reconstructed. Without any such prior, no reconstruction (other than removing 
measurement bias) is possible. The goal of the reconstruction is to find the original animated 
scene S that has the largest posterior probability. To simplify computations, the optimization is 
done in log space, leading to an objective function 

  – log Pr(S|D)  ~  – log Pr(D|S) – log Pr(S). (2) 

For 3D surface reconstruction, the priors typically encode some form of smoothness assumption 
about the original surface. For animation reconstruction, we add additional priors that couple 
shape and correspondences over time: First, we assume spatio-temporal smoothness, i.e. the 
reconstruction is more likely if the surface deformation over time is small. Second, we assume 
temporal smoothness, which means that surface pieces should form smooth trajectories over time. 
Overall, we obtain an objective function (negative log-posterior) of the following form: 
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In the following, we will define all terms in the objective function in the logarithmic domain. They 
can be converted to probability densities by taking the exponential of the negative value. 

Discretization: To simplify the formulation, we define the probabilistic model directly in the 
discretized domain. Following [STT93, JWB*06], we choose a set of oriented particles (surfels) si(t), 
i = 1…ns, t = 1…nt as discretization. Particles with the same index i are always in correspondence, 



i.e. they form a trajectory over time t that stays on the same physical piece of surface (i.e., the 
number of particles is the same for every frame). In case of holes with no data, particles become 
latent parameters that are estimated from the priors. For theoretical soundness, we think of 
truncating all prior densities to zero outside a large bounding box containing the scene to make 
them integrable [JWB*06] (the truncation is just a theoretical requirement, not affecting the 
actual implementation). A resampling procedure in the outer optimization loop (Section 3.2) will 
assure that the surfels (roughly) retain a sampling distance of εsampl. This distance is a user chosen 
constant that determines the maximum resolution of the reconstruction. The trajectories are 
connected by a graph TS that describes their topology: An edge ei,j is contained in TS if the geodesic 
distance between the trajectories is smaller than a user defined constant εtop. We typically set 
εtop = c·εsampl with c = 2. The topology is global over time, which means that every reconstructed 
frame has the same topology. We refer to a set of surfel trajectories with connectivity graph TS as 
4D topology. Please note that, as we use it in this paper, the term topology refers to the local 
connectivity structure over time and space, not to global properties such as the genus. We denote 
the set of surfels that are topological neighbors of a surfel s by NT (s). Using this representation, 
we are able to handle topological pseudo changes, such as opening the mouth (where the topology 
actually does not change, but it seems like it does). However, the model cannot handle inputs like 
the surface of a splashing liquid. An alternative representation of topology would be a triangle 
mesh. We do not use this type of discretization because the outer model assembly loop will 
perform frequent changes to the topology. Maintaining a consistent triangle mesh in these 
operations is much more complex both in terms of computation time and implementation 
complexity than just maintaining a graph of surfels (in contrast to a full mesh, the surfel graph 
does not need to be conforming and may contain intersecting edges). We therefore postpone the 
creation of a consistent mesh to the last stage of the pipeline. Given the discretization, we can now 
define the different terms in the negative log-likelihood function: 

Likelihood (Data Attraction): The likelihood term Ematch(D,S) models the negative log-
probability that data D has originated from the reconstructed surfaces S. We assume that all data 
points have been created independently from each other, according to a noise probability density 
noise(t)(x, y), x ∈ S, y ∈ R3. Assuming uniform sampling probability (i.e., having no prior 
knowledge about how densely different portions have been sampled) and denoting the 
reconstructed surface at time t by S(t), the probability density p(D|S) is then given by the product 
of all 
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This means that the surface is blurred by the noise distribution. In this paper, we assume an 
unbiased Gaussian distribution and employ the standard approximation [BM92] of just using the 
closest distance to the surface instead of calculating the integral expression (4). The negative log-
likelihood is then given by the squared distance function [PH03], scaled according to the variance 
of the Gaussian noise model in normal direction 
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(a) Ematch (b) Esmooth(1) (c) Esmooth(2) 

   

(d) ELaplace (e) Erigid(1,2) (f) Eaccel(1,2) 

Figure 2: Surfel potentials – red: surfels, blue: data points, grey: optimal position, light blue: correspondences 

where ωi(t) is proportional to the inverse noise variance in normal direction. An issue in Gaussian 
noise models is outliers: Isolated points far away from the surface significantly alter the solution. 
In order to deal with this problem, we truncate the gradients to zero (and thus the Hessian as 
well) for points that are too far away. This approximates a mixture of a Gaussian and a uniform 
distribution [BFS04], the latter accounting for outliers. We use different strategies for different 
stages of the optimization: For the global statistical optimization of already aligned surfaces, we 
truncate at a small distance of ε top. However, for the heuristic assembly algorithm that initially 
aligns surfaces, we need to tolerate much larger distances in order to handle situations with 
substantial motion. In this case, we determine the cutoff distance automatically as the 85% 
percentile of point distances and additionally reject data points with an angle of more than 45° 
towards the current surface normal estimate. Additionally, we check for a doublet constraint 
[PMG*05]: if the nearest data point of the nearest surface point a data point is not close to the 
data point itself, we prune this point as well. 

Spatial Smoothness (Noise Removal): In order to evaluate the smoothness of the surface, 
we assign each surfel si(t) a normal vector n(si(t)). The normals are latent variables; they are not 
measured directly but only inferred due to the priors. The objective function (negative log 
likelihood) prefers normals and point positions so that neighboring points are located close to the 
plane (Eq. 6). In addition, neighboring normals should be similar (Eq. 7): 
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The overall objective function is the sum of these two functions. In addition to the smoothness 
terms, we also employ a Laplacian potential 
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which attracts surfels to the centroid of their neighbors. This leads to a uniform distribution of 
surfels on the sampled surface. As this is only an additional regularization, we use only a small 
weight, typically 10% of the position weight. Our smoothness model is mostly identical to that of 
[STT93]. We currently do not use the feature preserving heavy tail potentials of Diebel et al. 
[DTB06]. This is not that critical for our application because we typically need to perform only 
very little smoothing as much of the noise is removed due to the averaging effect of the common 
urshape. So far, we have only employed priors on the 3D shape, neglecting the behavior of the 
surface over time. In the following, we will formulate 4D priors that take into account the special 
properties of a deforming surface over time. For these priors, we consider the correspondences 
between frames and treat those as latent, non-observed variables. The special correspondence-
based structure of these priors is the main difference to just applying a multi-dimensional 
reconstruction technique to the four dimensional set of points over time and space. We use two 
different priors: A prior on the deformation and a prior prescribing temporal smoothness, which 
are described subsequently. 

Spatio-Temporal Smoothness (Rigidity): For a deforming surface, we expect it to deform 
as little as possible, unless evidence (measured data) shows otherwise. Consequently, we 
formulate priors that try to keep the object as rigid as possible. The key component of our model is 
to assign a local transformation to each particle [SP04]. This local transformation is a latent 
variable, being reconstructed indirectly using priors. The transformation is modeled as a local 
rigid transformation. We use Ai(t) to denote the corresponding, orthonormal 3 × 3 rotation matrix. 
We then employ the following objective function: 
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This potential tries to make the deformation of points and normals in a local spatial neighborhood 
agree with a local rigid transformation. We apply the same potential function to the normals as 
well, which is a valid condition because the Ai(t)  are orthonormal. In principle, the point condition 
alone is sufficient; having an additional constrain on the normals just improves coupling of the 
latent variables. Please note that the affine component of the transformation is modeled implicitly 
by the position of si(t+1) [SP04]. This keeps the origin of the rotation in the center of each surfel and 
thus avoids coordinate system dependencies that arise when specifying affine mappings [ACP03]. 
The matrices Ai(t) can also be interpreted as gradients of the deformation function that forcibly 
have been made rigid. Nevertheless, non-rigid mappings are possible as the constraints are only 
preserved in a least squares sense. Unlike [SP04], we do not explicitly penalize local deviations of 
the transformations. This is expressed implicitly in our model as the neighborhoods overlap 
spatially: In order to yield the same prediction for surfels joining an edge in the graph, their local 
transformations need to be similar. 



Temporal Smoothness (Acceleration Prior): The last prior we employ is conservation of 
momentum: as any different behavior needs additional force, we expect a priori that points keep 
their trajectory over time. 
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Again, we apply the same penalty function (scaled accordingly) to the normals as well. The 
acceleration priors enforce spatial coherence and turn out to be highly effective in avoiding high 
frequency tangential deformation noise in the final reconstruction. 

Numerical Optimization: The sum of the log probabilities of the described probability 
densities yields a non-linear least-squares problem, which we solve using numerical optimization. 
Several problems have to be dealt with: First, we need a reasonable starting value as the log 
likelihood might have multiple local extrema. This problem is addressed in the next subsection, 
which describes the iterative assembly algorithm. A second issue is parameterization: While the 
surfel position is unconstraint, the optimization of normals and rotation matrices is a constraint 
optimization problem. In order to avoid the difficulties of dealing with constraint non-linear 
optimization, we employ the parameterization approach of [HP04]: We describe changes to the 
normal by offset vectors in the tangent plane spanned by vectors tu, tv, 

 , (11) vu ttnn vuvu ++=),(

and solve for the parameters u, v during the optimization. Then we recompute the normals and 
the local parameterization for the next step of the non-linear optimization. Using this 
parameterization, the normals might only grow, which enlarges the objective function, thus 
avoiding degenerate solutions (as for unconstrained normals). Initial normals are computed using 
PCA and region growing to unify their orientation [HDD*92]. Similarly, we need an unconstraint 
representation for rotation matrices: We parameterize the A(t)i by 3 dimensional rotation vectors 
ci(t): Their orientation defines the rotation axis and their length the angle of rotation. We can 
compute the rotation matrix as matrix exponent of the skew symmetric matrix C×i(t) which 
describes the linear operation of taking the cross product with the vector ci(t): 
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During the optimization, we use the first order Taylor expansion (12) of the matrix exponential to 
parameterize the transformations in the local neighborhood of the current estimate. As in the case 
of tangential normal parameterizations, a valid orthonormal rotation matrix and a new local 
parameterization are computed after each step. Initial estimates are computed using the 
technique of [Hor87]. A last but important issue is the actual numerical optimization that 
computes the local minimum: At this point, the rigidity priors cause trouble: Defining a stiff object 
by making local pieces rigid yields a problem that becomes increasingly ill posed with increasing 
resolution of the discretization. A gradient descent strategy fails for models containing more than 
just a few hundred surfels: Tracking the gradient of the deformation energy yields a stiff 
differential equation that needs to be solved with very small timesteps to avoid explosive 
divergence [BW98]. For large models, often no convergence is obtained at all. We therefore employ 



  

(a) Merging partially known 
topology (schematic) 

(b) Pieces of known 3D topology (red) 
are merged 

Figure 3: Iterative assembly to compute the 4D topology 

a Newton optimizer that computes a global equilibrium of all forces in a local quadratic 
approximation to the non-quadratic objective function. As the objective function is of a non-linear 
least square type, we generally use the Gauss-Newton approximation to compute analytic 
approximate Hessians, which is computationally less involved. The Hessian of the squared 
distance function is approximated using the technique of [PH03]. We solve the linear systems in 
the Newton iteration using a diagonally preconditioned conjugate gradient solver. This 
preconditioning is important to balance the different scale of normals, rotations, and positions. 
Using this approach, large surfel graphs can be handled without stability issues. 

3.2. Iterative Model Assembly 
The previously described optimization method needs to know the 4D topology of the data set 
(neighborhood graph TS and trajectory relationship) as well as a rough initialization of the 
variables in order to perform the optimization. In theory, we could think of trying all possible (well 
connected) topologies, finding all local minima of the objective function and determining the best 
one. However, a naïve algorithm for such an approach is exponential and it is not obvious if there 
exists a more efficient algorithm. We use a heuristic approximation that reconstructs the 4D 
topology by iteratively assembling pieces of the moving surface (Figure 3). This works well for 
real-time scans of animated scenes, which are usually densely sampled in the temporal domain. A 
more rigorous statistical reconstruction of 4D topology from noisy data is a very interesting, non-
trivial problem that we leave for future work. 

The iterative model assembly pipeline works in two steps: First, we extract seed regions in 
3D. These are pieces of geometry for which the 3D topology can be safely determined by a local 
proximity heuristic. The selection of these regions is done using tensor voting [MLT00]. After that, 
in the second step, we iteratively merge geometry from adjacent frames. Each merging operation 
yields a set of trajectories over two frames with a common topology. The process is then iterated 
subsequently to create longer trajectories until each merged trajectory spans the complete 
animation and one single neighborhood graph TS describes the 3D topology of these trajectories in 
all frames simultaneously, which is the final reconstruction. Each merging operation itself is also 
performed in multiple steps: The first step is to align the first frame of the next and the last frame 
of the previous range of frames geometrically (Figure 3b, Figure 4a). Then, the topology of these 



two frames is stitched together. As the topology graph TS of each set of frames is global over time, 
connecting the frames connects the topology in all frames. The new set of trajectories covers the 
entire range of frames (Figure 4b). As a result, all trajectories from the left part are uninitialized 
in the right part and vice versa (Figure 4b, grey points). Thus, the next task is to fill in the 
interpolated estimates of the shape in these regions. We initialize the new points with a simple 
prediction and then locally perform statistical optimization. Finally, the resulting surfel graph 
(Figure 4c) is resampled to a fixed sampling density (in order to keep the complexity of the 
representation constant) and the optimization is applied once more to all surfels simultaneously to 
distribute errors globally, which finalizes the merging of two ranges of frames. Filling in missing 
values with estimates and optimizing these estimates also happens in regions where no data is 
present, i.e. in acquisition holes. In this way, holes are automatically filled with estimates from 
neighboring frames Thus, in the acquisition holes, the fill-in will resemble the neighboring 
geometry with as little deformation as possible. In the following, we will first describe the 
preprocessing procedure that estimates the initially recoverable seed regions in 3D. Then we 
describe the steps of the assembly algorithm one after the other. 

Initial Estimation of Recoverable 3D Topology: The first step is a preprocessing step 
that extracts areas where the 3D topology TS of the data is obvious from a single frame. Later, 
these potentially disconnected pieces will be stitched together to assemble the global topology, 
assuming that it will become obvious over several frames. This step might still make mistakes: In 
some situations, such as an opening mouth, the topology cannot be estimated reliably from some of 
the frames. These problems will be dealt with in later stages of the algorithm. The main idea for 
the initial stage is that locally smooth areas are likely to represent a simple, topologically disc-like 
piece of the original model. In order to extract smooth, possibly curved pieces of surfaces, we 
employ tensor voting, which is a powerful feature extraction technique [MLT00]. It represents 
surface points as ellipsoids for which the main axis refers to the normal direction and non-zero 
values for the other two axes represent uncertainty. Our implementation closely follows the 
surface voting procedure described in [MLT00]: First, “cross-product” voting tensors are 
accumulated at every data point; then the resulting tensor field is convolved with a surface voting 
tensor to enhance the contrast. As a result, every data point (we accumulate votes at data points 
only) obtains a normal direction tensor. We then threshold their aspect ratio (typically: second 
smallest / largest eigenvalue ≤ 0.8) to identify points in locally smooth regions. These points get 
connected by a neighborhood graph that forms edges between all points within distance εtop. Points 
with uncertain normal directions are excluded from the topology computation. As a useful 
byproduct, this procedure also removes isolated outliers [LZJ*05]. For the resulting surface 
patches, we apply the 3D part (data matching and smoothness) of the statistical optimization to 
remove noise from the initial estimate. Given these initial pieces of surface, we can now start 
merging frames in the process of which the individual topological pieces will be stitched together. 
Each merging step involves geometric alignment, topology stitching, hole filling, and global 
optimization, which we will discuss subsequently: 

Geometric Alignment: The first step in the merging process is to align two frames at 
adjacent times such that corresponding pieces of the surface come to rest at the same spatial 
positions. This alignment will then be used subsequently to form topological connections. In the 
following, we will call the two ranges of frames the “left” and the “right” piece, the left ending at 



  

(a) alignment (b) stitching 

  

(c) hole filling (d) resampled 

Figure 4: Steps of the topological merging pipeline. (a) Two ranges of frames are aligned. (b) The topology is 
stitched together. (c) Unknown surfels (grey) are filled in. (d) The surfel graph is resampled and optimized. 

time tleft and the right starting at tright = tleft + 1 (Figure 4a). We employ the statistical optimization 
procedure to obtain a variant of non-rigid ICP [HTB03]: We form an auxiliary scene with two 
frames: The first frame is constant and set to S (tleft). The second frame contains the unknown 
alignment to be optimized; the variables are also initialized with S (tleft) as starting position. The 
data points in the second frame are set to S (tright) in order to attract the aligned frame to the 
configuration in the following frame. We then perform continuous optimization on the second 
frame using data matching and rigidity potentials only, until convergence. If the frames of the 
animation are densely sampled over time, the likelihood term will attract the predicted points to 
the actual data points, while the priors retain a smooth deformation. In order to increase the 
robustness of the pairwise alignment process, we perform the alignment twice, once aligning the 
left with the right frame and once the other way round. We compute the resulting average 
potential in both alignments and choose the variant with the smaller stretch. After stitching the 
topology (see below), we align the other part using the established correspondences; this third 
alignment step converges quickly, typically within 2-3 iterations. 

Topological Stitching: Having aligned the two frames, we have to stitch together their 
topology. In order to do so, we start from scratch and just connect every surfel to all of its 
neighbors within distance ε top in the aligned configuration. Doing this naïvely could create a 
wrong topology: Surfels that have been connected previously will still be connected after the merge 
as they keep their distance due to the rigidity potential. However, surfels that come close to each 
other for only a few frames might be falsely connected. To detect such situations, we employ an 
additional filter: Whenever the distance between surfels changes over the newly created trajectory 
by more than a certain factor (typically 1.5), the connection is rejected. In this way, the topology 
combines proximity information in all corresponding frames. 



Hole Filling: After topological stitching, some parts of the trajectories are still unknown. 
These are the right parts from the left frame’s trajectories and left parts of right frame’s 
trajectories (Figure 4b). The frames directly involved in the alignment have already been filled in 
with aligned data but the surfels in all other frames are uninitialized so far. This step fills 
acquisition holes as well as extrapolated trajectories supported by data points; the procedure is 
the same: We first initialize surfels in frames directly adjacent to already initialized frames with a 
copy of that data. Then, we use again the statistical optimization procedure to compute in the 
most likely values at these points. We restrict the optimization to run only at the newly estimated 
surfels, treating all other surfels, including spatial and temporal neighbors, as constant boundary 
conditions. This ensures both quick convergence (due to many known neighbors) and limited 
computational effort. The procedure is iterated by a region growing in time until all frames have 
been filled up. Please note that we do not fill surface area unless it is visible in at least one frame. 
For geometry that has been unobserved so far, hole filling is done when merging with the first 
frame that contains data in this area. 

Resampling: The next step is to resample the surfel graph in order to keep the discretization 
density (and thus the computational costs) constant. This is done by greedily deleting all surfels 
that are “unnecessary”, i.e. which are within distance ε sampl/2 of another point over all frames and 
are not the last surfel to support another previously deleted point. This strategy creates a 
provably good approximation of an optimal surfel distribution on the surface [Wan04]. To our 
experience, upsampling is not necessary as the iterated merging constantly adds new surfels 
anyway. The resampled topology is created by simply again recomputing the topology using the 
previously described strategy. 

Global Optimization and the Urshape: Next, we perform a global optimization of the 
complete merged range of frames on all surfels, again minimizing the previously derived 
statistical energy function. This avoids error accumulation by balancing all terms in the statistical 
model over time and space. Global optimization is done in two steps: first, only the trajectories are 
optimized. In the second step, we compute the urshape: We form an empty frame, not containing 
any data points and initialize it with any of the reconstructed frames (in our implementation just 
the first frame). Then we connect this frame to all other frames of the animation. This means, the 
rigidity potential is evaluated for any pair of a surfel in a frame and a surfel in the urshape. Then 
we run the optimization procedure (experiments show that a joint optimization of both geometry 
and urshape at the same time shows a good convergence behavior; the presence of data points in 
all frames avoids artifacts due to the initialization of the urshape). The rigidity potentials between 
frames are not used at this stage. Empirically, splitting up the optimization into one trajectory 
and a subsequent urshape fitting step led to the best results on our test data sets. The addition of 
the urshape fitting step proved to be especially helpful to avoid correspondence noise and drift in 
the final reconstruction. In addition, it yields an “average” template model that can be deformed 
most easily into all other frames, which is a useful output of its own. Global optimization finalizes 
the merging of two frame ranges. 

Iteration: The whole merging procedure (alignment, hole filling, stitching, resampling and 
global optimization) is iterated in a binary scheme until all frames of the animation are merged: 
We iteratively merge adjacent pairs frame ranges, leading to a logarithmic number of merging 
steps per frame involved. Urshapes are currently recomputed at each level from scratch. After all 



frames have been merged, we run an additional global optimization step. In this stage, we use 
increased rigidity weights to finally smooth the reconstruction. The reason for this extra step is 
that strong rigidity penalties during merging make the problem of detecting topological changes 
harder to solve. To avoid oscillations during merging, we also postpone the usage of strong 
acceleration penalties to this last optimization step. 

3.3. Meshing 
The result of the reconstruction is a graph of trajectories sampled with oriented surfels. From this 
representation, we create the final animated mesh. To convert a single frame into a triangle mesh, 
we construct an implicit function for each surfel according to the local linear model defined by its 
surface normal. Then we blend between these local implicit functions [SOS04] using a Gaussian 
weighting kernel with standard deviation proportional to εsampl. From this representation, we 
extract a triangle mesh using a standard marching cubes algorithm [HDD*92], augmented with a 
border detection step that clips regions not supported by surfels [JWB*06]. Each triangle vertex is 
associated with the nearby surfels according to their Gaussian window weight, which we 
renormalize to form a partition of unity. Therefore, we can compute a meshing of the whole 
animation by just copying the mesh topology for all frames and recompute the vertex positions, 
normals and possible additional attributes according to the Gaussian weights. 

4. Implementation and Results 
We have implemented the proposed system and applied it to a number of synthetic and real-world 
data sets. The input data sets and the reconstructions are show in detail in the video 
accompanying this paper. Figure 5 and Table 1 give a rough overview of the results. We render the 
final meshes textured, with texture coordinates of the first frame to show the correspondences. We 
also add a specular environment map to visualize surface smoothness. 

Synthetic tests: Our first synthetic test data set is the well known Venus torso model, 
rotating about 120° over 20 frames. We subsequently add uniform Gaussian noise and 10% 
random outliers within the bounding box of the scene (see video for a comparison). The 
reconstructed correspondences do not show any visible drift. Correspondences are stable under 
noise and outliers, only some high frequency details in the geometry are lost as more smoothing 
becomes necessary to control the noise level. A second synthetic data set shows a model of an 
elephant with bending legs and proboscis that has been modeled using a commercial 3D modeling 
package. Again, we add noise and outliers and additionally cut out several large holes over the 
course of the animation. Again, we obtain globally stable correspondences over the entire 
sequence. Holes are seamlessly filled in with geometry from other frames. Some artifacts are 
visible in the final mesh at the elephant’s ears as the sampling of the surfel graph was chosen too 
coarse for the final marching cubes step. 



 venus  elephant face [DNR*05] face [GK07] hand gesture popcorn tin 

frames / surfels / 
data pts. 

20 / 25,905 / 
399,920 

20 / 49,500 / 
963,671 

21 / 63,651 / 
1,333,000 

20 / 32,740 / 
400,000 

26 / 21,294 / 
520,000  

15 / 56,985 / 
896,301 

preprocessing 272 sec 412 sec 1,203 sec    419 sec(*)     708 sec(*)    434 sec 

merging 5,816 sec 14,755 sec 16,721 sec 19,674 sec 4,002 sec 19,621 sec 
final global opt. – 1,196 sec 4,910 sec 7,367 sec 1,398 sec 1,320 sec 

Table 1: Computation time on a single core Pentium-4 3.4GHz with 2GB of main memory ((*) Pentium-4 3.0Ghz) 

Real-world data sets: Next, we apply the method to a set of real-world data sets obtained 
with different types of animation scanning devices. The first data set is a human face with 
opening mouth acquired using space-time stereo [DNR*05]. The data set is incomplete and even 
over all frames some amount of hole area remains unobserved. A special challenge is the 
topological pseudo change of the opening mouth. After adjusting rigidity weights and maximum 
edge length change tolerance manually, our algorithm is able to compute the correct topology. 
Correspondences are tracked reliably, without global drift. A small amount of tangential noise 
remains, which is mostly damped out by increasing acceleration penalty weights. In the final 
meshing, some marching cubes artifacts remain at the boundaries. In addition, some small 
patches created from structured outliers remain in the reconstruction; we currently do not remove 
small non- or loosely connected pieces automatically. We obtain comparable results for a facial 
animation captured with a prototype structured light scanner of Gumhold and König [GK07]. 
Again, the topology of the data set is correctly reconstructed as far as this is apparent from the 
incomplete input data. Area that is visible in some of the scans is filled in reliably with roughly 
believable dynamics (due to the deformation and acceleration priors). As a simple application 
example, we use the computed correspondences to propagate color painted on the first frame to all 
other frames automatically (see video) using the same technique that extrapolates the position 
and normal attributes from the single frame marching cube reconstruction. The third real-world 
example is a gesturing hand, acquired using a real-time structured light scanner [ABW]. The 
main problem is once more to reconstruct the topological pseudo-change when the fingers meet. 
This is achieved correctly up to sampling resolution. Correspondences are again tracked reliably 
with no global drift and little tangential noise. The video shows how the computed 
correspondences can be used to paint simultaneously on all frames. A last test data set shows a 
person shaking a popcorn bowl acquired with a color coded real-time structured light scanner 
[FB05]. Here, the algorithm merges the tin with parts of the hand because the input sequence is 
ambiguous: it does not show examples with sufficient separation of the two. Otherwise, we again 
obtain smooth surfaces and visually correct correspondences and some artifacts in boundary 
regions or due to surface-like structured outliers. 

5. Discussion and Future Work 
We have presented a system for performing animation reconstruction from time series of noisy 
and incomplete point clouds. The method uses a statistically motivated optimization procedure 
that removes noise, establishes correspondences over multiple frames and fills in holes from other 
frames. Using this approach, we were able to reconstruct animated meshes with dense 
correspondences from data corrupted by strong noise and outlier artifacts as well as large portions 



of missing data. For synthetic data sets that meet our model assumptions, we obtain almost 
artifact free results and globally and locally stable correspondences. Stable correspondences are 
also obtained for real-world data sets; however, some geometric artifacts remain due to structured 
outliers (which are not modeled) and in some boundary regions. The latter is a shortcoming of our 
simple meshing technique that could be improved in future work by adding better handling of 
boundary curves [JWB*06]. As far as data is available, holes are filled in reliably and the 
algorithm is able to distinguish between acquisition holes and topological changes based on the 
deformation of adjacent geometry. Our approach has several limitations that could be addressed 
in future work: The employed iterative assembly heuristic does not provide guarantees for finding 
a good solution. For data sets with bad spatial or temporal sampling, the assembly algorithm 
cannot determine the 4D topology correctly. We have conducted some successful preliminary 
experiments of using geometric feature matching to improve correspondence estimation for large 
temporal spacing. However, a general solution to determine a strong statistical estimate of the 4D 
topology still remains an open problem. A further, important practical limitation is the large 
computational costs of the current method. A scene representation that separates low resolution, 
adaptively sampled, time variant deformation and high resolution, static geometry could improve 
upon this. We would also like to integrate the reconstruction more tightly into a computer vision 
system, using more accurate noise distributions and visibility constraints. Using the urshape as 
common reference frame, it would also be interesting to try to learn the weights of the prior 
potentials from data by trading off fitting residuals and additional regularization constraints that 
avoid degenerate zero weights. Having a practical and stable technique to reconstruct shape and 
correspondences from dynamic 3D scanner data could serve as a basis for more general geometry 
processing algorithms on animated data. The long term goal of such efforts could be an application 
such as a scanner based 3D movie editing pipeline. 
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(a) venus torso (synthetic) (b) elephant (synthetic) 

    

  

   

(c) face I [DNR*05], courtesy of James Davis (d) face II [GK07 ], courtesy of Stefan Gumhold 

 



 

    

  

        

(e) hand gesture, courtesy of Oliver Schall (f) popcorn tin, courtesy of Phil Fong 

Figure 5: Example scenes – top: input data, center: reconstructed surfel graphs (blue: urshapes), bottom: final 
meshes. The images show two different frames with large temporal spacing; please refer to the video for the full 

animations. 
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