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Figure 1: Chandeliers data set with matched lamps over several geometrically varying configurations.

Abstract
In this paper we address the problem of finding correspondences
between related shapes of widely varying geometry. We propose a
new method based on the observation that symmetry and regularity
in shapes is often associated with their function. Hence, they pro-
vide cues for matching related geometry even under strong shape
variations. Correspondingly, we decomposes shapes into overlap-
ping regions determined by their regularity properties. Afterwards,
we form a graph that connects these pieces via pairwise relations
that capture geometric relations between rotation axes and reflec-
tion planes as well as topological or proximity relations. Finally, we
perform graph matching to establish correspondences. The method
yields certain more abstract but semantically meaningful correspon-
dences between man-made shapes that are too difficult to recognize
by traditional geometric methods.

CR Categories: I.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling;
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1 Introduction
One of the big challenges in modern computer graphics is to or-
ganize, structure, and to some extent “understand” visual data and
3D geometry. We now have large data bases of shape collections,
public ones such as Trimble 3D WarehouseTM, as well as other aca-
demic, commercial, and possibly in-house collections. These pro-
vide numerous 3D assets in varying composition, style, and level-
of-detail.

Being able to explore, structure, and utilize the content in such data
remains one of the key challenges in computer graphics research.

A core building block for this task is the ability to establish corre-
spondences [van Kaick et al. 2011]: We need to be able to match
objects, and parts of them according to multiple notions of simi-
larity. In other words, correspondence computation means the re-
covery of a latent equivalence relation that identifies similar pieces
of shapes. The equivalence classes unveil redundancy in a model
collection, thereby providing a basic structuring tool.

As detailed in Section 2, a large body of techniques is available
for estimating correspondences that involve simple transformations
with few degrees of freedom, such as rigid motions or affine maps.
More recently, this also comprises intrinsic isometries, which per-
mit matching of objects in varying poses as long as there is no sub-
stantial intrinsic stretch.

However, matching semantically related shapes with considerable
variation in geometry remains a very difficult problem. Objects
such as humans in different poses can be matched by smooth
deformation functions using numerical optimization [Allen et al.
2003], typically requiring manual initialization. Relating collec-
tions of shapes without manual intervention has become feasible if
the collection forms a dense enough sampling of a smooth shape
space [Ovsjanikov et al. 2011; Huang et al. 2012; Kim et al. 2012].
However, these assumptions are not always met. In particular, man-
made artifacts of related functionality can have very different shape
with non-continuous variability.

We propose a new technique for relating shapes of similar function-
ality but potentially very different geometry based on shared sym-
metry properties, complementary to extant approaches. We build
upon the observation that symmetry and regularity (we will use
these terms interchangeably) are often related to functionality: For
example, a windmill is rotationally symmetric but not reflectively
because it must be driven by wind. The same holds for screws and
propellers. However, a windmill is different from a plane or a sub-
marine in that the propeller is attached to a typically rotationally
symmetric building, joining the rotation axes in a roughly perpen-
dicular angle, unlike the other two. The idea of our paper is to
systematically extract such regularity properties and pairwise rela-
tions between their invariant sets (rotation axes, reflection planes)
in order to characterize shape families at a high level of abstraction.

We detect regularity in the form of Euclidean symmetry groups act-
ing on the shape geometry. We describe the symmetry structure
of shapes by a pairwise structure graphs on pieces of geometry.
The nodes are symmetries and edges are pairwise relations between
symmetries, such as angles or topological relations, such as set in-
clusion and adjacency. Afterwards, we employ graph matching to
find correspondences between shapes in this more abstract and in-
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Figure 2: Examples of Euclidean symmetry groups. Point-symmetries combine rotations and reflections and differ in the number of rotation
axes and reflection planes, and their mutual relation. The remaining cases combine infinite translational lattices with optional point groups.

variant representation. Our method is complementary to traditional
geometric methods. It does not require training data or collections
to co-analyze but can directly match pairs of shapes.

Our approach is essentially a second-order shape comparator, com-
paring shapes not by traditional geometry-matching between the
shapes, but by comparing the geometry matches (symmetries)
within each shape to each other. Such symmetries and self-relations
capture aspects of the shape that are important both to its func-
tion and to our perceptual understanding of it. While earlier work
has addressed the estimation of such shape self-structure, this pa-
per provides a canonical way of encoding these relations in a graph
and for comparing such symmetry graphs even when the symme-
tries present are not exactly the same, effectively exploiting a novel
metric structure in the space of symmetries.

2 Related Work
Correspondence in 3D geometry has received a lot of attention in
recent years; van Kaik et al. [2011] provide a good survey. There
are mature solutions for matching geometry under the action of
groups of transformations with few degrees of freedom such as rigid
matching. Matching objects that are semantically related but have
widely varying geometry is very much an open problem; only a
few specialized solutions exist. One possibility is to use machine
learning to associate semantic categories with geometry [Kaloger-
akis et al. 2010]. This approach is versatile and powerful, but re-
quires supervised training. Unsupervised methods rely on cluster-
ing or manifold reconstruction in descriptor space [Ovsjanikov et al.
2011; Sidi et al. 2011], which again requires a certain amount of
geometric similarity. The same holds for recent attempts to extract
correspondences in shape collections by combining a larger num-
ber of similar, pairwise maps between shapes [Nguyen et al. 2011;
Huang et al. 2012; Kim et al. 2012] by enforcing transitive closure
of correspondences. This assumes a densely sampled, continuous
shape spaces, where geometrically similar neighbor models exists
for each example.

Our approach is based on the observation that symmetry is often
related to object function. The idea of using symmetry to character-
ize shapes is well established in the field: Thrun et al. [2005] utilize
symmetry for shape completion. Mitra et al. [2010] use symmetry
as a cue to understand the semantics of mechanical assemblies. Gal
et al. [2009], Bokeloh et al. [2012], and others, have used symmetry
properties of shapes as invariants for content-aware shape editing.

Kazhdan et al. [2004] use global rotational and reflective symme-
try as shape descriptors. Our approach is more general as it ex-
amines constellations of multiple symmetric parts and their global
relations. Hierarchies of symmetry relations have been used by
Martinet et al. [2007] for compression. Wang et al. [2011; 2012]
propose symmetry hierarchies for shape analysis with applications
to segmentation and editing. Hierarchical decompositions have also

been employed by Cullen et al. [2011] for relating shapes and cre-
ating shape variations, as well as by Simary et al. [2009] for shape
segmentation; the method incorporates relations such as perpendic-
ularity of symmetry planes between adjacent segments.

Our method is different in two important aspects: First, we aim at
correspondence estimation and develop the necessary tools (struc-
ture model, graph decomposition, comparison functions) for this
task. Second, our technical approach is different: Hierarchies are
usually not unique, requiring non-canonical choices. We therefore
build graphs that reflect algebraic symmetry properties and topolog-
ical aspects of the shape. This does include relations of hierarchi-
cal containment. However, our representation does not compress
detected hierarchies. This maintains a richer set of structural re-
lations, making it better suited for correspondence problems. Van
Kaik et al. [2013] obtain information from optimizing hierarchies
for shape collections; our paper restricts itself to pairwise match-
ing, where this is not possible. Graph-based matching has previ-
ously been studied by Fisher et al. [2011] with restriction to local
spatial proximity relations while we use non-local invariants. Liu et
al. [2012] also use symmetries to aid correspondence computation;
a (single) dominant intrinsic involution is computed [Xu et al. 2009]
as reference for dense correspondences; our method obtains coarse
correspondences from a large set of different extrinsic symmetries.

Symmetry groups have been used for matching in the image domain
by [Hauagge and Snavely 2012; Henderson et al. 2012], but the ap-
proaches are restricted to local descriptors while we seek to form
global invariants that consist of complex arrangements of regularity
patterns. Our approach is motivated by algebraic regularity mod-
els proposed by Pauly et al. [2008] and Bokeloh et al. [2012] for
characterizing families of shapes. Our representation is more gen-
eral: It is not restricted to lattices but captures all possible types of
symmetry groups, and we can handle general geometric and topo-
logical relations of symmetric parts. However, we do not obtain
generative models; we cannot create shape variations but just aim
at identifying correspondences.

3 Regularity Graphs
In this section, we introduce regularity graphs, the shape abstrac-
tion employed in our approach.

Graph nodes: The nodes in the graph correspond to subsets of
the geometry that each have a fixed regularity structure. Each node
is annotated with its symmetry group and represents the maximal
connected subset of the input model with that symmetry; multiple
nodes might overlap. To facilitate matching of related but not fully
identical structures (such as cubes and cuboids), we store symme-
try groups that characterize these objects in a factorized graph, and
represent each group by a small set of overlapping nodes. We recap
algebraic symmetry in Sections 3.1/3.2 and discuss factorization in
Section 3.3.



Class Type Comment

Involutional
(reflections,
2fold
rotations)

E = C1 identity group, no transformation
Ci inversion, i.e. reflecting by center point
Cs = σ reflection on a single plane
C2 2-fold rotation

Cyclic
(one rotational
generator)

Cn rotational symmetry group with n-fold
rotation by 360

n degrees
Cnh combination ofCn andCs with perpen-

dicular reflection plane
Cnv n-fold rotation with n-reflection planes

colinear with rotation axis
S2n n-fold rotation around improper axis, i.e.

a rotation combined with a reflection

Dihedral
(two rotational
generators)

Dn n rotations by 360
n degrees (main axis)

with perpendicular 180◦ rotations
Dnh Dn with perpendicular reflection plane.

Coinciding v-type reflections included.
Dnd Dn group with v-type reflections per-

pendicular to both rotation axes.

Polyhedral
(more than two
rot. gen.)

T , Th, Tv tetrahedral symmetry group
O, Oh octahedral symmetry group
I , Ih icosahedral symmetry group

Lattice
(translational)

L1, L2, L3 lattice structure with 1,2,3 translational
generators.

Table 1: Overview of all Euclidean point symmetry groups and
lattices [Hahn 2002], see also Fig. 3 for the notation.

Graph edges: Edges represent pairwise relations, encoding topol-
ogy (adjacency, containment) and symmetry relations that relate ro-
tation axes and reflection planes, for example by coincidence or an-
gles. Pairwise relations are described in Section 3.3.2.

3.1 Symmetry and Regularity
We build our approach on the classical model of groups of transfor-
mations for characterizing symmetry.

Euclidean 3D geometry: We consider the Euclidean space R3 and
pieces of geometry S ⊂ R3. Further, we consider transformations
T : R3 → R3. We restrict ourselves to the group E(3) of rigid
motions, i.e., all combinations of translations, rotations, and reflec-
tions. This is a reasonable choice for man-made shapes, as their
manufacturing and operation frequently involve rigid motions (as-
sembly of parts, lathing, gears, axles, etc).

Symmetry groups: Symmetries are formally described by groups
of transformations: S ⊂ R3 is symmetric with respect to one of
its symmetry groups G ⊂ E(3) if it is invariant under the group
actions of G, i.e., any T ∈ G can be applied to S unnoticed. We
use 〈P 〉 to denote the group generated by all products of elements
of P ⊂ E(3). Elements p ∈ P are called generators.

3.2 Euclidean Symmetry Groups
Euclidean symmetries are well understood; there exists a complete
classification of all possible types [Hahn 2002]. The understand-
ing of the structure of Euclidean symmetry is essential for our ap-
proach; we therefore give a brief summary of the theory below. We
organize this overview along the properties of discrete vs. continu-
ous groups, and point groups vs. translational lattices.

Discrete Point Symmetry Groups
Discrete subgroup G ⊂ E(3) consist of isolated transformations:
For each T ∈ G there is an empty ε-ball with ε > 0 around T in
E(3). Point symmetries have at least one point x0 that is invariant
under all transformations. They are combinations of rotations and
reflections, excluding translations. All discrete point groups are
listed in Table 1. We now count the number of rotational generators:

Figure 3: We use Schönflies notation. Mirror planes are denoted
with v (vertical) and h (horizontal), assuming that the main rota-
tional symmetry axis is “vertical”. Combining v and h yields Dnh.

Reflections (no rotation): In 3D, there are two purely reflective
groups: reflections at a point (denoted by Ci) and at a plane (Cs).
Both consist of two elements, the identity and a reflection that is an
involution, i.e., the reflection is its own inverse.

Cyclic symmetry (1 rotation + reflections): cyclic symmetry
groups Cn, n ∈ N have one rotational generator; they consist of
repeated rotation by 360/n degree (Fig. 2a). C2 is the third pos-
sible involutional group (180◦-rotations are self-inverse). Cyclic
groups can be combined with additional reflections with the re-
flection plane either containing the rotation axis (“v”-type Cnv)
(Fig. 2b) or being perpendicular to it (“h”-type Cnh) (Fig. 3). Cnv

groups have n reflection planes, replicated by the rotational sym-
metry. An additional type is S2n, generated by a combination of
reflection and rotation (improper rotation, Fig. 2c).

Dihedral symmetry (2 rotations + reflections): Rotational Cn

symmetry groups can also be combined with rotation by 180◦ as ad-
ditional involutions. This yields dihedral symmetry groups, denoted
by Dn; they are generated by two perpendicular rotations. The
180◦-rotation is multiplied n-fold by the Cn symmetry (Fig. 2d).
Dn groups can still be combined with further reflection planes. A
perpendicular “h”-type reflection yields Dnh (Fig. 2d). Because
the 180◦ rotation is the concatenation of the “h” and “v” reflec-
tions, Dnh also contains the v-type reflections such that the involu-
tional rotation axes lies within the v-type reflection plane (Fig. 3).
A different option is to add a v-axis that is orthogonal to the invo-
lutional rotation, denoted by Dnd. Here, the 180◦-rotation axes lie
in between the v-planes, bisecting the angles in between them.

Platonic solids (more than two rotational generators): The re-
maining cases are the symmetry groups of the platonic solids:
Tetrahedral symmetry (T , combined with reflections as Th and Tv),
octahedral symmetry (same symmetry as the cube, 24 rotations de-
noted by O, or 48 rotations and reflections, denoted by Oh, see
Fig. 2e), and isocahedral symmetry (I, Ih, same as dodecahedra).

Discrete Lattices
Point groups cannot contain global translations. If we choose
k = 1, 2, or 3 linearly independent translations as generators, we
obtain a translational lattice group Lk (commutative k-parameter
groups [Pauly et al. 2008]). We call them lattices and the geometry
generated by their group action grids. Naturally, grids must always
be infinite in extent. A helix is a 1-parameter lattice of a com-
bined rotation and translation. In combination with point symmetry
groups we obtain crystallographic lattices [Hahn 2002] (Fig. 2f).

Continuous Symmetry
The fine-grained limit yields continuous symmetries [Gelfand and
Guibas 2004]. Continuous and discrete symmetry can also be
mixed: Except from the sphere, any of the continuous degrees of
freedom can be replaced by a discretized version. Our current im-
plementation detects only discrete symmetry.



Figure 4: Graph representations for symmetric objects. We factor-
ize symmetry groups in graphs of overlapping nodes.

3.3 Factorization Model
We now encode symmetry properties to be suitable for comparison
by graph matching. Partial matching is particularly important: reg-
ularity structures should have similar graphs even if they are not
identical in all aspects. For example, a cube should be similar to
a rectangular cuboid in its graph representation. We therefore pro-
pose a representation that factors all of the symmetry groups listed
above into combinations of elementary 1-parameter groups.

Factorization model: Point groups can be represented by combin-
ing involutions and/or 1-parameter rotation groups (including im-
proper rotations and helices). Lattices add translational degrees of
freedom. We therefore use three corresponding basic node types in
our regularity graph:

• Involutions (I): point/plane reflections, rotations by 180◦.

• Rotations (R): 1-parameter groups generated by a rotation,
including improper and helical cases.

• Lattices (L): 1, 2, 3-parameter groups generated by 1-3 lin-
early independent translations.

While this makes complex structures more comparable at the graph
level, we nonetheless need to take a few precautions to avoid creat-
ing an overly redundant representation:

Recording all 1-parameter groups would create redundancy that ob-
scures the structure for the later graph matching. For example, in a
checker-board grid (2-parameter lattice), any regular line (for exam-
ple, a diagonal) would create a separate 1-parameter lattice. There-
fore, higher-order lattices are not factored into 1-parameter groups
but keep a single L-node with k = 1-, 2-, or 3. Rotations use a
similar compression: The Cnv , Dn, Dnh, and Dnd symmetries
replicate their additional involutions n-fold by the main rotational
symmetry, again creating redundant nodes. We therefore store ad-
ditional involutions directly within the main R-node. Additionally,
in case of rotations, lower order groups are replaced by higher order
if they are subgroups, e.g. a group C/Dn[h/d/v] is a subgroup of
C/Dkn[h/d/v] for any k ∈ N. Examples of factored representations
are shown in Fig. 4. Our representation encodes all original sym-
metry properties; while different choices of rules would be possible
at this point, no information is discarded.

3.3.1 Building Graph Nodes
So far, we have only consider globally symmetric objects. We
now relax the model towards partial symmetry: we permit incom-
plete groups and perform symmetry-based segmentation into graph
nodes.

Incomplete groups: We accept incomplete “excerpts” of a full
symmetry group. For lattice structures and for rotational regularity,

Figure 5: We decompose the scene into overlapping sets of maxi-
mal symmetry groups. These sets form nodes in a graph (for clarity,
not all possible nodes are shown).

we require at least three consecutive symmetric objects; involutions
(naturally) require only two.

Graph nodes: We define graph nodes as maximal possible subsets
of the geometry with constant symmetry properties. We tag each
surface point x ∈ S with the maximal symmetry group G ⊂ E(3)
that it can be part of, i.e., G(x) ⊆ S. The geometry of the nodes
obtained can and usually does overlap; we do not aim at a disjoint
segmentation yet (see Fig. 5). In the following, we denote these
by V = {v1, ..., vn}. Each graph node represents the geometry
geo(vi) ⊆ S. We store its type (I/R/L), the generators (T ∈ E(3))
and the repetitions as an integer interval I.

3.3.2 Relations (Graph edges)
Given the nodes in the regularity graph, we build edges, denoted by
E ⊆ V × V , that encode pairwise relations between graph nodes.
Two directed edges (vi, vj), (vj , vi) ∈ E between the nodes vi and
vj are added to the graph when for a given threshold εprox, which
is typically set to 5% of the bounding box size, the shortest distance
between any two points of both nodes is below the threshold, i.e.:

min
x∈geo(vi)

min
y∈geo(vj)

(||x− y||) ≤ εprox.

We extend our regularity graph model by including flags for each of
the edge representing a set of discrete relations between two nodes
in our model. Each of these flags describes special properties of the
topology as well as of the symmetric relation between two nodes.
We distinguish four types of discrete relations and encode them into
a binary functions Rp : E → 0, 1, with p = prox, over, sub, sym:

• Proximity relation: Any edge connecting two adjacent
nodes, i.e., geo(vi)∩geo(vj) = ∅ is marked with a proximity
flag, i.e. Rprox({vi, vj}) = 1 and Rprox({vj , vi}) = 1.

• Subset and overlap relations: If two nodes are overlapping,
i.e. geo(vi) ∩ geo(vj) 6= ∅, both edges (vi, vj) and (vj , vi)
are marked with an overlap flag, i.e. Rover({vi, vj}) = 1
and Rover({vj , vi}) = 1. Additionally in case if the geome-
try of node vi is covered by the geometry of vj , i.e. geo(vi) ⊆
geo(vj), we add a subset flag, i.e. Rsub({vi, vj}) = 1, en-
coding hierarchical containment. Equality is given by two op-
posing subset edges.

• Symmetry relation: We add a symmetry relation flag to an
edge, i.e. Rsym({vi, vj}) = 1, if the vectors characterizing
the invariant sets (i.e. rotation axis of a rotational group and
reflection plane normal of the Cs group, respectively) are ap-
proximately the same. For edges connecting lattice structures,
we interpret the generating translation as axis or two of them
as a plane and apply the same criterion.

In our implementation, “approximately the same” means that we
allow deviations of up to 5% of the bounding box size for distances
(εdist), and 15◦ for angles (εangle); see Table 3.

The proposed binary relations are not exhaustive; further invariants
such as co-occurance could be added. Fig. 6 shows an example
of a regularity graph of a windmill as has been detected with our
approach.



(a)

(b) (c) (d)
Figure 6: (a)-(d) show the one-point symmetry groups of a wind-
mill (purple colored reflection planes are missing in the data). Tags
p, o and ⊆ indicate respectively proximity, overlap and subset re-
lationships as described in Section 3.3.2.

Hierarchies and Redundant Nodes
The graph model outlined above captures hierarchically nested
structures through subset relations. In contrast to previous work,
such as Wang et al. [2011; 2013], it does not perform compression.
This means, all children appear as separate nodes in the graph. This
allows the graph to encode further relations of subsets of the chil-
dren to the rest of the scene. This is beneficial for our target ap-
plication because we do not need to decide a priori which relations
will be meaningful for shape matching.

Figure 7: Redundant
C2 nodes emerge from
hierachical nesting of
C5v within C6v nodes.

However, hierarchically nested symme-
tries can induce further symmetries, as
shown in Fig. 7. In this example, ad-
ditional involutions arise from the re-
peated sub-element being symmetric
by itself. An additional filter can re-
move this redundancy: For any pair
of detected nodes vi and vj , where
geo(vi) ⊆ geo(vj) we check if apply-
ing the transformation Tj of node vj to
the geometry of node vi yields match-
ing geometry, i.e., if Tj(geo(vi)) =
geo(vj). If this is the case, node vi is
removed from the graph.

In our experiments, filtering leads to slightly smaller graphs (be-
tween 5-20%) but it had only a small influence on correspondence
estimation.

4 Graph Matching
Given regularity graphs of multiple shapes, our task is now to find
a matching between these graphs. Hence, the last ingredient of our
model is a similarity function that gives us scores for comparing
pairs of nodes and edges (unary and pairwise scores). We use posi-
tive scores, where zero means no match and one means that a single
structural aspect matches perfectly.

4.1 Comparing Nodes (Unary Scores)
We compare pairs of nodes by quantifying how similar their
symmetries are. For subgroups G1, G2 ⊂ E(3), we define
sim(G1, G2) ≥ 0 to quantify their similarity. Kazhdan et al. [2003]
propose a continuous measure for how much a piece of geometry
is symmetric according to a given symmetry group, capturing Cn

and Cs groups. In contrast, we compare more complex groups. For
example, a Cnh and Cn node might be corresponding, having only
the rotation axis in common, while the additional reflection is only

(a) In this example, only half (b) Increasing number of rotations
of the group elements match. approach a continuous circle.

Figure 8: Conceptually, we compare groups by measuring their
overlap, shown schematically by blurred points. (a) C6 scores one
against another C6, and 1

2
against C6h. (b) A C8 group is more

similar to a C12 than a C3 to a C5.

a coincidence in the first model. Nonetheless, a match to a second
Cnh would still make a stronger point.

We therefore base the rating on the amount of common structure:
The more complex structures are matching, the higher the likeli-
hood that this is not a coincidence. We first describe a geometric
intuition: We can think of point groups G ⊆ SO(3) as a set of
points on the manifold SO(3) (centering rotation axes / reflection
planes). We then compare the point sets by measuring a suitable
notion of distances between them (see Fig. 8). We implement an
approximation of this conceptual idea, as detailed below.

Involutions: For pairs of involutions (I), we set a fixed score of one
if the subtype (Ci, Cs, C2) matches, and zero otherwise.

Rotations and complex point groups: For a pair of cyclic and
dihedral groups Gi, Gj , we approximate the overlap by

sim(Gi, Gj) = w · exp

(
−
(
2π/ni − 2π/nj

σrot

)2
)

, (1)

where σrot is a parameter that controls how sensitive the compari-
son should operate. We use σrot = 0.15 ≈ 8.5◦ for all our exam-
ples as this have been found empirically to be a good value. The
numbers ni and nj are the number of rotations around the main
axis of the group, for example C6 and D6h both perform 6 rota-
tions. The factor w models the structural overlap of both groups:
For example,Cn againstCnh obtains half the score of matchingCn

against itself. Table 2 lists the weights between all one-point group
pairs and the involution group Cs as used in our implementation.

The exponential kernel (Eq. 1) measures similarity as a cross-
correlation: The kernel is a Mercer kernel that acts as a scalar prod-
uct in an implicitly defined feature space, which yields a consistent
metric. Similarly, we use exponential kernels for the further com-
parisons. An alternative design would be to use subgroups for clas-
sification, but this would rate circles approximated by meshes with
discrete C23 and C24 symmetry as totally distinct, which does not
match their visual impression.

Lattices: When comparing two 1-parameter grids La and Lb we
compare the lengths of their minimal generators ua and ub respec-
tively:

sim(La,Lb) = exp

(
− (||ua|| − ||ub||)2

σ2
d

)
, (2)

where σd controlls the sensitivity of the comparison and is set to
0.3 in all examples used. 2-parameter grids obtain scores in the
same way, however, taking the squared difference of the angles of
both generators in the exponent. This model could in principle be
refined by taking the rotational component (torsion for 1-parameter



Cs Cn Cnh Cnv Dn Dnh

Cs [1] [0] [1/n] [1/n] [1/n] [1/2n]
Cn [0] 1 0.5 0.5 0.5 0.25
Cnh [1/n] 0.5 1 0.5 0.5 0.5
Cnv [1/n] 0.5 0.5 1 0.5 0.5
Dn [1/n] 0.5 0.5 0.5 1 0.5
Dnh [1/2n] 0.25 0.5 0.5 0.5 1

Table 2: Weight w in Equation 1. The weight describes the struc-
tural overlap between the complex rotational groups. For the com-
bination of one-point group G with the involution group Cs the
numbers in the table show the actual score sim(Cs, G).

grids, curvature of the cylinder for 2 parameters) into account. Our
implementation currently omits 3-parameter lattices.

4.2 Comparing Edges (Pairwise Scores)
The unary scores do not yet model the the arrangement of different
parts. We therefore also employ edge scores that capture how nodes
are arranged relative to each other. As discussed in Section 3.3.2,
these edges in the regularity graph contain both discrete (subset,
adjacency) as well as continuous relations (angles between direc-
tion vectors of invariant sets, i.e., normal of reflection planes and
direction of rotation axes), which now need to be compared:

Let α1, α2 be the angles measured between two such direction vec-
tors of two pairs of nodes connected by two graph edges e1, e2 and
Rp be the binary indicator of the according discrete property. We
can now combine the discrete and continuous properties into an
edge score using the Gaussian similarity again:

sim(e1, e2) = exp

(
−
(α1 − α2

σ

)2)∑
p∈P

wpRp(e1)Rp(e2),

(3)
where P is the set of all discrete properties, i.e. P =
{prox, over, sub, sym} and the normalized weights wp are used
to emphasize certain properties over the other. In our implemen-
tation we set them to wprox = wover = wsub = 0.15 and
wsym = 0.55 to emphasize the importance of coinciding symmetry
axes and planes compared to other topological properties.

4.3 Matching function
Equiped with the unary and pairwise similarity functions we now
discuss the matching approach to find correspondences between a
pair of shapes. Let G1 = (V1, E1) and G2 = (V2, E2) be two
regularity graphs, with nodes denoted by V1 = {v1, ..., vn1} and
V2 = {w1, ..., wn2}. We compute correspondences as relations
between nodes: Let

m : {1, ..., n1} × {1, ..., n2} → 0, 1 (4)

be a binary indicator function that represents this relation: mij is
one if and only if nodes vi, wj correspond. We determine the indi-
cators by maximizing the quadratic assignment score Q(m):

Q(m) =
∑

vi∈V1,
wj∈V2

mij · sim(vi, wj)

+
∑

{vi,vj}∈E1,
{wk,wl}∈E2

ωijkl ·mik ·mjl · sim
(
{vi, vj}, {wk, wl}

)
(5)

The pairwise terms are weighted by the similarity of their nodes
associated with their edges:

ωijkl =
√

sim(vi, wk) · sim(vj , wl). (6)

Because the weights and the score function sim(·, ·) are strictly pos-
itive the energy is trivially maximized by setting allmij to one. We
therefore in addition demand that the mapping encoded in m is in-
jective, i.e., we never map two nodes to a single node. Formally,
this means:

∀i ∈ 1..n1 :

n2∑
j=1

mij ≤ 1 and ∀j ∈ 1..n2 :

n1∑
i=1

mij ≤ 1 (7)

We also do not want bad matches that connect two pairs of nodes
such that the edge between them is incompatible. Assume that node
vi ∈ V1 is mapped to wk ∈ V2 and vj ∈ V1 is mapped to wl ∈ V2,
i.e., mikmjl = 1. Then, the edges {vi, vj}, {wk, wl} must either
both exist and be compatible, i.e.:

sim({vi, vj}, {wk, wl}) > 0 (8)

or both must not exist. The resulting optimization problem is a stan-
dard quadratic assignment problem with compatibility and injectiv-
ity constraints. We solve it using a spectral relaxation [Leordeanu
and Hebert 2006].

Additional geometric information: The model so far does not
consider the actual geometry inside a node aside from its symmetry,
as encoded in the unary scores. We can optionally add further ge-
ometrical descriptors to make the matching more sensitive. In the
evaluation of our approach (Section 6), we extended the model by
a simple volume ratio of two nodes, providing local cues about the
geometry. With vol(v) and vol(G) denoting the volume of PCA-
aligned bounding box for nodes and the whole object, respectively,
we create weights of

ωij =
min(vol(vi)/ vol(G1), vol(vj)/(G2))

max(vol(vi)/ vol(G1), vol(vj)/ vol(G2))
, (9)

and multiply them with the unary scores (in Equation 5:
sim(vi, wj) = ωij · sim(vi, wj)). Depending on the geometric
variability of the data, this can both improve or reduce the matching
quality (Figure 10). This could be extended with more sophisticated
geometry descriptors (which is out of scope of this paper).

4.4 Qualitative Geometry Model
The regularity graph constructed above encodes only the topology
of the symmetric nodes and qualitative relative orientation informa-
tion. The strength of this view is its strong invariance with respect
to geometric variations. In addition, we can also add geometric
information; this is in particular important to study the trade-off
between geometry and regularity-based information.

We now describe an extension to introduce more geometry: First,
we modify the regularity graph so that it partitions the geometry
disjointly. Second, we describe a qualitative model of geometry
matching that is compatible with our graph-based approach. Fi-
nally, we combine the two scores and compute a solution.

Modified graph: The regularity graph defined above consists of
overlapping nodes that enumerate maximal symmetry groups. In
order to uniquely associate regularity properties with geometry, we
segment the geometry further into disjoint pieces by splitting at
node boundaries: For each point on the geometry, we consider the
list of all nodes in the regularity graph that overlap the point. We
then segment the geometry into maximal connected fragments that
are associated with the same set of graph nodes. In other words,
we determine pieces that are overlapped by the same partial sym-
metries of the shape. This gives a unique, disjoint partition of the
original geometry into segments, denoted by V ′ = {v′1, .., v′n′}.

Qualitative geometry model: We include the extrinsic geome-
try of the shapes. Gelfand et al. [Gelfand et al. 2005] model this



parameter default value decription
building regularity graphs

εprox 5% bb. max. distance for proximity
εangle 15◦ max. angular deviation

similarity
σrot 8.5◦ angular kernel width
σd 0.3 lattice kernel width
σ′ 30% bb. geometry resolution (if used)

graph matching
ωprox, topology weights

ωover, ωsub 0.15 (proximity, overlap, subsets)

ωsym 0.55 symmetry weight
symmetry detection

εmatch 2.5% bb. matching threshould

Table 3: Parameter overview (bb. = bounding box).

as a graph matching problem: The pairwise Euclidean distances
between points of an object are frame independent invariants of
the extrinsic geometry. We compute the closest distances between
all segments v′i, v

′
j ∈ V ′ and create pairwise constraints that the

Euclidean distances dist(v′i, v
′
j) should be preserved by the map-

ping: Let V ′1,V ′2 be the sets of segments of two shapes, and let
v′i, v

′
j ∈ V ′1, w′i, w′j ∈ V ′2. We create the (purely quadratic) energy

in terms of variablesm′ij that indicate correspondence between seg-
ments (rather than graph nodes):

Qg(m
′) =

∑
v′i,v
′
j∈V

′
1,

w′k,w
′
l∈V
′
2

m′ij ·m′kl · sim′ijkl (10)

with

sim′ijkl = exp

(
− 1

2σ′
(dist(v′i, v

′
j)− dist(w′k, w

′
l))

2

)
(11)

The Gaussian kernel in Eq. 11 controls the level-of-detail. Because
we are only interested in the coarse, low-frequency geometry (ex-
pecting details to vary), we use a large variance, effectively blur-
ring the extrinsic geometry. In our experiments, normalize each of
the two input shapes separately to unit bounding box and then use
σ′ = 0.3 as standard deviation. This means, any geometry smaller
than about 30% of the object size is “blurred out” and does not
affect the geometric matching.

Combining regularity and qualitative geometry: We combine
the two sources of information by linear mixing. First, we setup a
quadratic assignment problem on level of segments, as described in
the previous paragraph and compute the geometric energy (Eq. 10).
We then add the energy of the regularity graph (Eq. 5) by scattering
it to its corresponding segments. Let R(v′i) denote the set of nodes
in the regularity graph that overlap segment v′i. We can then express
the additional energy as:

Qr(m
′
) =

∑
v′i∈V

′
1,

w′j∈V
′
2

m
′
ij

[ ∑
v∈R(v′

i
)

(
max

w∈R(w′
j
)
sim(v, w)

)]

+
∑

{v′i,v
′
j}∈E1,

{w′k,w′l}∈E2

m
′
ik ·m

′
jl ·
∑

v1∈R(v′i)
v2∈R(v′j)

[
max

w1∈R(w′i)
w2∈R(w′j)

(
ωijkl · sim

(
{v1, v2}, {w1, w2}

))]

(12)

Scattering implements a simple idea: Due to multiple nodes of the
regularity graph overlapping each segment, we have to summarize
matching scores of n sources against m targets. Equation 12 al-
ways picks the best target and then averages over all sources. The
sum-of-maxima strategy is important. A simple double sum blurs
out information because it introduces a quadratic number of mis-
matches, leading to much worse results in practice. The pairwise
case is handled analogously.

The geometry score Qg and the regularity score Qr are combined

by an affine combination

Q(m′) = λQg(m
′) + (1− λ)Qr(m

′) (13)

with a weight parameter λ ∈ [0, 1] (the value is discussed in Sec-
tion 6). We then use the same spectral graph matching on the re-
sulting quadratic energy algorithm to compute correspondences.

5 Symmetry Detection
Having discussed all the components of our matching model we
finally address the algorithm for extracting the symmetry groups
G ⊂ E(3), their actions, i.e. transformation T(G), and the cor-
responding geometry geo ⊆ S. The algorithm is heavily inspired
by Pauly et al. [2008] and Bokeloh et al. [2009; 2012]; hence, we
focus on the main differences.

Input: We assume that our input is a triangle mesh S ⊂ R3. Fur-
ther, let l denote the longest side length of an axis aligned bounding
box of S; the quantity is used to scale thresholds.

We target meshes that have been modeled by artists. Thus, we ex-
pect clean features but regularity might be imperfect because artists
often just coarsely place repetitive elements. An extension to scan-
ner data with noisy features requires robust feature detection, which
is possible but out of scope of this paper. In order to deal with “artist
noise” we incorporate ICP alignment when comparing geometries.

Detecting symmetries in the sense of regularities involves two
steps: (i) finding candidate correspondences [Mitra et al. 2006]
and (ii) finding regular geometry, i.e., grouping transformations to
larger sets that form groups acting on a common piece of geome-
try [Pauly et al. 2008].

Finding transformations: First we find sharp edges directly in the
mesh, gathering boundaries and non-coplanar edge-adjacent trian-
gles (we use a threshold of ≤ 150◦). A feature point is associated
with the center of such an edge, representing the feature line. We
attach a local frame build from the direction of the edge and the
sum of the normals of both adjacent triangles. For point based ge-
ometry representation a more sophisticated line detection approach
would be required, however, it is out of the scope of this paper. The
search of candidate symmetries is accelerated over multiple threads
by clustering of feature lines by their length and angle between the
normals.

Detecting 1-parameter groups: We now detect 1-parameter
groups (type I,L,R) via randomized sampling and afterwards com-
bine these, as discussed in Section 3.3. Involutions are given by
matching a single pair of features that are related by such a trans-
formation. We avoid spurious matches by requiring at least three
more feature matches to confirm the match. For rotations and trans-
lations, we compute a continuous orbit: Again, we start with a pair
match obtained via random sampling. Let x1 be the first feature
point, and T ∈ SE(3) be a proper rigid motion (no reflection) that
maps the local neighboring feature lines at x1 to the second feature
point x2. We then consider the continuous orbit Tt(x1), t ∈ R.
We find all further feature points that are close to the orbit. To
be more robust to modeling inaccuracies (“artist noise”), we still
accept matches that are not integer multiples of the generator but
could deviate by up to ±25%. An ICP-based validation, discussed
below, removes false positives. Fig. 9 shows an example of auto-
matically detected symmetries.

Complex groups and scheduling: We identify the more complex
cases by detecting overlaps of one-parameter groups. Schedul-
ing different symmetry detections is important to avoid computa-
tional costs: We detect lattices first. When a 1-parameter lattice
is detected, we immediately try to extend it to 2- and 3-parameter
lattices by searching for candidate correspondences. We use the



Figure 9: Symmetry groups found within a bench. The nodes are
colored blue. There are only C2v and D2h groups present.

RANSAC grid detection algorithm from [Pauly et al. 2008]. From
each detected lattice, we keep only one cell for further analysis.
The boundaries of the generating cell are uniquely determined by
the boundaries of the lattice. Only after handling all lattices, we
start detecting rotational 1-parameter groups and involutions.

Segmentation: Next we extract the geometry the symmetry group
acts upon, i.e. geo(vi). Here we sample the triangle mesh S with
a Poisson disc sampler, creating a discrete point cloud S ⊂ S with
sample spacing εsample > 0 (we use εsample = 1

200
l; the con-

crete value has no influence unless it is undersampling the result).
Let {I,T1, ...,Tk} be the an (excerpt of a) group of transforma-
tions and x the start feature (associated with T = I; this is only
relevant for incomplete excerpts of groups). We start simultane-
ous region growing in the point cloud starting at T1x, ...,Tkx,
comparing the point-to-plane distance of the input geometry S and
the transformed point clouds T1(S), ...,Tk(S) to S; region grow-
ing is stopped when the distance is larger than a fixed threshold
εmatch > 0 (we use εmatch = 1

40
l the point-to-plane distance

allows us to measure distances below sample spacing accurately).
We also stop region growing at boundaries of the connected com-
ponents of the input mesh. Two more measures make this step more
robust: For each continuous orbit Tz

1, we try small shifts to the in-
teger exponents z and use ICP to “snap” in. We accept the match
if the matched region becomes larger. Points are considered non-
symmetric if they are matched in less then 75% (rather than 100%)
of the total number of transformations in the group. All the points
of the detected region geo = T1x∪ ...∪Tkx are then marked with
the identified symmetry group for complex group combination, see
Section 3.3. The exact shape of the segments play a minor role
in our model; they affect proximity relations, for volume-estimates
(weights in Equation 9) and for removing spurious subgroups Sec-
tion 3.3.2. The segmentation is also used for rendering matched
regions in the visualizations of this paper.

Avoiding continuous ambiguities: The segmentation described
above (which has been similarly employed in most previous work)
often yields unintuitive results due to continuous symmetry. For
example, large planar polygons are common and they are often
aligned with the transformations of other discrete symmetries. This
creates “shadow” boundaries from aligning discrete elements with
continuously symmetric area. Although this is formally correct, it
is not very useful for our purpose. We therefore only include area
that is bounded by symmetric line features as defined above; sym-
metry ending within a flat region is not allowed.

6 Implementation and Results
We have implemented the algorithm in C++ and tested it on a desk-
top computer equipped with a 2×hexa-core Intel Xeon X5650 at
2.6GHz processor and 96GB RAM. The current implementation
of the symmetry detection does not implement a few cases of rare
symmetry groups: helices and 3-parameter lattices are omitted, and
S2n groups are recognized as Cn.

We apply our implementation to a number of test data sets, taken
from Trimble 3DWarehouseTM and The Digimation ArchiveTM. We
evaluate two different matching pipelines:

Pipeline 1: We match at the level of overlapping graph nodes v ∈
V . We omit the segmentation and the coarse geometry model and
use only volume weights.

Pipeline 2: We use the qualitative pairwise geometry model of Sec-
tion 4.4 in favor of the unary volume term. Matching is performed
at the level of disjoint segments v′ ∈ V ′.

The results are shown in Fig. 1 and Figs. 11-18. We show the match
of one graph node/segment (blue) to all other node/segments in each
other shape (orange), after pairwise injective matching. We use
multiple images with selected source nodes, for clarity. A full list of
the matching results of all graph nodes (i.e., pipeline 1) is provided
as additional material. The corresponding statistics are shown in
Table 4. We now first look at results obtained with pipeline 1.

Wheels: We first examine a basic case. Fig. 11 shows wheels
with 5-, 6- and 12-fold rotational symmetries of various types
(Cn, Cnv, Dn). We already obtain moderately complex graphs (15-
28 nodes each, see Table 2), which allow us to disambiguate differ-
ent components of the wheels.

Chandeliers: We add complexity using a collection of five chande-
liers with very strong geometric variations. We detect correspond-
ing elements as shown in Fig. 12. The central column of the objects
cannot be matched because of the influence of the volume term. In
this data set, one input model required manual cleanup: The thin
elements in the middle chandelier (Fig. 1) had been placed very
asymmetrically by the artist and had to be rearranged.

Fences: The fences shown in Fig. 14 utilize the relations between
1-parameter grids and rotational/reflective symmetries. Our sym-
metry detection algorithm is able to compensate the rather irreg-
ular placement (without user intervention) in the original models
to some extent and obtain plausible matching results. For the top
hand-rail, the algorithm confuses it with the bottom parts; from the
perspective of symmetry, these elements are equivalent. Although
the fences look like a single grid to casual observer the graph actu-
ally contains all node types (lattice, rotations, reflections, dihedral
symmetry; leading to graphs with more than 300 edges). There-
fore, it is necessary to use a global graph matching model to find
the consistent structures that indicate useful matches.

Cars: Fig. 18 shows 12 shapes of mixed two-, four- and six-wheel
drives representing the most challenging test case that demonstrates
the limitations of purely symmetry-based matching. Here, many
symmetry relations vary strongly themselves and the topological
relations also only give insufficient cues, e.g. symmetric wheels in
proximity to symmetric body. While the wheels are mostly matched
consistently, other structures are not matched reliably. Fig. 18(left)
shows many false-positives while detecting similar windows.

Influence of Geometry Matching
In the next three examples, we utilize pipeline 2 and study the influ-
ence of the geometry term. Fig. 13, 15, and 17 show segment level
matches; the results for pipeline 1 are provided in the supplemen-
tary material.

Wind mills: Fig. 13 shows correspondences among windmills
where the proller, balcony and the base part of the first shape were
matched properly to other shapes.

Beds & bicycles: Fig. 15 and Fig. 17 show objects of average com-
plexity with five objects from the same class and one from a related
class (the respective top left images show the disjoint segmentation



data set ∅|V| min |V| max |V| ∅|E| td tm
Chandeliers 85 55 168 1369 334 17

Wheels 20 15 28 184 98 0.6
Fences 29 11 47 326 172 1.2
Cars 38 15 89 522 620 16
Beds 22 9 38 273 158 1.6

Bicycles 19 11 32 135 103 0.9
Wind mills 20 4 48 301 105 0.2

Table 4: ∅|V|, min |V| and max |V| are the average, minimum
and maximum number of detected symmetries in a data set; ∅|E|
is the average number of edges in a data set, whereby undirected
edges are counted as two; td and tm is the average time in seconds
for detecting and matching symmetries.

computed by pipeline 2). Front/back parts of the beds were some-
times mismatched as well as left/right, which is the consequence
of symmetries in the regularity graph itself. From the perspective
of symmetries the found matches are plausible. In case of the two-
wheel vehicles the rather unique topology helps to identify corre-
sponding parts, such as frame, sprocket, fork and wheels. In one
case, a sprocket matches a wheel; as seen in the segmentation fig-
ure, no segments besides of the wheels were detected in the target
bicycle. The graph matcher did not have any suitable choice for the
correspondence and had to make the only possible assignment.

Geometric vs. structural symmetry: We now consider the ques-
tion of the relative influence of geometry versus symmetry cues.
For this, we vary the parameter λ between zero (only symmetry)
and one (only geometry). We evaluate the results quantitatively by
comparing against user annotated ground-truth for the three data
sets (beds, bicycles, windmills). Pairs of segments are tagged as
valid correspondences if the assignment seem intuitively plausible.
Global symmetries, such as reflections and 180◦ rotaions, are per-
mitted if plausible (beds, windmills). We measure the percentage
of correctly matched pairs; the absolute percentages have limited
meaning due to the coarse user annotation; however, the relative
behavior for each model reveals some interesting properties:

Fig. 10 shows the results. All three data sets benefit from including
the coarse geometry model. For bicycles and windmills, a weighted
combination gives the best results. For bicycles, higher geome-
try weights are useful because their coarse-scale geometry varies
less. The beds work best with pure geometry matching. The reason
for this is that the shapes are quite simple and structurally relevant
symmetries are global cuboid symmetries, while symmetry prop-
erties of individual elements (bars, handles) vary in an unrelated
way. The global symmetries is already captured by the Euclidean
distance constraint. The results nonetheless implicitly benefit from
symmetry-based segmentation. We also study the influence of lo-
cal geometry descriptors by reactivating the volume term (lighter-
color curves in Fig. 10). This improves the results for shapes with
less geometric variability (bikes, beds) but reduces performance for
strongly varying node geometry (windmills), as expected.

Limitations and future work: The strength of the usage of
regularity-based matching is its strong invariance, but this also al-
ways implies a trade-off with specificity. Our method captures
only coarse correspondences (no dense point-to-point correspon-
dences) and the false-positive always remain. The comparison with
geometry-based matching shows that the regularity model provides
new, complementary information. Quantitative improvements are
in the range of up to 20% (bicycle improve to 0.46 from 0.38; wind-
mills: 0.68 from 0.58); while this does not seem much at first sight,
the problem is very difficult and additional information beyond a
coarse shape model is hard to obtain.

The a priori model for the matching scores is a compromise for gen-
eral object classes and it has, despite our efforts to derive it from a
few basic principles, still several ad-hoc parameters (see Table 3).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 0,2 0,4 0,6 0,8 1

bicycle windmill bed
bicycle+vol windmill+vol bed+vol
windmill (random) bicycle (random) bed (random)

Figure 10: Recall plot for the bed, windmill and bicycle datasets.
The x-axis represents different weights λ for the qualitative geom-
etry model, and the y-axis is the percentage of correctly predicted
annotations. “+vol” (light color) adds a local geometry descriptor.
For reference of scale, solutions obtained from random matching
scores are given with dotted lines.

In practice, learning these parameters from data might lead to bet-
ter results than using fixed values. Similarly, the pairwise matching
model has still limitations: After quantization, it yields 1:1 matches
between graph nodes but cannot recognize symmetries in the solu-
tion (such as the individual elements of a 5-fold and 7-fold repli-
cation). Spectral embeddings of multiple pairwise matches could
address this issue [Lipman et al. 2010].

Further, there are parameter choices for symmetry detection: the
choice of spatial and angle tolerance thresholds affects matching
results as too generous threshold can lead to clutter. The robustness
of symmetry detection (which is not the focus of our paper) is lim-
ited, in particular for artist-made, inaccurate meshes. Common ar-
tifacts include missing detections and duplicate, non-merged nodes
of different symmetry for nearly overlapping geometry.

Overall, our approach should not be regarded as a stand-alone shape
matching system but rather as a new type of shape descriptor that
yields information complementary to existing work. For generic re-
sults, it should be used along with (probably multiple) further geo-
metric descriptors, probably with a discriminative learning method
for optimizing the fusion of information. However, such a system
is beyond the scope of our paper.

7 Conclusion
We have presented a new method for finding correspondences be-
tween shapes by relating their symmetries. The method uses sym-
metry groups to identify canonical building blocks of geometry and
relates these parts by comparing the overlap in their regularity struc-
ture as well as the relation of symmetry axes and planes, as well
as translational generators. The method allows matching of man-
made shapes that are related in function but might have very differ-
ent geometry. The method is complementary to existing geometric
approaches: While it gives only coarse and partial matches, it can
perform matching between very dissimilar geometries, where no
traditional methods are available.

In future work, in addition to addressing limitations discussed
above, we would like to extend the idea towards shape classification
as well as generation of shapes by incorporating symmetry regular-
ities. A key tool could be the estimation of a latent regularity graph
of symmetry properties common to a larger collection of objects.
We think such a data-driven approach could address an important
aspect of characterizing the structure of shapes.
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Figure 11: Results for the “wheels”. We show the matches for several nodes; the selected node is marked blue, the corresponding nodes are
marked orange. The examples includes various rotational symmetries as well as dihedral groups. The lower right example shows a mismatch,
where the spokes forming 12-fold rotational symmetry matches the outer tire best.

Figure 12: Upper row: Selecting a single lamp (blue) plausibly identifies most re-
lated parts (orange) on other shapes. Center: The support structure was identified.
Bottom: Our graph contains further nodes; we show as an example a node captur-
ing a C2v involution between a pair of lamps. Given the differences in rotations, we
obtain a plausible assignment.

Figure 13: Windmills: The main struc-
tural elements as well as propellers are
identified properly.

Figure 14: The fences models suffer from imprecise modeling (there is remaining shift in the lower fence on the right). The matches are
qualitatively correct, except from the handrail, which appears fully symmetric to the bottom rail to our algorithm; this symmetry is broken by
the pairwise matching.



Figure 15: “Bed” data set with 5 bed and one bench shape. Matching cannot determine the global
orientation information, hence, front/back or left/right parts are frequently swapped by a global
reflection or 180◦ rotation. Selected node is shown in blue. This example uses disjoint segments
and the qualitative geometry model (pipeline 2). The top-left image shows the segments computed
within pipeline 2 (Sect. 4.4). Purple parts have not been identified as symmetric.

Figure 16: “Church” data
set. Lattice structures, e.g.
windows, as well as the
main towers were matched
properly.

Figure 17: “Bicycle” data set: top-right image shows matching of the sprocket, the bottom-left of the fork, bottom-left of the frame and
bottom-right of the frame. This example uses disjoint segments and the qualitative geometry model (pipeline 2). The top-left image shows the
disjoint segments computed within pipeline 2 (Sect. 4.4). Purple parts have not been identified as symmetric.

Figure 18: “Cars” are a borderline case. While wheels are matched properly, windows, for example, suffer from various false-positives.


