

The same technical report is also published at
Heinz Nixdorf Institute, Paderborn University, tr-ri-00-217

Tübingen University

Auf der Morgenstelle 10 / C9
D-72076 Tübingen, Germany

Heinz Nixdorf Institute
Paderborn University

Department of Mathematic and Computer Science
D-33095 Paderborn, Germany

Email: miwand@gris.uni-tuebingen.de

{mafi, fmadh}@uni-paderborn.de

WWW: http://www.gris.uni-tuebingen.de
http://www.uni-paderborn.de/cs/ag-madh/

Randomized Point Sampling for
Output-Sensitive Rendering of

Complex Dynamic Scenes
Michael Wand, Matthias Fischer,
Friedhelm Meyer auf der Heide

WSI-2000-20
ISSN 0946-3852
November 2000

Randomized Point Sampling for
Output-Sensitive Rendering of

Complex Dynamic Scenes

Michael Wand*
Matthias Fischer†

Friedhelm Meyer auf der Heide

Tübingen University
Auf der Morgenstelle 10 / C9
D-72076 Tübingen, Germany

Email: miwand@gris.uni-tuebingen.de
WWW: http://www.gris.uni-tuebingen.de

Heinz Nixdorf Institute
Paderborn University

Department of Mathematic and Computer Science
D-33095 Paderborn, Germany

Email: {mafi, fmadh}@uni-paderborn.de
WWW: http://www.uni-paderborn.de/cs/ag-madh/

Abstract
We present a new output-sensitive rendering algorithm, the random-
ized z-buffer algorithm. It renders an image of a three dimensional
scene of triangular primitives by reconstruction from a random sam-
ple of surface points which are chosen with a probability proportional
to the projected area of the objects. The approach is independent of
mesh connectivity and topology. It leads to a rendering time that
grows only logarithmically with the numbers of triangles in the scene
and to linear memory consumption, thus allowing walkthroughs of
scenes of extreme complexity. We consider different methods for im-
age reconstruction which aim at correctness, rendering speed and im-
age quality and we develop an efficient data structure for sample
extraction in output-sensitive time which allows for efficient dynamic
updates of the scene. Experiments confirm that scenes consisting of
some hundred billion triangles can be rendered within seconds with
an image quality comparable to a conventional z-buffer rendering; in
special cases, realtime performance can be achieved.

* Part of the work was done while Michael Wand was affiliated with the Department of Mathematics &
Computer Science and Heinz Nixdorf Institute of the University of Paderborn.

† Partially supported by DFG Grant Me872/7-3 and the IST Programme of the EU under contract number
IST-1999-14186 (ALCOM-FT).

Contents
1 Introduction 7

2 Related Work 8

3 Overview 10
3.1 Outline of the Algorithm ..10
3.2 Paper Outline..11

4 Probability Distribution 12

5 Image Reconstruction 13
5.1 Per-Pixel Reconstruction..13
5.2 Splatting ...16
5.3 Aliasing and Low-Pass Filtering ..17

6 Choosing sample points efficiently 18
6.1 Distribution Lists..19
6.2 Approximation ...19
6.3 Dynamic Updates ...24
6.4 Analytical Results ..25

7 Extensions 26
7.1 Using Conventional z-Buffer Rendering for Large Triangles26
7.2 Scene Encoding ..26

8 Implementation and Results 27
8.1 Scene Complexity ..28
8.2 Sampling Parameter Optimization ...28
8.3 Combination with Conventional z-Buffer Rendering ..30
8.4 Dynamic Updates ...31
8.5 Example Renderings ..32

9 Summary and Future Directions 33

Acknowledgements 34

References 35

 7

1 Introduction
Interactive walkthroughs of large three-dimensional scenes are a major challenge for render-
ing algorithms. The ability to display complex scenes at interactive frame rates is one of the
key requirements for many virtual reality applications. To be able to render views of scenes of
increasing complexity in reasonably short time, the rendering algorithm must have output-
sensitive complexity characteristics. Analogous to Sudarsky and Gotsman [31] we consider a
rendering algorithm as output-sensitive if its time complexity depends only weakly on the
complexity of the input scene. In addition, we allow the algorithm to produce approximate
results, so its rendering time can also depend on the image quality achieved. Classical algo-
rithms, like the z-buffer algorithm [5], fail to meet these requirements because their running
times grow linearly with the number of elementary objects in the scene [31]. Although sophis-
ticated hardware implementations are available, these algorithms are not capable of displaying
complex scenes in realtime. Many improvements have been suggested to overcome these
limitations, as summarized in the next section.

We present the randomized z-buffer algorithm, a new output-sensitive rendering algorithm.
The main idea of the algorithm is to generate an image by reconstruction out of a sample of
randomly chosen surface points. In the first step, the algorithm chooses random sample points
on the surfaces of the objects with a probability roughly proportional to the projected area of
the objects, i.e. the sample points are approximately uniformly distributed on the projections
of the objects in the image plane. Efficiently choosing sample points is the key for output-
sensitive rendering time. The selection of the sample points is performed approximately using
a hierarchical scheme for classification of the triangles by spatial location and orientation. In
the second step, the rendering algorithm reconstructs the occlusion between the sample points
and constructs an image of the scene out of the visible points. The reconstruction process of-
fers a trade-off between efficiency (splatting) and image quality (Gaussian filtering). The
main advantages of the randomized z-buffer algorithm are:

Generality: The algorithm takes arbitrary models consisting of triangles as input, rendering
times and results are independent of the input topology. Like the conventional z-buffer algo-
rithm, any efficient local illumination model can be used to define the surface appearance.
Efficiency: It will be shown that the rendering time for scenes with uniformly distributed
surface normal orientations can be bound to O((a·log v + log τ)·log n) where a is the projected
area (including occluded area) of the scene, v the resolution of the rendered image, τ the ratio
between the diameter of the scene and the minimal viewing distance and n the number of tri-
angles in the scene. The precomputed data structures use only O(n) storage. An automatic
fallback strategy to conventional z-buffer rendering for low detail scene components insures
that the rendering speed cannot drop below that of conventional z-buffer rendering. The loga-
rithmic growth of the rendering time in n permits the rendering of extremely detailed scenes.
Using a prototype implementation, we were able to render scenes of 1014 triangles within a
few seconds. To be able to store scenes of that size in main memory, we adapted the data
structures to support hierarchical instantiation to encode complex scenes using scene graphs
[33].
Image quality: It can be shown that good image quality is achieved with arbitrary high prob-
ability under mild assumptions on the input geometry. We will give analytical and experimen-

 8

tal evidences that the image quality is comparable to conventional rendering results for a
broad range of input scenes, covering most models found in practical applications.

Suitable for interactive editing: The precomputed data structures for the selection of sample
points allow for efficient dynamic updates: Insertions and deletions triangles and object in-
stances can be handled in O(log n + h) time where h is the height of an octree built for the
objects in the scene. This leads to interactive update times for local scene modifications.

2 Related Work
The handling of complexity is one of the most fundamental problems in computer graphics.
Several approaches have been proposed to speed up rendering of complex scenes:

Multi-resolution modeling: The objects of the scene are stored in different levels of detail
that are chosen for rendering according to an appropriate error metric taking into account the
position of the observer and object properties. There is a number of "mesh-simplification"-
algorithms which automatically generate differently detailed models from a fully detailed tri-
angle mesh, see Klein [18], Heckbert and Garland [17] or Puppo and Scopigno [26] for a sur-
vey. A general problem of multi-resolution models is that scenes consisting of many
independent objects or of objects of complex topology often cannot be simplified into a trian-
gle mesh with only a few triangles. Scenes like a forest consisting of hundreds of trees with
hundreds and thousands of branches and leaves each are examples of scenes which typically
do not permit sufficient simplification.

Point sample rendering: Point sample approaches, like our algorithm, construct an image
out of a set of surface sample points. This makes them independent of the input topology and
thus they overcome the main problem of triangle mesh based multi-resolution models. The
idea of using point samples to render surface models was first applied to the display of
smooth three-dimensional surfaces by Levoy and Whitted [20]. Earlier work focused on the
display of non-solid objects like clouds, fire or smoke [4, 9, 27]. Two recent methods employ
points samples as rendering primitives in a fashion similar to our approach: Rusinkiewicz and
Levoy [28] describe a rendering method dubbed QSplat for rapid display of large meshes
from range scanner data. A bounding sphere hierarchy is built upon the mesh storing average
surface attributes such as normals and color in every node. For rendering, the hierarchy is
traversed and traversal is stopped when the projected size of a sphere falls below a certain
threshold. Then a splat is drawn on the screen with a color calculated from the averaged at-
tributes and a size proportional to the bounding sphere to avoid holes. Pfister et al. [24] a pri-
ori convert the scene geometry into a point sample representation ("surfels") by building a
hierarchy of layered depth images [29]: For each cell of an octree point samples are generated
by raytracing the objects in a fixed resolution from three orthogonal directions. For each sam-
ple point, position and surface attributes are stored. At rendering time, an interpolation be-
tween adjacent levels in the octree is used to perform anti-aliasing.

These methods operate fully deterministic, which leads to a higher performance than that of
our approach because a random selection of sample points leads to higher oversampling. But
the randomization provides some advantages: The averaged normals and color attributes used
in QSplat cannot represent object clusters with local occlusions or surfaces with highly vary-

 9

ing surface normals, e.g. rough surfaces or surfaces with small holes. In contrast, the random
sampling is able to represent these phenomena over a wider range of cases on the expense of a
higher running time, which is proportional to the local depth complexity. Both approaches
need to convert all geometry a priori into a point sample representation while our algorithm
dynamically chooses sample points from the scene. This leads to linear memory consumption,
which cannot be guaranteed by presampling (e.g. if the scene contains triangles of strongly
varying size) and a better image quality for viewpoints in close proximity to some objects:
The resolution of the image is not limited by the maximum sampling frequency used for a
priori sample generation. Additionally, our data structures allow for efficient dynamic inser-
tions and deletions of objects.

Image based rendering: Image based rendering techniques can be used to substitute fixed
complexity representations for objects of higher complexity. Early methods made use of tex-
tures as substitution for clusters of objects. The textures can be either precomputed [21] or
generated dynamically [30]. More recently, refined rendering techniques have been devel-
oped, which can represent objects over a broader range of viewing angles, e.g. [15, 19, 11].
These methods offer a great amount of flexibility for modeling objects, including construction
out of photographs of real world objects. Image based methods facilitate the representation of
arbitrary complex models with a fixed complexity representation but a general disadvantage
of the image-based approach is that storage requirements are often high because large
amounts of image data has to be stored. This inhibits the rendering of large scenes, i.e. scenes
consisting of many objects, each stored at high levels of detail, and leads to large costs for
dynamic updates of the scene. Our approach constructs a low complexity representation di-
rectly out of the scene geometry on the fly using a simple octree-like data structure, so storage
requirements and dynamic update times are small.

Raytracing: The raytracing algorithm [1] can be accelerated by a number of techniques to
achieve rendering times with sublinear growth in respect to the number of objects in the
scene. Commonly used methods are based on volume hierarchies, especially octrees, and
regular grids [2]. Their effectiveness depends on the number of cells that have to be visited
before a ray-object intersection is found. For a ray shot through a forest scene consisting of
many small objects, missing most objects in close proximity the efforts to find an intersection
can be large. There are techniques from computational geometry which guarantee to find in-
tersections in logarithmic time [10] (in respect to the number of objects), but precomputation
times and memory demands are prohibitive for large scenes. The randomized z-buffer cir-
cumvents the expensive inverse problem of finding ray intersections by placing sample points
in object space. The disadvantage of this approach in comparison to raytracing is that the al-
gorithm cannot resolve occlusions before rendering, which leads to a linear growth of the run-
ning time with the projected area.

Occlusion culling: Several algorithms have been proposed to avoid handling occluded parts
of the scene by the rendering algorithm [16, 32, 34]. Our algorithm currently does not perform
any occlusion culling but only viewing frustum culling, leading to a rendering time that grows
linearly with the projected area of the objects in the scene, including occluded area. We be-
lieve that occlusion culling and simplification (i.e. the removal of unnecessary details) are
orthogonal problems and our algorithm concentrates on a solution to the latter problem.
Therefore, we will use benchmark scenes with low depth complexity to show the effective-

 10

ness of our approach. The randomized z-buffer algorithm offers opportunities for the integra-
tion of occlusion culling; this could be subject of future work.

3 Overview
We assume that a scene S ⊆ ℜ3 consisting of n triangles t1...tn is given together with a shading
function which determines the color for each point in S and which can be evaluated in O(1),
independent of the scene complexity. The shading function may depend on the current view-
point and global lighting settings, so this includes e.g. phong shading, texture and environ-
ment maps. For each frame, a planar perspective projection is given to describe the camera
settings.

3.1 Outline of the Algorithm
Our rendering algorithm consists of two main steps: choosing sample points and image recon-
struction (see figure 1). In the first step, our goal is to choose sample points on the triangles
with a probability proportional to their projected area. This leads to a uniform distribution of
sample points on the projections of the objects of the scene in the image plane. In the second
step, we investigate three different reconstruction algorithms to remove points from occluded
surfaces and to fill a raster image according to the visible sample points.

Choosing sample points: An efficient algorithm for choosing sample points is the key to
achieving output-sensitive rendering times. An exact solution which chooses sample points
with a probability proportional to the projected area does not seem to be possible in sublinear
time. Therefore, we use an approximation algorithm (see figure 1). It dynamically chooses
groups of objects with a similar projection factor (1) from a precomputed hierarchy of groups
and then chooses random sample points according to the absolute (unprojected) area of the
triangles in the group using a binary search in lists of summed area values (3). This can be
done in a time proportional to the logarithm of the numbers of triangles in the group. We in-
vestigate two different methods for the group selection (2): A selection of triangles by dis-
tance only and a selection by distance and orientation of the triangles. The spatial
classification is given by an octree and the classification by orientation applies this to groups
of triangles with similar normal vectors. We show that the approximation does not harm the
image quality and that the time for extracting groups from the hierarchy is small for "average"

small
triangles

choosing sample points

input
triangles

rendered
image

large
triangles

image reconstruction

conventional
z-buffer rendering

point sample
selection by

 absolute area

large
triangles

point samples
of small
triangles

splatting

filtering
or

per-pixel
reconstruction

or
triangle
groups

 of similar
 projection

(1)

group selection
by distance

group selection
by distance

and orientation

or

(2) (3)

(4)

Figure 1: outline of the algorithm

 11

scenes, i.e. scenes with uniformly distributed surface normal vectors. However, the worst-case
efforts of the approximation algorithm are unbound.

As sampling of a triangle with large projected area turns out to be more expensive than ren-
dering using the conventional z-buffer algorithm, we identify triangles with large projected
area in our group selection scheme and render these using the conventional algorithm (4),
only small triangles will be replaced by sample points. This fallback strategy guarantees that
the rendering time cannot drop below that of the conventional z-buffer for small scenes.

Image reconstruction: To reconstruct an image, first the occluded sample points have to be
removed from the sample set. Afterwards, an image has to be constructed out of the visible
points. Both can be done in one step by drawing the sample points into a z-buffer: If the sam-
ple density is high enough so that every pixel receives a sample from a foreground area, the
foreground will overwrite occluded pixels. We investigate two further techniques in order to
obtain higher efficiency (splatting) or higher image quality (filtering), respectively. Using
splatting we reduce the number of sample points which must be processed by drawing larger
point splats instead of pixels into the z-buffer, leading to a much higher performance at the
expense of a reduced image quality. This enables near realtime rendering on conventional PC-
hardware. With filtering, we improve the image quality by using a low-pass filter kernel to
weight point sample contributions. This eliminates aliasing artifacts but leads to longer, non-
realtime reconstruction times.

Dynamic scene modification: We have developed a static and a dynamic version of the
walkthrough system. In the dynamic version, triangles can be inserted and deleted dynami-
cally. The sole part of the data structure affected by the need for an efficient dynamic update
is the distribution list used for sample selection. These can easily be replaced by dynamic data
structures using balanced search trees.

3.2 Paper Outline
In the next chapter (section 4), we derive the probability distribution used as sampling den-
sity. Then we describe and analyze the reconstruction techniques (section 5), followed by the
description of the approximation algorithm for sample extraction (section 6). The image re-
construction is described first because it sets the preliminaries for the point selection scheme.
Section 7 describes two important extensions to the basic sampling algorithm. The first is an
algorithm which avoids the sampling of large triangles by using conventional z-buffer render-
ing instead. The conventional algorithm is faster by up to two or three orders of magnitude for
large triangles. The second extension is a hierarchical instantiation scheme. It provides a
memory consumption linear in the size of a scene graph given as input to the rendering algo-
rithm. Without this modification, it would not have been possible to encode scenes of suffi-
cient complexity. Section 8 shows rendering results obtained from our prototype
implementation and measurements of rendering times in dependence on the accuracy parame-
ters of the approximate sample point selection algorithm. We conclude and describe possible
future directions in section 9.

 12

4 Probability Distribution
To obtain the probability density function for the selection of sample points, we consider an
infinitesimal small surface fragment s and derive the projection factor prj(s) by which it is
scaled when it is projected in the image plane. Then we use this factor normalized by the inte-
gral over all objects in the viewing frustum as sampling density. A surface fragment s parallel
to the image plane is scaled by 1 / z2 where z is the depth of the object (figure 2a). If s is not
parallel to the image plane, its orientation must be taken into account to determine the pro-
jected area: Objects perpendicular to the view vector d can be rotated to be parallel to the im-
age plane. So they must be enlarged by a factor of 1/cos α so that they cover the same area on
the screen as before (figure 2b) where α is the angle between the viewing direction r and the
view vector d. This blow-up of the projected area towards the outer screen area is specific to
the planar perspective projection (a spherical projection would not show such a behavior).

Surface fragments with arbitrary orientation have to be rotated to be perpendicular to the view
vector (figure 2c), yielding a reduction of cos β of the projected area with β as the angle be-
tween the viewing direction and the surface normal. By convention, surfaces with an angle β
of more than π/2 are regarded as invisible (backface culling). Thus the value of the cosine
must be clamped to the interval [0,1], denoted here as applying the function cut[0,1] to it. Put-
ting all this together yields a total factor of

()
α

β
cos

1cos1)(]1,0[2 ⋅⋅= cut
z

sprj

by which infinitesimal small surface fragments are scaled by a perspective projection. To get
absolute values, the projection factor must be multiplied by a constant to take into account the
scaling of the image coordinate system and the focal length but we need relative values only
here.

We now define the probability distribution by which the random sample points are to be cho-
sen using the following density function:

image plane

focal length

z

s

s'
center of
projection

parallel to

image plane

center of
projection

r

d

s

parallel to
image plane

center of
projection

r

d

n

s

(a) segments parallel to the image plane (b) segments orthogonal

to the view direction
(c) general segments

Figure 2: perspective projection, figure (b) and (c) show magnified views of a very
small surface element s, i.e. the local projection is nearly parallel.

 13

 ∈⋅⋅

= ∫
otherwise ,0

 if ,)()()()(
)(

Ssdxxprjsclipsprjsclip
sf S

The function clip is defined to be 1 inside the current viewing frustum and 0 outside to limit
the distribution of sample points to the area (potentially) visible from the current viewpoint.
The viewing frustum is especially limited by a near clipping plane to exclude the singularity
of the projection factor for z = 0.

5 Image Reconstruction
In this section, we assume that a set of sample points is given which were chosen according to
the density function defined above (a strategy for choosing sample points will be developed in
section 6). Using that sampling distribution will lead to a uniform distribution of sample
points on the projections of the objects in the image plane and thus enables a reconstruction
with fixed resolution. We will describe and analyze the basic reconstruction technique in sec-
tion 5.1. Section 5.2 and 5.3 extend this technique in order to gain a higher reconstruction
speed or a better image quality, respectively.

5.1 Per-Pixel Reconstruction
The per-pixel reconstruction algorithm takes all sample points in arbitrary order, projects
them and draws them into a z-buffer: The z-values are initialized to infinite depth and the
framebuffer to the background color. Then the depth of each sample is compared to the depth
stored in the z-buffer at its position. If the depth of the sample is smaller than the stored value,
the depth is written into the depth buffer and the shading function is evaluated at the sample
point and written into the framebuffer. Otherwise, the sample is ignored.

To analyze the correctness of this method, we must give a definition of a correct image first:
We consider one pixel of the final image. To make the description easier, we assume without
loss of generality that every pixel is fully covered by triangles, i.e. there is no "background"
leaking through. The triangle fragments seen through the pixel fall in two categories: Visible
fragments and hidden fragments. An image is considered a correct image of the scene if every
pixel shows a color found on one of the visible triangle fragments within the pixel. This defi-
nition of correctness abstracts from the slightly different behavior of rendering algorithms
such as raytracing or z-buffering in choosing sub-pixel details.

To guarantee a correct image reconstruction in the sense of this definition, every pixel must
receive at least one sample point from a foreground area and this point must have the smallest
depth value among all sample points, because then it will overwrite all other sample points
producing a correct pixel color.

We now proceed in two steps. In the first step, we show how many sample points must be
chosen to guarantee that every pixel receives at least one sample point from a foreground area
(section 5.1.1). In the next step, we identify the conditions under which this will also be the
point with the smallest depth value (section 5.1.2). As this fact cannot always be guaranteed,

 14

there will be some cases in which incorrect images will occur, but these can often be avoided
easily in practice.

5.1.1 Sample Size
We now determine the number of sample points which must be chosen to guarantee that every
pixel receives at least one point from a non-occluded triangle fragment.

Every pixel is by definition fully covered by visible surface fragments. First, we assume that
there are no hidden surfaces in the image. Then the probability that a visible sample is chosen
from a pixel is the same for all pixels and the problem can be modeled as a simple urn model:
Given v bins (with v denoting the resolution of the image in pixels), how many balls must be
thrown randomly, independently, with equal probability into the bins until every bin has re-
ceived one ball? This is an "occupancy problem" well known in the randomized algorithms
literature. Motwani and Raghavan [23] show that the expected value for the number of balls is
v·Hv with Hv as v-th harmonic number, which is equal to ln v up to ±1. They further show that
asymptotically, the probability for a deviation of c·v from the expected value drops off expo-
nentially with c for large values of v. Thus, one can conclude that the size of the sample nec-
essary to fill all pixels with high probability (say 99%) is v·ln v + O(v) when no occlusion
takes place.

To take into account occlusions, we model the process as a two steps random experiment: Let
h be the projected area of occluded surfaces measured in pixels and let a := v + h be the total
amount of projected area. The occluded area is now represented by h additional bins that are
chosen with the same probability as the other v bins. It is now necessary to distribute mv =
v·ln v + O(v) sample points among the v visible bins by throwing ma balls randomly at all a
bins. The probability that mv balls go to the visible bins should be greater than a given prob-
ability s (say, again 99%). Let pv := v/a and ph := h/a, then using the binomial distribution we
obtain:

∑
=

− ≥

a

v

a

m

mk

km
h

k
v

a spp
k

m

To solve for ma we approximate the binomial distribution by the Gaussian normal distribution
and get:

chosen

sample
points

one pixel

de
pt

h

sample
 points

chosen

one pixel

de
pt

h

sample points

chosen

one pixel

de
pt

h

 (a) (b) (c)

Figure 3: different occlusion situations

 15

s
ppm
pmmpp

k
m

hva

vav
m

mk

km
h

k
v

a
a

v

a ≥

 −Φ−≈

∑
=

− 1

where Φ is the Gaussian normal distribution function [12]:

Φ(x) := τ
π

τ

de
x

2

2

2
1 −

∞−
∫

The approximation is valid if ma is large and neither pv nor ph are extremely small, which are
reasonable assumptions here. Solving for ma we obtain

+++≥ vh

hh
v

v
a mpppm

p
m

42
1 222 ϕϕϕ

using ϕ to denote ()s−Φ− 11 .

The function Φ quickly descends to zero for larger values of s (that means e.g. ϕ ≤ 4 for s = 1-
10-4) so it can be neglected in comparison with mv. Using ph < 1 we see that a value of

()vv
v

mm
p

ϕ+1

for ma is sufficient to guarantee that mv sample points are taken from the v visible bins. Substi-
tuting v·ln v + O(v) for mv we get:

()() ()avavvv
pv

OlnOln1 +=+

Thus a sample size of a ·ln v + O(a) is sufficient to guarantee that every pixel receives at least
one sample from a visible object fragment.

5.1.2 Correctness
If every pixel receives at least one point sample from a visible triangle fragment, the correct-
ness of the image cannot be guaranteed yet. We now distinguish two possible cases, only the
first will always lead to a correctly reconstructed image:

1. "separated occlusion": The smallest interval covering the depth of all the visible fragments
does not overlap with the smallest interval covering the depth values of all the hidden frag-
ments (figure 3a). In this case, the point sample with the smallest depth value must stem from
a visible triangle fragment and thus we obtain a correct reconstruction: It will overwrite all
other points in the depth buffer.

2. "non-separated occlusion": If the depth intervals of visible and hidden fragments overlap, a
false reconstruction of occlusion can occur because it is possible that the sample point with
the smallest depth value belongs to an occluded triangle fragment. This point would incor-
rectly overwrite the sample points from visible areas within the pixel. There are two typical
cases: One possibility is that the pixel shows an object boundary or a sub-pixel detail in front

 16

of a background with higher depth. Figure 3b shows such an example: It is possible that pixels
of region C occlude sample points from region B and no points from region A are available
because it is only guaranteed that at least one sample is chosen from any visible triangle
fragments of the pixel. Although formally the image can be incorrect, no severe losses of im-
age quality have to be anticipated in this case because the surface attributes of the occluded
area C often do not differ much from the neighboring regions. This situation leads only to
"fuzzy" object boundaries.

The other situation is shown in figure 3c: Two parallel, extensive surfaces, which are not per-
pendicular to the viewing direction, lie in close proximity to each other. If the depth distance
is very small, the hidden surface B might shine through with up to 50% probability. This phe-
nomenon is often encountered when offset polygons are used to model surface details (figure
4). In this case, the problem can easily be avoided by converting these polygons into textures
or removing the background underneath, as done for the city scene shown in section 0. An-
other possible situation where this effect can occur is when there are thin objects with front-
and backfaces in the scene, e.g. the leaves in the tree shown in figure 5. These have dark
backsides which can leak through if the relative distance to the camera is large enough. This
problem can be avoided by applying backface culling, using the surface normals found in the
sample points to discard sample points from backfacing surfaces (figure 6). As the backface-
test can be performed quickly in object space (more quickly than a transformation into the
image plane necessary to draw the sample point), it also leads to a higher rendering perform-
ance.

Using these heuristics, the flaws of the reconstruction process have no severe impact on the
image quality in most practical applications. These problems are not limited to our approach,
the correct reconstruction of occlusion is a problem of the point sampling approach in general.

5.2 Splatting
The per-pixel algorithm is too expensive to run at interactive frame rates on conventional
hardware: To render e.g. an image of 640 × 480 pixels with an average depth complexity of
two about 7,8 million sample points have to be processed. Especially, a perspective transfor-
mation must be performed for every point. Even on sophisticated graphics hardware, this task
could take up to a few seconds.

Figure 4: occlusion errors caused by offset

polygons

Figure 5: the dark backsides of the

leafs are leaking through

Figure 6: avoiding the effect using

backface culling

 17

A simple method for reducing the rendering costs is to use splatting: Instead of drawing single
pixels, larger quadratic regions are filled with the same color and depth value, performing a
depth compare on each pixel. To analyze the benefit of using colored squares of side length d
we divide the image into a grid of cells with d/2 side length. Then each square covers at least
one such cell when it is drawn on the screen. Thus, the same arguments as in the section 5.1.1
can be applied to the cells instead of the pixels, which results in a sample size of

() ()
)(O

2
ln

2 22 a
d

v
d

a +

⋅

to be sufficient to cover all foreground regions. In practice, the size of the cell appears to have
been chosen too pessimistically. Experiments show that one can safely substitute d for d/2 in
the formulae above. As every square actually covers an area of d

2 and not (d/2)2 on the screen
this is also the reduction of the sample size one would have expected intuitively. Neverthe-
less, a formal proof seems difficult because the urn model from the preceding section can only
be used as long as disjoint cells are considered because it requires independent events.

The image quality drops off with increasing d, but the results are always much better than
those obtained by a simple reduction of the resolution by a factor d. We found a good com-
promise for values of d ≈ 2..5. Using a value of d = 2 guarantees acceptable image quality even
for critical scenes, saving about 75% computation time, while higher values may lead to ob-
jectionable visual artifacts. The effect depends on the scene to be rendered: Images with fine,
high contrast details suffer more than images with smooth transitions between differently col-
ored parts of the image (see figure 14 for example renderings).

5.3 Aliasing and Low-Pass Filtering
A reconstruction of a non-trivial image out of a finite sample leads to errors that arise in form
of either structured aliasing artifacts or noise [14]. Cook [8] was the first to use random sam-
pling to perform aliasing in the distributed raytracing algorithm. It shoots randomly jittered
rays to trade off alias for noise that is usually less objectionable to the viewer than structured
aliasing [14]. The amount of noise is then reduced by averaging over multiple random rays
per pixel. Since our algorithm also uses random selection of surface points one could also
expect converting some aliasing artifacts into noise, which can be eliminated by averaging
over multiple frames.

Figure 7b shows the rendering of a classical chessboard scene using per-pixel image
reconstruction in contrast to conventional z-buffer rendering (figure 7a): The conventional z-
buffer rendering shows severe aliasing artifacts for all polygons in the far field. The
randomized algorithm shows similar artifacts only in the medium depth interval and unstruc-
tured noise for the polygons far away from the viewpoint. The aliasing artifacts in the near
field are caused by the high oversampling: As every pixel receives ln v sample points on the
average, in cases where there are only a few polygons per pixel there is a situation similar to
conventional z-buffer rendering: Most pixels receive sample points from all polygons
involved and the foremost is chosen to color the pixel. As the number of polygons increases,
the choice of an ln v sized sample out of them becomes increasingly random and the aliasing
disappears for unstructured noise (which can be removed by averaging).

 18

To produce images with low aliasing artifacts, the reconstruction process has to be modified:
After choosing the sample points we remove all points surrounding another sample point with
lower depth value in a square of diameter d, similar to the splatting reconstruction method, but
without discretization to pixel. The sample points are stored at full precision position and
depth information in a two-dimensional array of buckets of size d. The adjacent 2x2 buckets
of the bucket of a sample point are examined for fast retrieval of the surrounding points. To
avoid the effect of systematically choosing the front-most point sample, we use a depth inter-
val around each point of minimum depth in which no other points are discarded, assuming
that these points all lie on the same surface. Then we calculate the color for each pixel as the
weighted average of nearby pixels using a Gaussian filter kernel as weighting function, simi-
lar to [8].

This reconstruction method results in high-quality images with arbitrary small aliasing (figure
7c) but as the low pass filtering emphasizes low frequencies [14], a large sample size is neces-
sary to avoid objectionable coarse granular noise artifacts. This leads to rendering times that
are definitively outside the range of realtime applications (typically several minutes). Another
drawback of this method is the depth interval heuristic used to avoid systematically choosing
the foremost pixel: This value has to be estimated manually depending on the scene, wrong
values may lead to a false reconstruction of occlusion. Backface culling is necessary to pre-
vent misinterpretations on object boundaries.

6 Choosing sample points efficiently
The goal of this section is to develop an algorithm which chooses sample points randomly
according to the probability density defined in section 4. The key observation is that an exact
solution is not necessary. None of the image reconstruction techniques of the preceding sec-
tion will fail if parts of the image contain too many sample points; they just cause additional
processing costs. It must only be ensured that the sample density does not fall below the
original sampling density anywhere. This leads to a conservative approximation algorithm
which tries to come close to the optimal sampling density without ever falling below it. The
running time of the reconstruction algorithm will then be increased proportional to the overes-
timation of the projected area. We will now present such an algorithm and prove that the addi-
tional costs are small under reasonable assumptions on the scene geometry.

(a) z-buffer

(b) randomized z-buffer (c) Gaussian filtering

Figure 7: aliasing artifacts for different rendering / reconstruction methods

 19

6.1 Distribution Lists
In a first step, we assume that all projected area values of the triangles are known in advance
(they could be computed for each viewpoint using linear time). To choose random points ac-
cording to that distribution we use distribution lists: The triangles are taken in arbitrary order
and inserted into a list storing a pointer to the triangle and an additional summed-area value
per triangle. We start with the projected area of the first triangle and increase this value with
the projected area of each triangle inserted to obtain the discrete distribution function for the
probability for choosing the triangles. The function is scaled by the total amount of projected
area which is found as entry in the summed-area field of the last node.

To choose a random triangle we now determine a random number chosen uniformly from the
interval [0,1] using a standard pseudo random number generator, scale the value by the total
projected area and then search the first entry in the list whose summed projected area field is
above the random value. Then we choose a random point from the triangle using a random
linear combination of the vertices. This algorithm chooses an object according to the inverse
of the distribution function defined by the summed projected area values of the triangles. It is
a well known result from statistics that an inverse of a distribution function ϕ applied to a
random variable which is uniformly distributed in the interval [0, 1] creates a random variable
which is distributed according to ϕ [25].

Using this technique, we can choose sample points in O(log n) time for n triangles if the pro-
jected area values are known. To avoid the costly computation we substitute estimated values
for the exact values in the next section.

6.2 Approximation
Roughly speaking, our algorithm works as follows: The scene is divided into groups of trian-
gles showing a similar projection factor (see section 4). The groups are obtained by dynami-
cally choosing from a pre-computed hierarchy of triangle groups. Within each group,
distribution lists are stored according to the absolute area of the triangles. For each group it is
then determined how many points it must receive using the product of absolute area contained
in the group and the upper bound known for the projection factor to estimate the projected
area. Then, within each group, sample points are chosen using the distribution lists for the
absolute area values. This method guarantees that the sampling density does not fall below the
minimum value necessary.

To divide the scene into groups, three factors have to be bound since the total projection fac-
tor is a product of three independent terms: The distance factor 1/z2, the orientation factor
cos β and the distortion towards the borders of the image 1/cos α. The impact of the latter dis-
tortion on the projection factor is relatively small, for typical values of the focal length pa-
rameter it can safely be ignored1. It remains to bound the two other factors.

1 The deviation due to this distortion is also bound by the spatial subdivision used for bounding the distance factor so that
even short focal length parameters do not lead to problems.

 20

6.2.1 Spatial Classification
To bound the distance factor we build an octree for the triangles of the scene in a precomputa-
tion step. We can use "shortcuts" [3] to constrain the tree to storage requirements linear in the
number of triangles, i.e. all subdivisions which do not divide triangles from each other are not
stored explicitly. To handle triangles that intersect with the octree grid, we permit triangles to
be stored at inner nodes if they lie outside the octree box with a distance of up to a constant
proportion of the side length of the box.

For each node in the octree, a distribution list is provided for the absolute area values of all
triangles contained in that node. For leave nodes the lists are computed from the triangles,
inner nodes obtain their list as concatenation of the children's lists and the list for their own
triangles in arbitrary but fixed order. Overall, only one list storing all summed area values is
needed: The nodes mark up their part of the list by using pointers to their sections. Therefore,
the overall storage requirement is only O(n) with n as the number of triangles and the pre-
computation can be performed in O(n ·ln n) time.

Every time the observer moves to a new position, a set of octree boxes is chosen out of the
precomputed hierarchy for which the ratio between the minimum and the maximum projec-
tion factor is not larger than a given constant ε. Boxes that do not intersect with the viewing
frustum are dropped. We use a recursive algorithm which traverses the octree from the root
downwards and stops at each node which is small enough or lies outside the viewing frustum.
Let τ be the ratio between the smallest and the largest depth value. We call this value the rela-
tive depth range of the scene. It is always bound by the ratio of the distance of the front clip-
ping plane of the viewing frustum to the diameter of the scene. We will now show that the
aforementioned algorithm only chooses O(log τ) boxes from the octree using O(log τ) time
and that the cross-sectional area of the frustum of boxes selected exceeds that of the viewing
frustum only by a constant:

Let zmin be the minimum value within an octree box and zmax the maximum value. Then the
depth factor does not vary by more than ε if zmax/zmin ≤ √

ε . Let z0 be the distance of the front
clipping plane of the viewing frustum. We then divide the viewing frustum into log√

ε τ depth
intervals [z0√

ε

k, z0√
ε

k

+1] (see figure 8). Each section of the viewing frustum can be covered

by octree boxes of diagonal diameter no smaller than the depth of the preceding section, be-
cause boxes of that diameter can only reach into the preceding section and so they do not vio-

z 0

z 0

0
z

2

z 0
3

z 0
4

z0

5

viewing frustum

depth intervalviewpoint

Figure 8: depth intervals

 21

late the restriction of the maximum depth ratio.
Thus, the minimum size of the boxes is in a constant ratio to the depth of the current section.
The volumes of the sections and the boxes up to a constant value both grow with the third
power of the section depth, so a constant amount of boxes suffice to cover each section and
thus only O(log τ) boxes are needed altogether. As the diameter of the boxes is in a constant
proportion to the sections depth value, the cross-sectional area of the viewing frustum is
enlarged only by a constant due to the approximate clipping using octree boxes.

To bound the total number of boxes processed by the selection algorithm consider a box with
diameter d which is further subdivided by the selection algorithm: To be neither selected nor
culled this box must intersect with the viewing frustum in one of the sections demanding for a
smaller box diameter. Now consider all sections with a depth interval below the diameter of
the box considered. The volume of all these sections together differs only by a constant factor
from the volume of the largest section because the sections sizes grow exponentially and thus
the summed volumes make up a geometric progression. Thus, this area can also be covered
with a constant number of boxes with size d. As the algorithm only processes boxes of
O(log τ) different sizes and only subdivides a constant number for each size the total number
of boxes processed and therefore the running time is bound by O(log τ).

The boxes selection algorithm has similarities to the methods proposed Rusinkiewicz and
Levoy [28] and by Chamberlain et al. [6, 7]. Some ideas of the prove are taken from [6].

6.2.2 Expected Deviation
Using the spatial hierarchy only to assemble groups of objects with similar projection factor
already leads to a satisfactory strategy. Recall that the increase of running time caused by a
poor approximation of the ideal distribution is proportional to the overestimation of the pro-
jected area. To analyze the overestimation of the projected area due to the neglected orienta-
tion factor we assume that the normals of the triangles are equally distributed on the unit
sphere. A worst-case analysis would not make much sense here: A scene filled with triangles
perpendicular to the viewer could lead to an arbitrarily high overestimation in the worst case
but such cases are rarely encountered in practice. We will now show that the expected value
for the overestimation of the projected area is 4ε where ε > 1 is the parameter chosen in the
box selection algorithm:

We fix the normalized view vector on the unit sphere and consider all vectors forming an an-
gle of less than ϕ with it. The probability of a normal vector to lie within that region is given
by

2
cos1)(Prob 0

ϕϕϕ −=≤

as seen easily by elementary geometry. We obtain the probability density function f by differ-
entiation as:

2
sin)(ϕϕ =f

 22

We then integrate over the exact orientation factor cos β weighted by the probability density
function f to obtain the expected value of the projected area:

4
1

2
sincos)(

π

0

=⋅= ∫
2

ϕϕϕ dorientfactE

The expected value of the estimation is given by

∫ =⋅=
π

0

1
2

sin1)(ϕϕ destE

so the ratio is 4. Multiplying with the factor ε accounting for the approximation of the dis-
tance factor leads to the value 4ε as claimed above. Note that the integration borders of the
exact case take into account backface culling. As we can assume that sample points with
backfacing normals can be removed from the sample with little costs (a vector difference and
a scalar product) the expected size of the sample to be processed further is actually only larger
by a factor of 2ε than the size of an ideal sample set.

6.2.3 Classification by Orientation
To archive a better estimation of the projection factor especially for scenes where the distribu-
tion of the surface normals is not uniform we use a simple classification scheme: We divide
the unit sphere into classes of similar orientation by using a regular grid in polar coordinates2.
Then for each class of orientation a spatial data structure is built as described in the preceding
section.

To choose the spacing of the grid one must take into account the deviation of the orientation
due to the position in space: The angle β in the orientation factor is defined as the angle be-
tween the view vector, i.e. the vector from the surface point to the viewer, and the surface
normal. Therefore, the angle changes when the surface point is moved perpendicular to the
viewing direction. Thus, it is necessary to restrict the spatial location of the objects to enhance
the accuracy of the estimation of the projection factor. The possible angular deviation is equal
to the angle under which the octree boxes extends are seen from viewpoint. This value can be
bound by the ratio of the diameter of the box to its minimum depth distance to the viewer.
This value is implicitly bound by the spatial subdivision algorithm because it bounds the ratio
of the minimum to the maximum depth of the box and the boxes are symmetric. Let now λ be
the maximum angle between two points in an octree box and the view point and we choose
the grid spacing of the angle classes to be λ, too. Then the overall angular error is bound by
3λ and the expected overestimation of the orientation factor can be bound by:

()()
4
13cos()sin(

2
1)(/)(

π

0
]1,0[]1,0[ϕλϕϕ dcutcutidealEestE ∫ −⋅=

 ∫∫
+

−+=
λ

λ

λ
ϕλϕϕϕϕ

32/π

3

3

0

)3cos()sin(2)sin(2 dd

2 This is not optimal, a better solution could e.g. use a subdivision of a platonic primitive to obtain a more uniform cell size.

 23

 λλ 3sin
2
π3cos2 +−=

An analysis of this function shows that the expected overestimation decreases roughly linearly
with λ from 2 to 1 when λ is decreased to zero while the costs for selecting boxes increase
with λ-5: When λ is reduced, the number of orientation classes grows with λ-2. For small an-
gles, the relative size of an octree box, i.e. the ratio of its size and depth, and the angle under
which it is seen from the view point are roughly proportional to each other. So a reduction of
the viewing angle λ leads to an increase of the number of octree boxes of λ-3. The strong
growth of the number of boxes for small values of λ restricts the number of angle classes
which can be used: Only a rough angular subdivision is possible without strong increases of
the running time of the box selection algorithm.

6.2.4 Worst-Case Scenes
The approximation algorithm used here to choose the sample points can lead to an arbitrary
high running time in the worst case. Indeed any approximation based on regular spatial subdi-
vision cannot handle worst-case scenarios with bounded costs:

Consider the scene shown in figure 9: It consists of a pile of several triangles perpendicular to
their view vectors and a nearby triangle with the same orientation which is not perpendicular
to the viewing direction. As long as theses triangles are kept in one spatial group, the overes-
timation of the projected area can be arbitrary large because there can be arbitrary many trian-
gles in the pile. To divide the triangles seen from different angles from each other the relative
size of the spatial subdivision boxes must be made smaller than the angle γ between the two
elements seen from the view point. As this angle can be arbitrary small, this can also lead to
arbitrary high costs. The conclusion is that regular hierarchical subdivision cannot handle
worst-case scenes at bounded error and running time.

In practical applications such scenes are rarely found, but beside scenes with a relatively uni-
form distribution of surface orientations there are also scenes which show some preferred ori-
entations: For example a scene showing a plane raising up to the horizon clearly has a fixed
projected area. If the orientation to the viewer is not taken into account, we get a projected
area of

)(log1

)1(
2 rdz

z
z

r

Θ=

Θ ∫

Θ

with r as the diameter of a circular plane segment, which is unbounded. But as the size only

viewpoint

octree box

Figure 9: worst-case scene

 24

grows logarithmically with the diameter, the overestimation is not very severe as long as the
segment is not extremely large.

This argument can also be applied to similar cases: Many scenes showing urban landscapes
contain groups of objects lying on such planes like walls or the ground plane. A relatively
small number of angle classes are sufficient to separate the main orientations (roof, walls,
ground) from each other. Then only a rough spatial subdivision is necessary to bound the
overestimation of the projected area caused by the variation of the viewing angle due to a
variation of the location of the objects because the overestimation only grows slowly with the
spatial size of the object groups.

6.3 Dynamic Updates
A dynamic version of the data structures for sample extraction can be obtained applying some
minor modifications to the static data structures. In the following, we will give a dynamic
version of the spatial subdivision data structure. The generalization to orientation classes is
straightforward.

The main problem is that the distribution list storing the accumulated area values in the static
case cannot be updated efficiently. Therefore, we substitute a dynamically balanced search
tree for the distribution list, e.g. a binary AVL-tree [22]: The child nodes of the tree store the
area values of the triangles and the inner nodes store the sum of their child nodes. The entries
in the tree are ordered by an inorder traversal of the octree. Therefore, each octree node can
mark up its region in the tree by two pointers to leaf nodes in the search tree. The search algo-
rithm which selects a sample point now at first runs upwards in the tree from the leaf nodes,
summing up all area to the left and to the right of the search interval. A random number from
the range [0,1] is taken and it is scaled by the total area in the tree minus the area outside the
search interval. Then the search algorithm starts from the root searching the leaf node: At
each inner node the first child is chosen, if its area value is not smaller than the search value.
Otherwise, the second child is chosen and the search value is decremented by the area value
of the first child.

When a dynamic insertion or deletion takes place, at first the octree must be updated, which
can be done in O(h) time, if h is the height of the tree. Then a leaf node is added or removed
from the AVL-tree. The summed area values of the parent nodes must be corrected, taking
O(log n) time and the tree must be rebalanced. The balancing operations of an AVL-tree pre-
serve the order of the tree, so the intervals of the octree nodes are not affected by this step.
The summed area values must be corrected for all nodes which are rotated during balancing,
but this can be done locally in O(1) time per node. O(log n) balancing operations are neces-
sary, so the overall update time3 is O(log n + h), the sample selection time remains O(log n) as
in the static case.

The implementation of a separated balance search tree can be avoided if the scene consists of
objects which are uniformly distributed in at least one dimension. Then the octree itself is
relatively well balanced and it can be used as distribution tree: In each leaf node, the area val-

3 If the octree node in which the object is to be inserted or from which it is to be deleted is known in advance, the O(h) search
for the node of the object is not necessary and the octree can be updated in O(1) time: Due to the use of shortcuts, only local
modifications are necessary. This results in a total dynamic update time of O(log n).

 25

ues of the triangles are stored. In each inner node, a list with the eight summed area values for
the children is stored. The sample selection algorithm now starts at the octree node which was
selected by the box selection algorithm and generates a random number between zero and the
summed area value of the last child node. Then it descends in the tree, choosing the last child
node with a summed area value below the current search value. The summed area value of the
child node directly before that node is subtracted from the current search value. So the correct
leaf node can be found in O(h) time. Dynamic updates can be done in O(h) time, too: After
adding or deleting a node from the octree in O(h) time an additional traversal from the leaf
affected to the root node is necessary to correct the summed area values.

For practical applications, the second variant is probably the more interesting one, because
although the first variant is asymptotically faster, it introduces a considerable overhead. Fur-
thermore, the implementation of the second variant is much simpler and as the height of the
octree is often not very large for practical scenes, the increase of the running time of the sam-
ple selection algorithm to O(h) may be acceptable. The experimental results in section 6.2.4
confirm a good behavior in practice: For scenes with uniformly distributed objects, sample
selection using the octree as distribution tree is nearly as fast as in the static case.

6.4 Analytical Results
Putting together the running time for the image reconstruction and for choosing sample
points, we obtain the following result:

Let S be a three dimensional scene with surface normals uniformly distributed on the unit
sphere, a the projected area of the scene, v the resolution of the rendered image, τ the ratio
between the diameter of the scene and the minimal viewing distance and n the number of tri-
angles in the scene. Then the scene can be rendered in O((a·log v + log τ)·log n) time using
O(n) space for precomputed data structures. In all pixels of the image which are fully covered
by foreground objects and in which the depth interval of foreground and background objects
are disjoint a correct image is obtained with a high probability given arbitrarily.

Specific running time for plain landscape scenes: An important special case are scenes
which can be roughly described as a disc with radius r in a plane on which objects are placed
uniformly with limited height and uniformly distributed surface normal orientations. Typical
examples are city scenes or landscape scenes. The projected area of such a scene can be esti-
mated as follows:

)(log11)(
)1()1(

2 rdz
z

dz
z

zA
rr

prj Θ=

Θ=Θ≅ ∫∫

ΘΘ

The number of objects grows with r2, so if these scenes are rendered with the randomized z-
buffer algorithm without any further occlusion culling we obtain a total running time of
O((log r·log v + log r)·log r

2) ⊆ O(log2
 r). This is a big improvement in comparison to the con-

ventional z-buffer algorithm, which would require Θ(r2).

 26

7 Extensions

7.1 Using Conventional z-Buffer Rendering for
Large Triangles

For each pixel on the screen, ln v sample points have to be projected into the image plane,
where v is the resolution of the image. Thus, for large triangles, which cover more than a
small fraction of a pixel in the image, it is not efficient to draw them using the random sam-
pling algorithm but it would be more efficient to use the conventional z-buffer algorithm. For
large triangles, the conventional algorithm is faster by about three orders of magnitude be-
cause it can be implemented using fast incremental integer arithmetic to fill the pixels of the
triangle. To make use of this, all triangles which would receive more than a few sample points
must be identified dynamically.

The amount of sample points a triangle receives depends on the estimation of the projection
factor for the triangle and the absolute area of the triangle. The first factor is known exactly, it
is determined by the octree box selection algorithm. To estimate the second factor we use
classes of triangles with a similar area. Each class stores area values which differ only by a
constant factor (say two or four) from each other, so the size of the classes grows exponen-
tially and O(log A) classes are necessary if A is the ratio between the smallest and the largest
area value of a triangle in the scene. For each class, a separate data structure for the classifica-
tion of the projection factor is built.

The box selection algorithm has to be modified: all selected boxes which contain triangles
with a projected area smaller than a given threshold are scheduled for sampling. The triangles
stored in the other boxes are passed to a conventional z-buffer renderer which shares its
depth- and framebuffer with the reconstruction algorithm of the point sample renderer. Setting
a conservative value for the threshold value, it can be ensured that the rendering speed never
drops below that of a conventional z-buffer renderer.

The drawback of this approach is that additional classes for triangles of different area have to
be used. Together with orientation classes and the number of boxes selected by the spatial
subdivision algorithm a considerable overhead for box processing could emerge, as all three
factors multiply. But this is no severe problem in practice: Experiments show that in most
cases the use of classification by orientation does not lead to significant performance im-
provements for the sampling algorithm (see section 8.2). So one can use classification by area
instead of classification by orientation and in this constellation the number of boxes which
must be processed is small enough.

7.2 Scene Encoding
The running time of the randomized z-buffer algorithm shows a very weak dependence on the
number of triangles in the scene. Thus, the scene complexity which can be handled lies some
orders of magnitude higher than typical input scenes for the conventional algorithms. There-
fore, the main barrier for the display of extremely detailed scenes is the memory consumption
of the scene description. Using an explicit storage of all triangles does not even lead to a

 27

scene complexity at which the pure sampling algorithm is significantly faster than the conven-
tional z-buffer algorithm because of the large sample size required (see section 5.1.1).

To be able to encode meaningful scenes of high complexity, we have adopted a scene graph
based hierarchical instantiation scheme4: The scene is described by a conventional scene
graph as found in many software libraries [33]. Reference nodes are used to define multiple
instances of the object described by a subgraph. The instances can differ from the original by
a combination of scaling, rotation, reflection and translation5. Subgraphs starting at nodes
which have multiple incoming references can be marked by the modeler to be regarded as
"subobjects". For each such subobject, a private spatial subdivision structure is constructed.
Instead of all the triangles contained in the subobject, only a dummy node is inserted into the
spatial subdivision structure of the parent object. The dummy node contains a pointer to the
private octree and a transformation matrix. This scheme is carried on hierarchically allowing
sub-subobjects within subobjects. The resulting data structure is used like a conventional oc-
tree for the whole scene: When the box selection algorithm steps over a dummy node, the
current camera settings are transformed by the inverse transformation of the node and the al-
gorithm is continued in the substructure. When the point selection algorithm reaches a sub-
structure instead of a triangle it is continued in the sub distribution list and the transformation
found in the dummy node is applied to the sample point. As every instantiation layer leads to
one additional matrix/vector multiplication, the running time is increased by a constant value
for each layer used (experiments showed additional costs of 30% of the running time without
instantiation per extra layer of instantiation for a pure software implementation).

We consider this solution to the scene-encoding problem only a first step. To be able to en-
code large scenes for the rapid display by output-sensitive rendering algorithms further tech-
niques have to be developed. We believe that the scene encoding problem will become
increasingly important in the near future with the advent of powerful rendering hardware and
output-sensitive rendering algorithms.

8 Implementation and Results
We implemented a prototype of a walkthrough system using our algorithm to examine image
quality and rendering performance in practice. The system was implemented in C++ using
OpenGL for low-level rendering and tested on an 800Mhz Athlon processor system with an
nVidia GeForce-2 GTS graphics board. The z-buffer renderer used for comparison and for
combination with point sample rendering was not optimized, especially, it did not make use of
triangle strips. However, as the point sample renderer also leaves some opportunities for op-
timization, we think that the comparison remains fair.

4 We will describe the application to the spatial subdivision structure only. Once more, the generalization to orientation
classes and area classes is straightforward.
5 We restrict the transformation to these operations because they can be mapped to manipulations of the camera settings. This
is used by the traversal algorithm.

 28

8.1 Scene Complexity
We used a chessboard explicitly modeled of black and white triangles as a test scene and in-
creased the number of squares on the board to measure the dependence of the running time on
the scene complexity. This constellation ensured that the projected area and other geometric
parameters remained constant for all levels of detail. The results can also be applied to scenes
with a complex geometry like fractally-modeled trees or landscapes but these have not been
used as benchmark scenes in order to preserve the orthogonality of the results. The scene was
rendered using point sample rendering only, the automatic invocation of conventional z-buffer
rendering was disabled.

Figure 10 shows the running time for an exponentially increasing scene complexity. The ran-
domized algorithm shows a roughly linear increase of running time approving the logarithmic
growth of its running time with the number of triangles. The discontinuities show up at points
where additional instantiation layers had to be introduced. Overall, the rendering time was
only increased by about a factor of three between 32 triangles and 1013 triangles, which
clearly shows the strong output sensitive character of the running time. It is also apparent that
pure random point sample rendering leads to a high overhead for low complexity scenes in
comparison with the conventional z-buffer rendering. For a small number of triangles, the
running time of the random sampling algorithm is higher than that of the conventional z-
buffer algorithm because it has to compute a constant amount of perspective projections de-
pending only on the projected area. This motivates to render large triangles using the conven-
tional z-buffer algorithm as described in section 7.1. If this strategy is applied, the combined
algorithm is always at least as fast as the conventional algorithm.

8.2 Sampling Parameter Optimization
The two main parameters of the sample distribution process are the depth accuracy ε and the
granularity of the angular subdivision λ. We varied these parameters for different benchmark
scenes to identify optimal settings. Classification by triangle area for automatic conventional
z-buffer rendering of large triangles was deactivated here, too.

0

500

1.000

1.500

1,0E+00 1,0E+02 1,0E+04 1,0E+06 1,0E+08 1,0E+10 1,0E+12 1,0E+14

triangles

re
nd

er
in

g
tim

e
[m

se
c]

conventional z-buffer randomized z-buffer

Figure 10: running time for different scene complexities

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8
depth accuracy (εεεε)

tim
e

[s
ec

]

rendering time reconstruction time hierarchy traversal

Figure 11: trade-off between traversal time

and reconstruction time

 29

Depth accuracy: Choosing the parameter ε is a trade-off between box selection time and
image reconstruction time. The number of boxes used grows rapidly with decreasing ε : The
depth sections which constrain the side length of the boxes in the proof in section 6.2.1 start at
depth values of ε

k with increasing k. Therefore, the relative depth, i.e. the ratio between the
minimum and maximum depth of one section, is proportional to (√

ε -1) and thus the volume
of one box decreases with (√

ε -1)3 leading to costs of Θ((√
ε -1)

-3) for the box selection algo-
rithm. On the other hand, a large value for ε leads to a poor approximation of the ideal sample
distribution and thus to increased image reconstruction costs: In the worst case the depth fac-
tor can be overestimated by a factor ε . In an average case, assuming a uniform distribution of
the triangles over the scene the expected overestimation is just Θ(√

ε): Averaging over the
over-estimation factor 1:1/z for a depth section reaching from a to a√

ε we get:

() ()ε
ε
ε

ε

ε
Θ∈

−
−=

− ∫ 1
11 adzz

aa

a

a

The sum of these two monotonic costs has an absolute minimum at a value ε which depends
on the relative depth range τ of the scene, which scales the first cost function, and on the pro-
jected area, which scales the second cost function. Figure 11 shows measured running times
for these components for an example scene which approve the theoretical analysis: The trade-
off between the running times of the two steps of the randomized z-buffer algorithm can
clearly be seen as well as the strong growth of the running time for small values of ε and the
weaker growth for large values.

For practical applications, it would be desirable to determine the optimal value automatically.
As there is only one local minimum, this could easily be accomplished by using a minimum
search algorithm, like a gradient descent algorithm. As long as the optimal value is unknown,
it is be advisable to use a relatively large value for ε because of the strong growth of the run-
ning time for small values of ε.

Angular subdivision: The optimal value for the grid spacing λ of the angle classes also heav-
ily depends on the scene material to be rendered. We tested several scenes with quite uni-
formly distributed surface normals. For views of scenes which require only moderate spatial
subdivision, the rendering time can be improved by angular subdivision. If many boxes are
necessary to achieve a small overestimation of the depth factor (e.g. if the scene is seen from a
view point with large relative depth range), additional angular subdivision even increases the
running time. Improvements were only possible as long as the relative depth range of the
scene was very small. Thus, for most applications, especially for walkthroughs of extended

replication 1 × 1 2 × 2 3 × 3 4 × 4 5 × 5 6 × 6
number of triangles 33,950 135,800 305,550 543,200 848,750 1,222,200
initial precomp. time [s] 1.87 8 19 34 52 84
insert 5804 triangles [s] 0.562 0.546 0.582 0.580 0.581 0.572
delete 5804 triangles [s] 0.011 0.010 0.010 0.012 0.025 0.017
throughput (static) [pts/s] 562,393 543,758 539,103 531,011 524,006 511,417
throughput (dynamic) [pts/s] 479,592 461,125 449,806 435,024 416,132 399,548
overhead 17% 18% 20% 22% 26% 28%

Table 1: dynamic updates of scenes of different sizes

 30

virtual environments, classification by orientation should not be used.

The reason for this somehow surprising result is that using angular subdivision multiplies the
number of boxes to be processed by an additional factor and thus limits the number of boxes
that can be spent to bound the overestimation of the depth factor. As the average overestima-
tion of the orientation factor is only a factor of two (uniformly distributed normals, taking
backface culling into account), constraining the depth factor is more profitable than constrain-
ing the orientation factor.

8.3 Combination with Conventional z-Buffer Rendering
Two parameters are open in the triangle area classification scheme described in section 7.1:
The size of the area classes and the threshold value for the estimated projected area at which
conventional z-buffer rendering is invoked. In practical experiments, the value for the size of
the area classes had little impact on the running time. Values between 2 and 64 lead to similar
rendering times when all other parameters where chosen optimally. The reason for this is that
firstly, the accuracy of the estimation of the projected area has little impact on the running
time, as it affects only a small “border” region of the scene. Secondly, the size of area classes
does not affect the total number of boxes to be processed as severely as the size of the angular
classes because only a one-dimensional domain is subdivided.

For our test scenes, the optimal value for the threshold value at which the algorithm switches
to conventional z-buffer rendering lay, as theoretically expected, in the range of the pixel size
divided by the oversampling ratio ln v/d and it was roughly independent of the scene material
and camera position. Figure 12 shows the rendering time in dependence on the threshold val-
ue for the city scene shown in figure 14f. The minimum of the rendering time varies with the
splat size d used for image reconstruction. The gain achieved by the integration of z-buffer
rendering naturally depends on the sampling cost. This leads to a most pronounced minimum
for the per pixel reconstruction (d = 1) and to smaller gains for larger splat sizes.

0

1

2

3

4

5

6

7

8

0,0010,010,11101001000

max. triangle area for sampling [pixel²]
re

nd
er

in
g

tim
e

[s
ec

]

d=1 d=2 d=3 d=5 d=10

Figure 12: z-buffer rendering of large triangles,

different threshold values

Figure 13: a cow model inserted into a city scene

 31

8.4 Dynamic Updates
We implemented the simplified variant of the dynamic distribution tree described in section
6.2.4, i.e. the variant which stores additional summed area values in the spatial octree and
uses this structure to choose sample points. For practical implementations, this variant is more
appealing than the “exact” implementation using dynamically balanced search trees because it
causes only a small implementation overhead in comparison with the static version. We used
the city scene from section 8.5 replicated on a quadratic grid (without using instantiation) ob-
taining a maximum object count of 1.2 million triangles. Due to the large memory consump-
tions (175MB in the static and 363MB in the dynamic case), this scene complexity can be
considered the upper limit of objects which can be managed without using instantiations. If
instantiations are used, the dynamic operations just have to be applied to the sub-search struc-
ture affected, which then also falls below this maximum size.

We inserted a cow model (taken from [13]) consisting of 5804 triangles into the scene (see
figure 13) and removed it again. The resulting running times are shown in table 1: Rebuilding
the data structure from the scratch takes up to 84 seconds while the dynamic update only takes
half a second for insertions (100µsec / obj) and up to 25 milliseconds for deletions (4,3µsec /

obj)6. The update times are short enough to allow for interactive local modifications of small
parts of the scene typical for interactive editing applications. If instantiations are used, only
one deletion and insertion operation is necessary to change the transformation of a complex
object with a private distribution tree (the dynamic data structure does not distinguish between
subobject entries and triangle entries). As only one entry in the parent distribution tree has to
be updated, this common operation can be performed within less than a millisecond.

The critical point of the simplified implementation of the dynamic distribution tree is the per-
formance of the data structure for choosing sample points. We compared the sample point
throughput per second of the dynamic version with that of the static version. As the static ver-
sion uses an optimally balanced binary search in a static distribution list in contrast to a search
in the unbalanced octree, a higher performance could be anticipated. The last row in table 1
shows the percentage by which the octree distribution version is slower than the static version.
The overhead grows with increasing size of the scene, but it does not exceed 30% for the larg-
est city model. We tested some other scenes with roughly uniformly distributed objects7 and
similar object count and also observed a performance advantage of no more than 30% for the
static version. Thus, the simplified version of the dynamic algorithm can be recommended for
practical applications, as the losses of rendering speed are not severe as long as the objects are
roughly uniformly distributed.

6 Insertions are slower than deletions because our implementation limits the maximum number of objects stored in one node
to 64 but the minimum is only limited by one. This leads to more node split operations during insertions.
7 We did not test adverse scenes as it can be seen analytically that the complexity will be linear in the worst case.

 32

8.5 Example Renderings
We applied our algorithm to three different example scenes to demonstrate the benefits of our
algorithm. All images were rendered in a resolution of 640 × 480 pixel (table 2 summarizes the
results):

Replicated trees: A scene with 5.9·109 instances of complex tree models replicated on a
quadratic grid was rendered to show the ability to handle scenes of extreme complexity. The
scene consisted of 1.4·1014 triangles. A conventional z-buffer rendering would have taken
about 160 days (assuming an optimistic triangle throughput of 107 triangles per second). The
randomized algorithm delivers good results after a few seconds. Figure 14a shows a close-up
of the scene. It took 6.1 seconds to render using per-pixel reconstruction. Figure 14b shows an
overview over the scene. It was rendered 10 times with per-pixel reconstruction in 9.4 sec-
onds each; the image shown is the arithmetical per-pixel average of all ten frames. It can be
seen well that the random point sample rendering leads to averaged color values in the far
field giving a natural visual impression of the over-detailed geometry.

Landscape scene: We placed instances of the tree models used in the tree scene on a fractal
landscape model to show that visually appealing models can be rendered using our technique.
The complete landscape model consisted of about 410 million triangles. A high quality ren-
dering (figure 14c) took 19 seconds while a conventional z-buffer rendering took about 9
minutes, showing a significant speedup without visible differences between the two rendering
results. Near realtime rendering performance could be achieved at reduced image quality: We
substituted a static diffuse illumination model (as used in all other examples) for the relatively
expensive view dependent phong illumination model and enlarged the splat size. This led to a
rendering time of 640 msec for d = 5 and 260 msec for d = 10. Such renderings with degraded
image quality (see figure 14d) may be used as interactive previews within a scene editing ap-
plication. We used this technique for example to place the camera positions for our example
renderings.

“Happy Buddha” mesh: In this scene, a highly detailed mesh of simple topology was ren-
dered to show that the image quality of our algorithm is comparable to other approaches, such
as multi-resolution modeling. Some algorithms which perform well on unstructured scenes
like forest scenes have severe problems on smooth meshes [7]. Figure 14e shows the render-
ing results for the well-known “Happy Buddha” mesh (also taken from [13]) using the point
sample rendering algorithm (automatic z-buffer rendering was disabled). The image quality at
small splat size (d = 2) is nearly indistinguishable from a conventional z-buffer rendering but
already considerably faster. However, it should be noted that higher speedups can be achieved

Scene complexity
[triangles]

memory
consumption

precomputation
time d = 1 d = 2 d = 5 d = 10 z-buffer

“Happy Buddha” 1,085,634 163 MB 129 sec 1.54 sec 0.44 sec 0.096 sec 0.034 sec 1.18 sec
city scene 3,395,000 7.5 MB 3 sec 1.7 sec 0.57 sec 0.23 sec 0.12 sec 4.33 sec
landscape scene (diffuse) 410,501,184 137 MB 123 sec 6.1 sec 1.8 sec 0.64 sec 0.26 sec 7 min 51 sec
landscape scene (phong) 410,501,184 166 MB 123 sec 19.2 sec 6.9 sec 4.5 sec 4.0 sec 8 min 59 sec
replicated trees (close-up) 1.37·1014 36 MB 21 sec 6.1 sec 1.7 sec 0.58 sec 0.23 sec > 160 d (est.)
replicated trees (overview) 1.37·1014 36 MB 21 sec 9.1 sec 4.6 sec 1.3 sec 0.44 sec > 160 d (est.)

Table 2: rendering times for different scenes and different splat sizes d
(d = 1 is equivalent to per-pixel reconstruction)

rendering time

 33

using mesh simplification algorithms (see e.g. [13]) because the model still contains large
amounts of redundant triangles.
City scene: A city scene consisting of a huge amount of simple objects was rendered with
automatic z-buffer rendering for big triangles to demonstrate that near realtime performance
can be achieved for such types of scenes. The city scene consists of 3,395,000 triangles. A
conventional z-buffer rendering took 4.24 seconds. Using the point sampling algorithm for
small triangles, we were able to achieve frame rates of 2 to 5 frames per second, depending on
the image quality: 560 msec for a splat size of d = 2, 225 msec for d = 4. This was close to real-
time performance while delivering an acceptable image quality (figure 14f). Many other ap-
proximate rendering approaches would have had difficulty in representing the large number of
independent objects in the far field of this scene within a short time. For example, mesh sim-
plification would not have been applicable because all individual objects were already very
simple and further simplification would have led to unacceptable errors. We enlarged the
scene model by replication on a 100 × 100 grid, so that the new scene contained about 3,4·1010
triangles. This led to a rendering time of 963 msec for d = 4 respectively 2,97 sec for d = 2. So
the rendering time increased only by a factor of about 4 while a conventional z-buffer render-
ing would have taken 10,000 times as long (i.e. 11h). This shows the impact of the logarith-
mic asymptotic behavior of our algorithm: As shown in section 6.4, the rendering time grows
only with O(log2

 r) when r is the diameter of the scene, instead of O(r2). Thus, much larger
scenes are manageable.

9 Summary and Future Directions
We presented a new output-sensitive rendering algorithm which is based on a new technique
of choosing random sample points in object space which are approximately uniformly distrib-
uted in screen space. This technique leads to asymptotically efficient rendering under sensible
assumptions on the scene geometry, it allows for efficient dynamic updates and delivers an
image quality which is in most cases comparable to a conventional z-buffer rendering. Practi-
cal examples show that scenes of high complexity can be handled: The rendering speed and
the dynamic update performance is high enough for interactive editing applications on con-
ventional PC-hardware. In certain cases with low projected area to be sampled (like the city
scene when using conventional z-buffering for the larger triangles) near realtime performance
can be achieved facilitating interactive walkthrough applications.

Our approach leaves some open problems to be solved in future work:

Realtime rendering: The rendering performance could be strongly enhanced if the oversam-
pling could be reduced. We are planning to use multiple sample caches for regions of differ-
ent distance to the viewer which collect sample points and discard redundant ones. These
caches could be used for several subsequent frames, so a higher rendering performance could
be achieved for walkthrough situations.

Occlusion culling: We are also currently working on an algorithm which uses statistical in-
formation about how many sample points from one octree box have been accepted by the z-
buffer test to decide to hierarchically cull occluded portions of the scene.

 34

Modeling: To be able to handle complex scenes it is necessary to encode them in a data struc-
ture with reasonable storage requirements but with full access for the point sample renderer.
Here, the next step could be to provide direct sampling of higher order primitives like para-
metric spline surfaces (instead of triangles) and of models defined by simple generative mod-
els, like the replication of geometry on parametric surfaces. Subdivision in parameter space
for the classification by projection factor and parametric distortion could serve as basic tech-
nique to implement such modeling techniques.

High quality rendering (offline): To be able to use the randomized z-buffer algorithm in
high quality rendering applications, some problems have to be solved, especially: efficient
antialiasing with adaptive oversampling, depending on the local variation of intensity, a cor-
rect handling of transparency in partially occupied regions and output sensitive solutions to
global illumination problems.

Acknowledgements
The authors wish to thank Prof. Straßer of Tübingen University for his support of this work.
We also wish to thank Tamás Lukovszki, Ingmar Peter and Christian Sohler for valuable
comments and discussions and Mario Vodisek for providing additional models for the city
scenes.

 35

References
[1] Appel, A.: Some Techniques for Shading Mashine Renderings of Solids.

In: Proceedings of the Spring Joint Computer Conference, 37-45, 1968.

[2] Arvo, J., Kirk, D. A: Survey of Ray Tracing Acceleration Techniques.In: Glassner, A. (editor): An
Introduction to Ray Tracing, Academic Press, 4th printing, pp. 201-262, 1991.

[3] Bern, M., Eppstein, D., Gilbert, J.: Provably good mesh generation. In: Proc. 31st Annu. IEEE Sympos.
Found. Compt. Sci., pp. 231-241, 1990.

[4] Blinn, J. F.: Light Reflection Functions for Simulation of Clouds and Dusty Surfaces. In: Computer
Graphics (SIGGRAPH 82 Proceedings), 16 (3), 21-29, 1982.

[5] Catmull, E.: A Subdivision Algorithm for Computer Display of Curved Surfaces.Ph.D. Thesis, Report
UTEC-CSc-74-133, Computer Science Department, University of Utah, Salt Lake City, UT, 1974.

[6] Chamberlain, B., DeRose, T., Lischinski, D., Salesin, D., Snyder, J.: Fast Rendering of Complex
Environments Using a Spatial Hierarchy. Technical Report, UW-CSE-95-05-02, University of
Washington, 1995.

[7] Chamberlain,xB., DeRose, T., Lischinski, D., Salesin, D., Snyder, J.: Fast Rendering of Complex
Environments Using a Spatial Hierarchy.
In: Proc. Graphics Interface ’96, 132-141, 1996.

[8] Cook, R.L.: Stochastik Sampling and Distributed Ray Tracing. In: Glassner, A. (editor): An
Introduction to Ray Tracing. Academic Press, 4th printing, pp. 161-199, 1991.

[9] Csuri, C., Hackathorn, R., Parent, R., Carlson, W., Howard, M.: Towards an Interactive High Visual
Complexity Animation System. In: Computer Graphics (SIGGRAPH 79 Proceedings), 13 (3), 289-299,
1979.

[10] de Berg, M., Halperin, D., Overmars, M., Snoeyink, J., van Kreveld, M.: Efficient Ray Shooting and
Hidden Surface Removal. In: Algorithmica, 12, 30-53, 1994.

[11] Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and Rendering Architecture from Photographs: A
Hybrid Geometry- and Image-Based Approach. In: SIGGRAPH 96 Proceedings, Annual Conference
Series, 11-20, 1996.

[12] Feller, W: An Introduction to Probability Theory and Its Applications. Third Edition, revised printing,
Wiley & Sons, 1970.

[13] Garland, M.: Quadric-Based Polygonal Surface Simplification, Ph.D. thesis, Technical Report CMU-
CS-99-105, Carnegie Mellon University, 1999.

http://graphics.cs.uiuc.edu/~garland/CMU/quadrics/quadrics.html

[14] Glassner, A. S.: Principles of Digital Image Synthesis.
Morgen Kaufmann Publishers, 1995.

[15] Gortler, S. J., Grzeszczuk, R., Szeliski, R., Cohen, M. F.: The Lumigraph. In: SIGGRAPH 96
Proceedings, Annual Conference Series, 43-54, 1996.

[16] Green, N., Kass, M., Miller, G.: Hierarchical Z-Buffer Visibility.
In: SIGGRAPH 93 Proceedings, Annual Conference Series, 231-238, 1993.

[17] Heckbert, P. S., Garland, M.: Survey of Polygonal Surface Simplification Algorithms. In: SIGGRAPH
97 course notes, 1997.

[18] Klein, R.: Multiresolution representations for surfaces meshes. Computer & Graphics, 22(1), 1998.

[19] Levoy, M., Hanrahan, P.: Light Field Rendering. In: SIGGRAPH 96 Proceedings, Annual Conference
Series, 31-42, 1996.

[20] Levoy, M., Whitted, T.: The Use of Points as a Display Primitive. Technical report, University of Norh
Carolina at Chapel Hill, 1985.

[21] Maciel, P.W.C., Shirley, P.: Visual Navigation of Large Environments Using Textured Clusters. In:
Proceedings of the 1995 ACM SIGGRAPH Symposium on Interactive 3D Graphics, 95-102, 1995.

http://graphics.cs.uiuc.edu/~garland/CMU/quadrics/quadrics.html

 36

[22] Manber, U.: Introduction to Algorithms, A creative Approach.
Addison-Wesley 1989.

[23] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, 1995.

[24] Pfister, H., Zwicker, M., van Baar, J., Gross, M.: Surfels: Surface Elements as Rendering Primitives. In:
SIGGRAPH 2000 Proceedings, Annual Conference Series, 335-342, 2000.

[25] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, The Art of
Scientific Computing, Second Edition, Cambridge University Press, 1992.

[26] Puppo, E., Scopigno, R.: Simplification, LOD and Multiresolution Principals and Applications. In:
EUROGRAPHICS 97 Tutorial Notes, 1997.

[27] Reeves, W. T.: Particle Systems - A Technique for Modeling a Class of Fuzzy Objects. In: Computer
Graphics (SIGGRAPH 83 Proceedings), 17 (3), 359-376, 1983.

[28] Rusinkiewicz, S., Levoy, M.: Qsplat: A Multiresolution Point Rendering System for Large Meshes. In:
SIGGRAPH 2000 Proceedings, Annual Conference Series, 343-352, 2000.

[29] Shade, J., Gortler, S., He, L., Szeliski, R.: Layered Depth Images. In: SIGGRAPH 98 Proceedings,
Annual Conference Series, 231-242, 1998.

[30] Shade, J., Lischinski, D., Salesin, D. H., DeRose, T., Snyder, J.: Hierarchical Image Caching for
Accelerated Walkthroughs of Complex Environments. In: ACM Computer Graphics Proc., Annual
Conference Series (SIGGRAPH 96 Proceedings), 1996.

[31] Sudarsky, O., Gotsman, C.: Output-Sensitive Visibility Algorithms for Dynamic Scenes with
Applications to Virtual Reality. In: Computer Graphics Forum (EUROGRAPHICS 96 Proceedings), 15
(3), 249-258, 1996.

[32] Teller, S.J., Séquin, C.H.: Visibility Preprocessing For Interactive Walkthroughs. In: Computer
Graphics (SIGGRAPH 91 Proceedings), 25 (4), 61-69, 1991.

[33] Wernecke, J.: The Inventor Mentor: Programming Object-Oriented 3d Graphics With Open Inventor,
Release 2. Addison Wesley, 1994.

[34] Zhang, H., Manocha, D., Hudson, T., Hoff, K.: Visibility Culling using Hierarchical Occlusion Maps.
In: SIGGRAPH 97 Proceedings, Annual Conference Series, 77-88, 1997.

 37

(a) replicated trees (1.4·1014 triangles),
per pixel reconstruction, rendering time: 6.1 sec.

(b) replicated trees (1.4·1014 triangles),

per pixel reconstruction, average over 10 images,
total rendering time: 93.7 sec.

(c) landscape scene (4.1·108 triangles),

per-pixel reconstruction (d = 1),
phong illumination model, rendering time: 19.2 sec

(d) landscape scene (4.1·108 triangles), splatting, d = 5,

diffuse illumination model, rendering time: 0.64 sec

(e) “Happy Buddha” mesh (106 triangles), splatting with
different splat sizes d, rendering times: 438, 96, 34 msec

(f) city model (3.4·106 triangles), splatting with different

splat sizes d, rendering times: 560, 225 msec

Figure 14: example renderings

