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Abstract 

We present a novel output-sensitive algorithm for sound rendering of 
complex scenes, i.e. scenes that contain a large amount of sound sources. 
It allows walkthroughs of complex sound environments (such as a foot-
ball stadium) in real-time and can be used for observer-dependent aurali-
zations of global sound propagation. 

The algorithm is based on a stochastic sampling strategy similar to 
point based techniques used for rendering images. Typical applications of 
the technique are in virtual reality and computer games, especially to 
complement established output-sensitive algorithms for rendering visual 
content. 

 

1 Introduction 
One of the important long term goals of interactive computer graphics is virtual reality. Many 

applications in entertainment and computer games as well as in simulation and computer based 
training demand for a faithful simulation of artificial environments. Sound is an important aspect 
of most natural environments and should be included in a realistic simulation. It provides impor-
tant spatial cues and has an especially strong effect on the emotional perception of a scene. Thus, 
a lot of research has been done on sound rendering in three dimensional scenes. Special attention 
was paid to the physically based simulation of sound sources [4,16,17] and the propagation of 
sound in complex environments [1,5,22,25]. A lot of work was also done on auditory display [6] 
and on software systems that integrate sound rendering with virtual reality applications [15,22]. 

In this paper, we consider the problem of real-time sound rendering for scenes containing a 
large amount of sound emitters. This is an important problem in many applications: Consider for 
example computer games showing complex crowd simulations, such as a football stadium in a 
sports game or an army in a strategic simulation. Another example could be a VR-walkthrough of 
a virtual prototype of a production facility with the sound of many machines and virtual workers. 
The sound rendering literature provides sophisticated techniques for the simulation of the inter-
action of a few sound sources with complex environments. However, settings with a large number 
of sound emitters have not yet been considered specifically. 

Our algorithm is based on point sampling: The algorithm approximates the effect of a poten-
tially large set of sound sources by taking a small sample set of representative sources. A dynamic 
importance sampling strategy is used to obtain estimates with low variance. For static scenes, an 
additional spatial hierarchy is precomputed that allows the extraction of sample sets in output-
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sensitive time, independent of the number of sound emitters. Statistical arguments guarantee the 
stochastic convergence to the exact solution. 

The algorithm can also be used as "back end" for the auralization of global sound propagation: 
First, an offline algorithm is used to simulate the global propagation of sound. Examining the so-
lution, it places a dense set of secondary sound sources in the scene, along with phase, volume 
and directional emission information. The sampling algorithm is then used to perform a real-time 
observer dependent "final gathering", as known from the image synthesis literature [8,11,23]. 

We have implemented a prototype virtual reality system that allows walkthroughs of complex 
scenes using the proposed algorithm for sound rendering and point-based multi-resolution render-
ing [29] for rendering the visual presentation. We examine two example scenes: A football sta-
dium with 16,000 fans, singing and yelling and a room with a violinist. Both scenes contain sec-
ondary sound sources obtained from a simple raytracing-based reverberation simulator. 

2 Related Work 
In this section, we review work related to our approach, especially concerning the simulation of 

sound propagation. Beyond these topics, there has also been a lot of work in the area of the simu-
lation of the sound sources themselves (e.g. using solid dynamics simulations) and in the area of 
auditory display (e.g. head related transfer functions, multi-channel audio, wave field reconstruc-
tion). For a complete review, we refer the reader to a survey article such as [6]. 

The propagation of sound can be simulated using different basic approaches. An elementary 
approach is wave based simulation: Finite elements, finite differencing, or similar techniques are 
used to solve the Helmholtz equation that describes the wave propagation [22]. The drawback of 
this approach is that the simulation costs are high and the expenses grow strongly with the 
maximum frequency to be handled. 

A second basic approach is a geometric simulation of sound propagation using raytracing tech-
niques [12]. A classic method is the image source algorithm [1,3]: Specular reflection paths are 
constructed by considering the source and the receiver and each reflecting polygon in the scene. 
For each polygon, an image source, located behind the polygon, is constructed that serves as 
substitute for the indirect sound path. This scheme is carried on recursively for the image sources 
obtained to calculate higher order reflections. This technique can enumerate all ideal specular 
reflection paths. However, the combinatorial complexity of this process renders a straightforward 
adoption of the algorithm to compute higher order reflections in complex environments infeasible. 
Savioja et al. [21] use geometric data structures to accelerate the computation of the image 
source. Additionally, only one image is generated for sources close to each other. During walk-
through, relevant image sources are selected automatically. Another possibility for global sound 
propagation is the usage of path tracing techniques: Variants of the photon tracing algorithm [2] 
can be used to calculate the sound propagation by monte-carlo raytracing. To establish paths of 
specular reflections, the metropolis algorithm can be used which searches the space of all possible 
paths using a Markov process of path mutations [27]. A problem of monte-carlo techniques is 
aliasing: The space of all energy exchange paths is only sampled and important paths can be 
missed. This problem is circumvented by beam tracing techniques [5, 7, 14, 25]: An adjacency 
data structure of cells and portals is constructed. Then, beams covering all specular sound paths 
are propagated into the scene by recursively clipping to portals and reflecting from walls. A data 
structure is maintained from which the relevant sound paths can be reconstructed efficiently for 
any observer position. The technique can also be generalized to deal with diffraction at edges [25]. 

The beam tracing technique as well as Savioja’s image source technique perform a dynamic se-
lection of sound sources/paths according to the observer position, similar to our technique. How-
ever, these methods aim at an efficient extraction of (higher order) specular sound transport 
paths while our method aims at rendering scenes with many sound sources (not necessarily 
stemming from global sound propagation). Our method is not very efficient for rendering highly 
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specular effects, especially not for higher order specular reflection. The strength of our proposal is 
the ability to deal with scenes containing a vast amount of sound emitters, such as a football sta-
dium. 

The last basic approach is an ad-hoc approach, often used in computer games: Parameterizable 
digital filters are used to model room characteristics by manually choosing matching parameters 
for different parts (e.g. rooms) of the scene and blending between them during walkthrough [13]. 

A lot of software systems have been devised to integrate sound simulation with virtual reality. 
One of the first publications on sound rendering in the graphics community is the paper by Ta-
kala and Hahn [24]. They describe a sound rendering pipeline based on keyframes and discuss 
sound synthesis and propagation. Two recent systems are the DIVA system [22] and the blue-c 
system [15]. The DIVA system combines wave-based and image source methods to render scenes 
like a virtual orchestra performance in real-time. The blue-c system is a telepresence system 
based on a VR cave setup. It uses parameterizable reverb processors for spatialized sound render-
ing. 

Our approach is also related to point sample rendering [18, 20, 28, 29]. Point based rendering 
algorithms for image generation try to reconstruct an image of a complex geometry from a small 
sample set of surface points. Our algorithm pursues the same goal for sound waves instead of im-
ages. The idea of final gathering is taken from the global illumination literature [19]: Many tech-
niques such as photon mapping [10] or instant radiosity [11] use a coarse solution to the global 
illumination problem and then display the shadows that occur if the solution is treated as an ex-
tended light source. This leads to a drastic improvement of image quality at moderate costs. The 
same technique is applied by our sampling algorithm that serves as "final gathering" step for a 
global sound propagation simulation. 

3 The Sampling Algorithm 

3.1 Overview 
In this section, we describe our sampling algorithm for sound rendering. First, we would like to 

give a brief overview of the main components (Figure 1): The rendering system consists of two 
threads, a sampling thread and a mixing thread. It expects a list of sound sources as input which 
can be specified explicitly in the scene description or generated by a simulation of global sound 
propagation. The sampling thread chooses a set of representative sound sources for a given ob-
server position. These sources are handed over to the mixer thread which blends together the 
waveforms in real-time. At the interface, keyframes are exchanged. They consist of lists of the 
active sound sources along with volume and phase (time shift) information for each source (for 
Doppler effect and stereo reproduction). This mixer architecture is a standard architecture in the 
sound rendering literature [21,22,24]. 

The sampling thread consists of a dynamic importance sampling algorithm that chooses sound 
sources with probability proportional to their effective volume at the given receiver position. It 
adapts the sampling distribution when the sources or the receiver change their position (or other 
characteristics). For static sound sources, an additional spatial hierarchy is used that assures 
that the sampling costs are independent of the number of sound sources. In the forthcoming sub-
sections, we describe the algorithm more in detail. 

3.2 Settings 
The input to our algorithm is a set of point sound sources si, i = 1…n. Each source si is assumed 

to emit a periodic sound signal fi(t). Additionally, each sound source is assigned a directional 
emission characteristic ei(d) which assigns different emission intensities to different outgoing di-
rections d. This accounts for directional emission of primary sources as well as for directional re-
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flection effects (glossy reflections) of secondary sources. The observer is also assigned a directional 
receiver characteristic er(d). 

Overall, we obtain an attenuation coefficients ai that describes how much intensity of a sound 
source si is received by an observer located in a distance of r: 

 a e d e d v d r
ri

i r i: ( ) ( ) ( , )= 2  (1) 

The vi term accounts for the visibility of the source from the receiver. The received signal fr is 
given by: 

 f t a f tr i
i

n

i( ): ( )=
=
∑

1
 (2) 

To model frequency dependent effects, such as different specularity of reflection or emission 
depending on the signal frequency, we prefilter the sound sources and split them into frequency 
bands. Each frequency band is treated as a separate sound source with a potentially different 
characteristic: The terms ei, er, vi can be modified for each source according to the represented fre-
quency band (see e.g. [26] for a treatment of frequency dependent occlusion). 

3.3 Stochastic Sampling 
The task of the sound renderer is the evaluation of Equation (2). This must be done at high up-

date rates, typically 44,100 times per second, and usually for at least two receivers (stereo). For a 
large numbers of sound sources n, this is not possible in real-time. According to our experiments, 
it is possible to mix about 2000 sound sources in real-time on a contemporary PC in software 
(16Bit 44,1Khz, mono output, Direct Sound 9.0 [13]). However, this is not sufficient for two rea-
sons: First, this leads to 100% CPU utilization and does not leave any room for other activities, 
such as graphics display. Second, the number of 2,000 sources can be exceeded easily in many 
situations, for example if a lot of secondary sources are used to simulate reverberations. Thus, we 
need a more efficient sampling strategy. 

It is a well known fact from statistics that large sums like Equation (2) can be approximated ef-
ficiently using smaller sample sets. Therefore, it is not necessary to sum up all sound sources to 
obtain a realistic result [8]. Instead, we choose k sample sources from the n sources with probabil-
ity pi for source si. Let π : {1..k}→{1..n} be the outcome of the random selection. The received signal 
fr is then approximated by 
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Obviously, the expected value of this estimator is fr for any sampling distribution p (with nonsin-
gular pi for all i=1..n).  How large is the error introduced by this approximation? The central limit 
theorem states that the distribution of the estimator converges to a normal distribution with ex-
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Figure 1: Overview of the sound rendering system. The set of sound sources consist of sources specified in the scene data base and 
secondary sources due to global sound propagation. Dynamic importance sampling is used to extract suitable sample sets which are 
handed over to a mixer thread. A spatial hierarchy is used for static sources to accelerate the selection process. The sample sets are 

played back by a mixer thread. 
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pected value fr and standard deviation O(σ p /√
_
n). σ p is the standard deviation of aπ(i) fπ(i)(t)/pi and 

depends on the sampling distribution p. 
Equation 3 is a typical case for an importance sampling strategy [8]: An optimal choice for the 

sampling distribution would be probabilities pi proportional to ai fi(t). However, calculating these 
weights is as expensive as computing the solution to Equation 2. The elements to be sampled are 
products of two factors: ai and fi(t). Thus, we use ai as sampling weight, neglecting fi(t): 

 p a
ai
i

ii
n:=

∑ =1
 (4) 

The attenuation coefficients ai depend only on the position of the observer (and probably on 
that of the sound sources, in dynamic scenes) and thus change very slowly. Therefore, it is usually 
sufficient to update these values at a low frequency whereas the sample values fi(t) must be up-
dated at several ten thousand Hz. Thus, the costs for estimating the sampling distribution can be 
drastically reduced while maintaining a considerable variance reduction. It is especially effective 
if all signals fi are normalized prior to sampling (i.e. scaled to have the same average volume). 
The rescaling factors then have to be included in the ai terms for compensation. 

3.4 Dynamic Importance Sampling 
We propose the following sampling algorithm to implement the importance sampling strategy: 

It takes a list of sound sources as input, consisting of sound buffers fi (e.g. created from wave files) 
and weights ai. A mixer thread is used to mix a sample of k sources in real-time. The sampling 
algorithm examines the weights ai of the sound sources periodically (typically 10-20Hz) and 
passes the mixing parameters (a list of sound sources with phase and volume) to the mixer 
thread. Between these keyframes, volume and phase are interpolated by the mixer. 

The sampling algorithm starts with random importance sampling to generate the first key-
frame: k sources are selected with probability pi proportional to ai. In the analysis, we assumed to 
choose all sample sources independently of each other to fulfill the requirements of the central 
limit theorem. However, in practice it is more convenient to make sure that any sound source 
may be chosen only once. For large n, this does not make a significant difference and thus, the 
asymptotic analysis is still applicable. However, if n is closer to k, we can avoid to chose the same 
source multiple times and thus obtain a better sample set for smaller scenes. In our implementa-
tion, we use a simple divide and conquer algorithm that recursively divides the list of all sources 
in half and assigns samples to the left and right half proportional to the summed ai-values in the 
corresponding parts. This can be performed in O(n) time. 

When the observer moves through the scene or if sound sources are moving or changing their 
directional emission or their current average volume, the weights ai change and a resampling 
must be performed to retain a good sample set with low sampling error. There are different op-
portunities to adapt the sampling distribution dynamically: 

Full resampling: The easiest way to keep the distribution up to date is to choose a completely 
new sample set periodically. However, this strategy has some drawbacks: Due to its stochastic 
nature, the estimate is not exact. Because of the O(√

_
n) convergence order, it is virtually impossi-

ble to obtain approximations with an error below the level of perception. If we switch between 
random sample sets periodically, the static approximation error will turn into perceptible noise 
artifacts. Even if we blend between different approximations at lower frequency (say every few 
seconds), the differences might still be audible, especially for small sample sizes k. 

Stochastic diffusion: In order to avoid blending artifacts, a better strategy is to exchange 
only a part of the sample set at a time, say at most q = 20% per second. To do this, we chose a 
small number of q/update_frequency sound sources to be faded out at every key frame. After the 
fadeout time (typically 0.05-0.2 sec), the sound source is replaced by a new one that is chosen 
among the unused sources by importance sampling. The new source is then faded in during a 
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similar time period. This strategy comprises a trade-off: If we use very short fading times and al-
low a large fraction of sound sources to be in "fading"-state, we obtain a fast adaptation to the 
current distribution. On the other hand, this also leads to more artifacts due to the changing 
sample set. 

Adaptive diffusion: To improve on this, we would like to adapt the rate of change to the rate 
of changes in the weights ai. We use the selected sample sources to detect the changes: We store 
the ai value at the time of sampling for each sample source. When the value is changing, we check 
if the value has become smaller or larger by a factor of ε, with an ε  typically in the range of 1.1 -
 1.5. When the ai value has become too small, the source is faded out and replaced by a new one 
obtained by importance sampling. If the value is too large (i.e. the source has become even more 
important), a random source out of the other sample sources is faded out and replaced by a new 
one. The strategy can probably be refined by defining a replacement probability for all sources 
according to their change of weight and then continuously performing random replacements ac-
cording to this probability. However, this has not yet been implemented but will be subject of fu-
ture work. 

3.5 Hierarchical Sampling 
The dynamic sampling strategy proposed in the last section has still an important drawback: It 

still requires Θ(n) time to do the resampling at every keyframe. Thus, it is not applicable to large 
scenes with potentially millions of sound sources and more. In this section, we propose a data 
structure to enhance the resampling speed for the special case of static scenes. A scene is called 
static if only the observer walks through the scene. All sources must have a fixed position and a 
fixed average volume1. This does not mean that the weights ai are constant as they still depend on 
the observer position, the visibility, and on the direction vector to the observer (for directed emis-
sion). 

The dependency on the position and overall volume of a sound source can be compensated by 
the use of a spatial hierarchy: In a preprocessing step, we build an octree on the sound sources by 
dividing a bounding cube of the scene recursively 1:8 until every octree node contains only one 
source. After that, a representative source is chosen for each inner node: Starting at the ancestors 
of the child nodes, a representative source is obtained by choosing one of the representative sound 
sources of the (up to) 8 children with a probability proportional to their average volume. The vol-
ume of the representative source is set to the sum of the volumes of all sources it represents. 

If all the signals played by all sound sources in the octree were distinct (and had the same 
length), a better strategy would be to store the sum of all signals in the inner nodes rather than 
only a random sample. In such a case the memory demands for the inner nodes would be in the 
same range as that of the original sources. However, the sound sources are usually only instances 
of only a few (but space consuming) different base signals with slight variations in phase, volume, 
playback frequency, and so on. In this case, the blow up in terms of memory demands for premix-
ing all possible combinations is prohibitively large. Thus, it is usually only possible to store a sin-
gle representative sample. 

After the precomputation of a spatial hierarchy, the relevant sound sources can be extracted ef-
ficiently using a priority based tree traversal: 

We start by adding the root node to a priority queue. The priority is given by the volume of the 
sound source multiplied by the distance attenuation factor. The algorithm does the following it-
eration until k sources are found: The most important (loudest) node is removed from the queue 
and its children added again to the queue. When the queue contains k elements, the recursion is 
stopped and the sources in the queue are output as sample set. This implements an importance 
sampling strategy with preselected representatives in the octree. Additionally, the regular struc-
                                                      
1 Note that the dynamic strategy can also take into account the change of the average volume of the sound sources over 
time. 
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ture of the octree also leads to a spatial stratification of the sample set [8]. For image generation, 
stratification of point samples is very important to reduce the costs due to oversampling [29]. For 
sound rendering, the benefits are not as obvious. It is possibly useful for stereo and multi-channel 
reproduction where single sound sources can be located in space by phase/volume differences. 

The time complexity of the octree based sampling algorithm is fully output-sensitive. Assuming 
non degenerated octrees, i.e. every node has at least two children, the running time is O(k·log k) 
for a sample set of k sound sources. Thus, it can be applied to highly complex scenes with millions 
of sound sources. Using hierarchical instantiation of the data structure (as applied in point ren-
dering [28]), even billions of sound sources can be handled with reasonable time and memory de-
mands. The drawback of the technique, besides being limited to static scenes, is that it can only 
consider the volume, the distance attenuation and the directional sensitivity of the receiver for 
choosing the sample set. Visibility and the directional emission characteristic of the sound sources 
are neglected. Thus, we end up with a bad sample set (i.e. a high variance of the estimate) for 
scenes with much occlusion or a strong directionality of emission. This is especially a problem for 
secondary sound sources that have been reflected specularly. 

In order to improve on this, we combine the octree strategy with dynamic importance sampling: 
As choosing a sound source with one of the proposed sampling algorithms is much less expensive 
than actually mixing a source, it is possible to choose a much larger set of candidate sources from 
the octree. Theses candidates are then fed into the dynamic sampling algorithm that is able to 
consider occlusion and the emission characteristics, too. If we want to mix e.g. 100 sound sources, 
it is no problem to choose from 1000 or 10,000 candidates. Even if only every tenth or hundredth 
contributes to our sample, we still obtain a low variance sample set. However, this means that the 
amount of samples that must be extracted from the octree grows with the percentage of occluded 
sound sources (similar to point based image generation, as analyzed in [28]) as well as with the 
directionality of emission of the sound. The second restriction is especially relevant in sound ren-
dering: If the algorithm is used to auralize the result of a global acoustics simulation, it usually 
has to deal with directional sources stemming from highly specular reflection, which is typical for 
the reflection of higher frequency sound waves at larger objects. If a precise simulation of such 
effects is needed, algorithms like [5] are better suited and could be possibly combined with our 
approach to complement it. 

4 Implementation 
We have implemented a prototype sound rendering system to evaluate the proposed algorithm 

empirically. We integrated the sound rendering into the framework of a walkthrough system that 
uses point base multi-resolution renderer to visualize complex scenes [29]. In this section, we dis-
cuss some details of our implementation. 

Emission and reflection properties: To model emission and reflection characteristics, we 
use the heuristic Phong-like model proposed in [24]: Primary sources are modeled using a 
(1 + cos α)p law for an angle of α  between the main direction of the source and the direction of 

 

Figure 2: Phong reflection (left) and emission (right). 



 9

emission. Secondary sources use a specular Phong reflection model with a directional intensity of 
cosp

 α ·cos β. Here, α  is the angle between the reflection vector and the direction of emission and β  
is the angle between the surface normal and the direction of emission. The exponents as well as a 
linear scale factor can be specified for different spectral bands using a graphical user interface 
(see Figure 2). Linear interpolation is used to obtain values between the specified frequencies. 

Sound Mixing: We implemented two sound mixer variants. The first is a C++ implementation 
of the mixer task. It serves as reference implementation and thus it is used in all our examples. It 
has not been especially optimized for speed. We implemented a second variant that uses multiple 
DirectX "secondary sound buffers" [13] to do the mixing. It also runs in software but, as part of 
the operating system, the DirectX sound mixing system has been optimized more thoroughly. It is 
usually about ten times faster than our own reference mixer. Nevertheless, we did not use it as 
reference for our experiments because the interface does not directly support a fine granular con-
trol of phase and a memory efficient instantiation of larger sound buffers. 

Global sound propagation: We implemented a simple simulator for global sound propaga-
tion. It uses a photon tracer [2,8,12,23] that shoots random rays into the scene from the sound 
sources. The sources as well as the emission and reflection characteristics are sampled using im-
portance sampling. Russian roulette is used to account for absorption. 

Current Limitations: The current implementation still lacks some features: Time dependent 
average volume calculation for use in the dynamic sampling algorithm has not yet been imple-
mented, instead a constant volume is assumed for the complete sound signal. For our test cases, 
this is of minor importance as the sound signals are quite short and of relatively uniform inten-
sity. Occlusion has also not yet been implemented (the example scenes contain only little occlu-
sion). Adding frequency dependent occlusion effects should be straightforward following the direc-
tion described in [26]. The simple "photon" tracer used for simulating the global sound propaga-
tion currently does not consider any diffraction effects. Diffraction could possibly be handled by 
placing secondary sources at edges, analogous to [25]. 

5 Results 
We have tested our implementation on a dual Xeon 2.2Ghz workstation with a GeForce 4 

Quadro graphics board. The dual processor setup has the advantage of providing better latencies 
for multi-threaded applications and allows us to run the graphics output and sound output mod-
ule in parallel. This is especially advantageous for our prototypical C++ reference mixer. For the 
more efficient DirectSound implementation, a dual processor setup is not necessary. The results 
are demonstrated in the accompanying video. 

Using our reference C++-sound mixer, we were able to mix about 300 sound sources in real-
time (i.e. 150 sources with stereo reproduction, 44 kHz, 16 bit) using one processor. The DirectX 
sound mixer was able to mix about 2000 sound sources (i.e. 1000 in stereo, 44 kHz, 16 bit) in real-
time using one processor. 

5.1 Example Scene 1: Many Sound Sources 
Our first test case is a football stadium scene, taken from [29]. It shows 16,416 football fans, 

yelling, singing, and shouting (see Figure 3). Each football fan is assigned one of 13 prototype 
sound signals with a random phase shift of 300ms. All sources are in 16 bit, 44.100 kHz, mono 
format, the mixer outputs the same format in stereo, simulating two different receivers. Addi-
tionally, 20 000 secondary sources where generated by "photon"-tracing, using diffuse reflections 
only. The sampling was done using the octree strategy, without dynamic importance sampling. 
We tested sound rendering with sample sets of k = 20, 50, 150 and 2000 sound sources. Using our 
C++-mixer, we were able to render the scene (including sound & graphics) in real-time with up to 
150 sound sources. The 2000-sources version could only be recorded offline. We included it in our 
examples as this is about the limit that could probably be handled in real-time with an optimized 
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implementation at full system utilization (twice the mixing capacity of the DirectX mixer for two 
CPUs). 

The rendering quality for 20 and 50 sources is not satisfactory. The sampling nature of our ap-
proach is clearly audible. Using 150 sources, we already obtain a quite plausible result that may 
be sufficient for applications like computer games. The CPU-utilization of the (optimized) Direct 
Sound mixer was only about 16%, retaining enough resources for graphics and game logic. How-
ever, the 2000 sources version provides still a substantial improvement. 

If we move slowly into the crowd of football fans, the adaptivity of the sampling algorithm can 
be examined. As shown in the accompanying video, the sampling set begins to concentrate on 
nearby football fans and the voices of individual fans become audible. In a close-up, we can clearly 
distinguish the voices of the fans next to us while still hearing the more distance sound of the 
complete stadium2. This effect is similar to multi-resolution rendering of images: Nearby objects 
appear in full detail while objects that are farer away are display at a coarser level of detail which 
is still sufficient for their reproduction. 

5.2 Example Scene 2: Global Sound Propagation 
The second test scene is a violin performance in a small presentation room (Figure 4c). The 

scene contains only one primary sound source. 50 000 additional secondary sound sources are 
generated by our global sound propagation simulator. The accompanying video shows three dif-
ferent variants: First, we simulate diffuse reflections only with a different numbers of sample 
sources and different speed of sound. Again, the 150 sample sources provide a plausible effect 
while 2000 sound sources provide a much better quality. The second variant shows the same ex-
ample but with all materials set to specular reflection of sound with Phong exponent 20. The 
third example combines both variants by setting different Phong exponents ranging from diffuse 
to specular depending on the frequency. The sound signal of the violinist has been prefiltered into 
8 octave bands. The simulator and the sampling algorithm treat all 8 bands as different input 
sound sources. In the case of frequency dependent reflection, a higher sample rate is necessary. 
For 150 sources only, we encounter a strong variation in the frequency composition when walking 
around in the room. This is due to the fact that all frequency bands are sampled independently. 
Using 2000 sample sources a good quality is achieved. 

Figure 4 shows measured impulse responses for the example scene. Figure (a-c) show the result 
of diffuse material settings with 150, 2000, and 20 000 sample sources. Figure (d) shows the result 
of specular reflection (Phong exponent 20).  Differences between specular and diffuse reflection 
can be observed: As expected, the specular version tends to show a few distinguished echoes while 
the diffuse version shows a more continuous impulse response. The stochastic convergence can 
also be seen nicely. The 150-sources version approximates the final function only roughly, still 
showing temporal undersampling. This is consistent with the observations in the example scenes: 
The time spacing is too small to distinguish individual sound sources. However, the resulting re-
verberations do not sound like a natural reverberation. The 2000 sample sources version comes 
already quite close to the 20 000 sources version and should be sufficient for interactive applica-
tions. This is also consistent with the perceptual observations. 

6 Conclusions and Future Work 
We presented a new sound rendering algorithm for scenes with a large number of sound 

sources. It is based on a stochastic sampling approach. It uses a combination of hierarchical sam-
pling and dynamic importance sampling to select suitable sample sets according the observer po-
sition. For static scenes, the running time does not depend on the number of sound sources but 

                                                      
2 Note that the sound in the video was recorded using dynamics compression in order to avoid large scale changes in vol-
ume. 
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only on the ratio of visible and invisible sources and on the directionality of the sound emission. 
For dynamic scenes, a strong reduction of the processing costs can still be obtain in comparison to 
mixing all sound sources in the scene. 

The algorithm can also be used to auralize simulations of global sound propagation. Here, the 
main restriction is that the algorithm can only deal with diffuse reflections and glossy reflections 
of moderate specularity. For highly specular reflections, the sampling costs become too large. 

As the algorithm is quite easy to implement as a complement to a visual multi-resolution ren-
dering algorithm and already delivers plausible results even at a small sample size (and thus rea-
sonably small CPU-utilization), we believe that it is well suited for sound rendering in computer 
games and VR-applications. When the complete processing power of a contemporary PC-system is 
used for sound rendering, we already obtain results that come close to the exact solution of mix-
ing all sound sources, independent of their original quantity. 

The quality of the output depends on the number of sound sources that can be mixed simulta-
neously. Thus, we would like to improve the mixer performance in future work. A promising di-
rection for mixing a very large amount of sound sources is the utilization of the GPU as a sound 
mixer [9]. Considering the raw pixel fill rate of a contemporary GPU, it should be possible to mix 
more than 10,000 sound sources in real-time using pixel shaders and additive blending. Other 
directions for future work are an optimization of the dynamic sampling strategy and an improve-
ment of the sound propagation simulation, as noted earlier in the text. 
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(a) football stadium scene, overview 

 
(b) football stadium scene, closeup 

 
(c) violin performance scene,  

with secondary sources (light red) and sample 
set (red) 

 
(d) sound source distribution for image (b) 

sample set of 150 sources shown in red 

Figure 3: Screenshots from the example scenes. See the accompanying video for sound and ani-
mation. 

 

(a) diffuse reflection, 150 samples 

(c) diffuse reflection, 20 000 samples 

(b) diffuse reflection, 2 000 samples 

(d) specular reflection, 2 000 samples 

Figure 4: Impulse responses for the “violin performance” scene (Figure 3c) for two different mate-
rial settings. The x-axis is the time axis (overall time 400msec), the y-axis shows the received re-
sponse to a single Impulse. The reverberation part has been normalized. Note the convergence for 
increasing sample sizes from (a)-(c). Figure (d) uses shows specular reflection with a Phong expo-

nent of 20, leading to more distinguished echoes. 


