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Abstract 
We present a new algorithm for rendering very large volume data 
sets at interactive framerates on standard PC hardware. The algo-
rithm accepts scalar data sampled on a regular grid as input. The 
input data is converted into a compressed hierarchical wavelet 
representation in a preprocessing step. During rendering, the 
wavelet representation is decompressed on-the-fly and rendered 
using hardware texture mapping. The level of detail used for 
rendering is adapted to the local frequency spectrum of the data 
and its position relative to the viewer. Using a prototype imple-
mentation of the algorithm we were able to perform an interactive 
walkthrough of large data sets such as the visible human on a 
single of-the-shelf PC. 
 
Categories and Subject Descriptors: E.4 [Coding and Informa-
tion Theory]: Data Compaction and Compression I.3.1 [Computer 
Graphics]: Picture and Image Generation � Graphics processors; 
I.3.3 [Computer Graphics]: Picture and Image Generation � 
Viewing algorithms 

Keywords: Compression Algorithms, Level of Detail Algorithms, 
Scientific Visualization, Volume Rendering, Wavelets 

1 INTRODUCTION 
Many areas in medicine, computational physics and various other 
disciplines have to deal with large volumetric data sets that de-
mand for an adequate visualization. An important visualization 
technique for the exploration of volumetric data sets is direct 
volume rendering: Each point in space is assigned a density for 
the emission and absorption of light and the volume renderer 
computes the light reaching the eye along viewing rays. The 
rendering can be implemented efficiently using texture mapping 
hardware: the volume is discretized into textured slices that are 
blended over each other using alpha blending [6]. 

Due to the enormous advances in graphics hardware, it is 
nowadays possible to perform this rendering technique in real-
time on cheap of-the-shelf PCs [11, 23, 24]. However, the size of 
the data sets that can be processed is still very limited. A realtime 
rendering of large data sets (more that 2563 voxel) is currently 
infeasible unless massive parallel hardware is used [3]. 

Most conventional hardware-texturing based approaches to 
volume rendering are brute-force methods, requiring a rendering 
time linear in the size of the data set. The rendering costs can be 
reduced dramatically by using a multi-resolution hierarchy. In this 
case, the rendering algorithm performs a projective classification 
to adapt the rendering resolution to the distance to the viewer, as 
proposed by LaMar et al. [21]. We will show formally in this 
paper that the rendering time for this technique is indeed O(log n) 
for a data set consisting of n3 voxels. However, two problems still 
remain that prevent us from handling very large data sets: The 
first problem is the enormous size. The well known visible human 
data set [33] consist e.g. of 6.5 GB (2048 × 1216 × 1877 voxel, 
12 bit), i.e. it is even larger than the address space of a conven-
tional PC. Thus, the data must be stored out-of-core and swapped 

into main memory on demand. This leads to considerable band-
width and latency problems. The second problem is the size of the 
voxel data that remains after projective classification: Although 
the size is O(log n), the constants in the �O-notation� are still 
much too high. The number of voxels exceeds by far the texture 
memory as well as the alpha-blending capacities of a commodity 
graphics board. 

Our novel algorithm uses a hierarchical wavelet representation 
to tackle these problems: The volume is stored as a hierarchy of 
wavelet coefficients. Only the levels of detail necessary for dis-
play are decompressed and sent to the texturing hardware. The use 
of a wavelet representation allows us to compress the data by a 
ratio of typically 30:1 without noticeable artifacts in the image. 
This way, even very large data sets can be stored in main memory. 
The visible human data set can e.g. be stored in 222MB (instead 
of 6.5GB). During rendering, the wavelet representation allows us 
to analyze the local frequency spectrum in the data set and to 
adapt the rendering resolution to it. This way, we can reduce the 
size of the voxel set to be rendered considerably with minimal 
loss of image quality. 

Using these techniques, we are able to render walkthroughs of 
large data sets in real time on a conventional PC. We will demon-
strate an interactive walkthrough of the visible human data set at a 
resolution of 2562 pixel, 10 frames per second and good image 
quality. To our knowledge, our algorithm is the first that achieves 
these framerates for data sets of this size on a single of-the-shelf 
PC. 

As an alternative, one could think of using texture compres-
sion supported by the graphics hardware. However, as shown by 
Meissner et. al. [23] this severely reduces the image quality and is 
therefore unusable. Also other compression approaches that allow 
direct rendering of the compressed data, like vector quantization 
[25,26], discreet cosine transformation [38] and fractal compres-
sion [9], do not perform as well as a wavelet based compression 
scheme. 

The remainder of the paper is structured as follows: In the 
next section, we will briefly review related work. Then, we will 
describe the hierarchical wavelet representation in Section 3. In 
Section 4, we will describe the rendering algorithm and caching 
strategies. Results are discussed in Section 5 and the paper con-
cludes in Section 6 with some ideas for future work. The appendix 
contains a formal analysis of the running time of the rendering 
algorithm. 

2 RELATED WORK 
Visualization of large volume data sets is a classical problem in 
computer graphics. In this section, we will give a brief overview 
of related work in the area of volume visualization algorithms, 
multi-resolution methods and wavelet-based techniques. 

Volume Visualization: The most efficient software-based 
technique for direct volume rendering is the shear-warp factoriza-
tion by Lacroute et al. [20]. The technique can be adapted to 
exploit 2D-texturing hardware [29], achieving interactive frame 
rates. The usage of 3D texture mapping [1] allows for more flexi-
bility and can provide a higher image quality. Recent visualization 
algorithms provide advanced shading techniques such as lighting 
[24], shadows [4], high quality post-classification using a pre-
integration technique [11], gradient magnitude modulation [34] or 
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higher dimensional transfer functions [19]. Our algorithm uses a 
pre-integration approach combining lighting and gradient magni-
tude modulation, as described in [23]. 

Multi-resolution rendering: Multi-resolution volume render-
ing algorithms use a spatial hierarchy to adapt the resolution to 
the projection onto the screen: An octree or a similar spatial data 
structure is built for the data set. Each node of the octree contains 
a representation of the volume within its bounding box at a spe-
cific resolution. During rendering, nodes from the hierarchy are 
selected such that their resolution matches the display resolution. 
The technique was first proposed by Chamberlain et al. [8] in the 
context of rendering of surface models. They prove a logarithmic 
running time if surface fragments are distributed uniformly in 
space. We will derive a similar result for the volumetric case. 

A similar technique was applied to volume rendering by 
LaMar et al. [21]: The octree nodes store volume blocks resam-
pled to a fixed resolution that are rendered using 3d-texturing 
hardware. Weiler et al. [35] propose an extension to the algorithm 
to avoid discontinuity artifacts between different levels of detail. 
These techniques can handle volume data sets that do not fit 
completely into the texture memory of the graphics hardware. 
However, the data must still fit into main memory. Therefore, 
large data sets like the visible human cannot be processed. Our 
algorithm improves on this by using a more efficient wavelet 
representation that allows storing data sets that are larger by one 
or two orders of magnitude. Additionally, we use a refined error 
criterion for the selection of octree nodes. It automatically adapts 
to the local smoothness of the data set, as proposed by Boada et 
al. [5] for the case of orthographic projection. 

Wavelet Based Techniques: Wavelet-based encoding has be-
come a standard technique for 2d-image compression [31]. The 
technique has been applied to the compression of volume data by 
several authors. Nguyen et al. [27] propose a blockwise compres-
sion scheme: The volume is divided into a regular grid of blocks 
which are compressed independently. Guthe et al. [16] propose a 
higher order wavelet compression scheme with extensions for 
encoding animated data sets. The method does not allow for 
access to parts of the volume without decompression of the whole 
data set. In our paper, we use the same basic techniques for en-
coding the volume data set as in the two aforementioned papers. 
However, our data structure provides a multi-resolution hierarchy 
with fast access to each node in the hierarchy. 

To render large data sets using wavelet-based representations, 
two directions have been followed up to now: Firstly, several ray-
casting techniques were proposed that operate on a wavelet repre-
sentation [17, 18, 30, 36]. However, raycasting of large data sets 
is not possible at interactive frame rates unless massive parallel 
hardware is used [3]. 

A second technique renders �x-ray� images directly from the 
wavelet representation by adding splats corresponding to the basis 
functions [15]. Unfortunately, it is not possible to extend this 
elegant technique to conventional volume rendering with emis-
sion and absorption effects. 

3 WAVELET HIERARCHY 
The first step of our algorithm is to convert the volume data, 
which is given as a three-dimensional array of integers with fixed 
precision (usually 8-16 bits), into a compressed wavelet represen-
tation during preprocessing. This representation is much more 
compact and allows for an efficient extraction of different levels 
of detail of the data set, since the wavelet transformation is 
equivalent to applying a series of lowpass and highpass filters to 
the original data. To be able to decompress parts of the data set 
efficiently, we apply a blockwise wavelet compression strategy. 

3.1 Blockwise Hierarchical Compression 
of Volume Data 

 
Firstly, we divide the data sets into cubic blocks of (2k)3 vox-

els (in practice, k = 16 is a good choice). Then, we apply the wave-
let filters to each block. This results in a lowpass filtered block of 
k3 voxels and (2k)3

 - k3 wavelet coefficients representing different 
high frequency components that are no longer present in the 
lowpass filtered block (see Figure 1 and Figure 2). We carry on 
this scheme hierarchically: We group a cube of 8 adjacent lowpass 
filtered blocks to again obtain a block of (2k)3 voxels. Then we 
can apply the filtering algorithm to this block recursively until 
only a single block is left. The result of this procedure is an octree 
(see Figure 2): Each node of the octree describes a volume of k3 
voxels and contains a set of high frequency coefficients that allow 
for the reconstruction of the child nodes from the current node. 
The resolution of a child node is twice as high (in each dimen-
sion) as that of a parent node. The lowpass filter of the specific 
wavelets we use assures that the downsampled data in the inner 
nodes does not show relevant aliasing artifacts. 

 
3.1.1 Wavelet Basis 
As basis functions, symmetric biorthogonal spline wavelets [10] 
are a good choice, as they lead to good compression results (they 
are also used in the JPEG 2000 standard). We use the tensor 
product construction (non standard decomposition, [31]) to obtain 
a three-dimensional basis of these functions. This means that the 
three-dimensional filtering is performed by applying the one 
dimensional filter in all three dimensions successively. We im-
plemented the filtering using the integer wavelet transformation 
algorithm by Calderbank et al. [7] based on lifting steps. It pro-
vides some performance benefits: Firstly, all calculations can be 
performed using 16 bit integer arithmetic [32], saving memory 
and bandwidth in comparison to the floating point algorithm. The 
operations can be implemented efficiently using SIMD instruc-
tions like MMX. We use the Intel C++ compiler that applies some 
of these optimizations automatically. Secondly, the algorithm 
needs only about half the number of operations of the normal 
wavelet transformation algorithm. 

For the examples in our paper, we use a linearly interpolating 
spline wavelet. This wavelet basis already allows for a very good 
compression ratio but it has still a small filter support (5/3 for the 
lowpass/highpass filter). A small support is desirable as the run-
ning time of the (de-)compression algorithm is linear in the num-
ber of non-zero entries in the (reconstruction) filter matrix. 
However, the strongest argument for choosing this wavelet is the 
property that an increase of the resolution with zero wavelet coef-
ficients leads to a linear interpolation of the low resolution func-
tion, which is consistent with the interpolation performed by the 
texturing hardware used for rendering. This results in fewer pop-
ping artifacts when the resolution changes. 

Our compression algorithm is block based. As the support of 
the filter is several voxels, we need a special treatment at the 
borders of the blocks. We use symmetric extension [10]: The 
original data is just mirrored at the border. This allows for a re-
construction without storing additional wavelet coefficients for 
values outside the block because our basis functions are symmet-
ric. 

As known from image compression literature, a blockwise 
compression can lead to discontinuity artifacts at the borders 
between different blocks. However, such artifacts only become 
visible at high compression ratio. In our work, we are interested in 
near-lossless compression because we do not want to introduce 
relevant compression artifacts into the renderings. 



To appear in the Visualization 2002 conference proceedings 

3 

3.1.2 Compression 
The compression consists of two steps: Firstly, wavelet coeffi-
cients of low importance are discarded and secondly, the wavelet 
coefficients must be encoded in a compact bit stream. 

We reduce the number of wavelet coefficients to be stored by 
defining a threshold below which all coefficients are mapped to 
zero. Setting the threshold to zero leads to lossless compression: 
Due to the integer wavelet transform, there is no quantization 
error [7]. The fully lossless setting already permits compression 
ratios of up to 4:1 for typical data sets. 

After choosing the relevant wavelet coefficients, they must be 
encoded efficiently. Codebook based approaches such as LZW 
(Lemple Ziv Welsh) or LZH (Lemple Ziv Huffman) can not be 
applied for this task since the codebook itself is larger than the 
data contained in a single node of our hierarchy most of the time. 
Progressive and embedded encoding schemes [13,14,22] on the 
other hand need some of the data of their parent nodes during 
decompression. To circumvent this, we use entropy coding with a 
suitable encoding model: 

The coefficients are first mapped to positive values: Odd val-
ues represent positive coefficients (c → c×2-1) while even values 
representing negative coefficients (c → c×(-2)). For compression 
of these values, two different algorithms have been implemented. 
Arithmetic coding, using the same model as Guthe and Straßer 
[16], is the best choice for maximum compression at a lossless or 
nearly lossless setting. 

Run-length encoding combined with a fixed Huffman encoder 
on the other hand results in a very fast decompression, about ten 
times faster than arithmetic coding. The fixed model for the 
Huffman coder is defined as follows. A run of zeros is marked by 
a leading 0 bit. The following 7 bits store the number of consecu-
tive zeros. This results in 1 to 128 zeros encoded in a single byte. 
Any other coefficient is converted into a positive value and stored 
by using n 1 bits, with n being the minimum number of bits 
needed to represent the coefficient. After a 0 bit the coefficient is 
stored using n-1 bits without the first bit. 

The compression ratio for run-length Huffman coding at a 
lossless setting is lower (in practice about 10-15%) than for 
arithmetic coding. For a very lossy setting, the run-length Huff-
man coder is sometimes even able to outperform the arithmetic 
coder in terms of compression ratio since the adaptive model of 
the arithmetic coder is optimized for a large number of non-zero 
coefficients. To obtain higher compression ratios, sub-trees of the 
hierarchy containing only zero coefficients are completely 
stripped away. This stripping has more influence on the compres-
sion ratio than the coding of the blocks itself. For the compression 
setting used in the example walkthroughs, the increase of com-
pression ratio is about 15% for the run-length Huffman coder and 
about 3% for arithmetic coding. This gain increases dramatically 
if the compression becomes more lossy. 

4 RENDERING 
From the perspective of the rendering algorithm, we have now a 
representation of the volume data in form of a multi-resolution 
octree: The root node in the tree contains a very rough approxima-
tion of the data set and the resolution can be increased by a factor 
of 2 (in each dimension simultaneously) by going downwards the 
hierarchy to a child node. Our task is to extract the information 
relevant for a certain point of view. This is done in two steps: 
Firstly, we perform a projective classification step to adjust the 
resolution of the data set to the screen resolution (Section 4.1). 
Secondly, we incorporate a consideration of the approximation 
error into the classification algorithm to further reduce the amount 
of data to be processed in each frame (Section 4.2). After extract-
ing a suitable level of detail from the wavelet tree, we render the 
volume data using hardware texture mapping (Section 4.3). Ren-
dering of walkthrough animations can be accelerated substantially 
by applying a suitable caching scheme (Section 4.4). 

4.1 Projective Classification 
Firstly, we need to extract nodes from the octree so that the reso-
lution of these nodes matches the display resolution. Nodes out-
side the view frustum should be excluded from rendering. The 
task can be done using a straightforward algorithm originally 
proposed by Chamberlain et al. [8]: We traverse the hierarchy 
recursively, starting from the root node. For each node, we test 
whether it is located completely outside the view frustum. In this 
case, we stop the traversal, ignoring the current node. Otherwise, 
we determine the spacing between the voxel grid and project it to 
the screen. If it is equal to or below the screen resolution, we pass 
the node to the renderer. Otherwise, if the voxel resolution is still 
too coarse, we subdivide the node and apply the algorithm recur-
sively to all 8 children.  

This technique was already applied to volume data by LaMar 
et al. [21]. We will proof in the appendix that the technique re-
duces the rendering time for an n3 voxel grid from Θ(n3) to 
Θ(log n). However, the analysis also shows that the constants 
hidden in the �O-notation� are very high. For a close-up of a 
volume with a depth of 2048 voxels, we still obtain more than 230 
million voxels after projective classification (see appendix for 
details). This is about 4 times more than the texture memory of a 
typical contemporary graphics board (230MB versus 64MB). 
Therefore, we need a refined classification criterion for a further 
reduction. 

4.2 View-dependent Priority Schedule 
In most data sets, only a few regions contain high frequency 
details (e.g. due to sharp borders). Most regions can be sampled at 
a low sampling rate without sacrificing detail resolution. We 
utilize this observation to reduce the amount of voxels that has to 
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Figure 1: Construction of the wavelet tree. Figure 2: The compressed wavelet tree. 
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Figure 3: Multi-resolution rendering with 
view-plane aligned slices.



To appear in the Visualization 2002 conference proceedings 

4 

be processed by the renderer: For each node in the wavelet tree, 
the L2 error compared to the original data is measured during 
compression. During rendering we use this error as weight for the 
selection of nodes: Let E(i) be the L2 error of the normalized basis 
functions for the wavelets in the subtree below the node i. For leaf 
nodes, E(i) := 0.We can assign each node i a priority 
P(i) := E(i) / z(i), with z(i) being the minimum depth of a voxel in 
the node. Dividing by z(i) accounts for the projection on the 
screen: The priority of nodes near the viewer should be higher 
than that of nodes far away. If z(i) = 0, we set the priority to infin-
ity. 

Using this priority function, we perform a generalized projec-
tive classification: We choose a maximum amount of voxel that 
we are able to process in the rendering stage. This is usually 
determined by the texture memory of the graphics board. We 
create a priority queue and insert the root node r of the hierarchy 
into the queue with priority P(r). Then we successively fetch the 
node with the highest priority from the queue, decompress its high 
frequency wavelet coefficients and insert the child with the high-
est priority into the queue. A flag is set for the node to indicate 
that the child node has been added to the queue (all other children 
would still be drawn using the low resolution representation from 
the parent node). If all children are in the priority queue, the 
parent node is removed from the queue. Nodes with a projected 
voxel distance that is already equal to or below the screen resolu-
tion are not subdivided. The algorithm stops if the maximum 
amount of voxels for the nodes in the queue is reached. 

4.3 Rendering of Blocks 
Up to now, we have chosen a set of tree nodes, each containing k3 
voxels (on a regular grid) that provide a suitable approximation to 
the original volume for the current view point. To render these 
voxels, we use hardware texture mapping: We draw all blocks in 
back-to-front order. The order can be established easily by enforc-
ing a back-to-front traversal order of the octree. For each block, a 
3d-texture is created and loaded onto the graphics hardware. We 
place viewplane aligned slices into the block (see Figure 3) and 
render these slices in back-to-front order. Alpha blending delivers 
the volume integrals along viewing rays for all pixel on the 
screen. 

For each block, we have to apply a classification function that 
assigns RGBα values to the scalars in a user defined way. To 
obtain a high rendering quality, especially in areas close to the 
viewpoint where the original data set is undersampled, we apply 
pre-integrated rendering [11]: We consider two adjacent slices in 
a block (called a slab) and determine the scalars at the position 
where the viewing ray enters and leaves the slab. For all 2562 
possible combinations of entry and exit values, the volume inte-
gral is precomputed numerically. The scalar values between entry 
and exit point are interpolated linearly. The precomputed lookup 
table is stored as a 2562 RGBα texture on the graphics hardware. 
As hierarchy blocks of different resolution also have a different 
slice spacing, we compute such a preintegration lookup table for 
each possible slice spacing. During rendering, two adjacent slices 

are accessed by the texturing hardware. The scalar values at the 
entry and exit position are read from the texture using bilinear 
interpolation. The two values are interpreted as two dimensional 
texture coordinates that are used to fetch the preintegrated RGBα-
value from the precomputed preintegration texture using depend-
ent texture lookups [2, 28]. 

The trilinear interpolation performed by the texturing hard-
ware needs special attention: The hardware is not able to interpo-
late across the borders of the octree blocks. This can lead to 
objectionable artifacts that reveal the underlying block structure. 
Our solution to this problem is straightforward: For each block to 
be rendered, we also fetch its 7 neighbors with the next higher x-, 
y- and z-coordinates from the octree (Figure 4). If these nodes are 
not present in the rendering set, the corresponding node is also 
decompressed and cached, but the neighbor�s neighbors are of 
course not reconstructed. This lookup is not very expensive as a 
neighbor search in an octree can be done in expected time of 
O(1). We enlarge the block to be rendered by one voxel in x-, y- 
and z-direction and store the neighboring values there1. Using the 
additional voxels, we can perform a continuous linear interpola-
tion (Figure 5). The texture memory necessary for rendering is 
increased by this technique because adjacent blocks overlap each 
other by one voxel. The overhead is k3 - (k-1)3 for k3 voxels. For 
163 voxel blocks we obtain an overhead of 21% and for 323 voxel 
blocks, the overhead is 10%. 

For the examples in our paper, we also implemented some ad-
ditional shading techniques like gradient magnitude modulation 
and classification of material properties. Details on the implemen-
tation of theses techniques using texturing hardware can be found 
in Meissner et al. [23]. The gradient information necessary is 
computed on-the-fly after the decompression of the volume data 
using a three dimensional Sobel operator. 

4.4 Caching 
Although our wavelet decompression algorithm already achieves a 
very high performance, we would not be able to perform an inter-
active walkthrough if we decompressed the wavelet representation 
for each frame from the scratch. It is not possible to perform a 
decompression and texture upload at a similar speed as the 3d-
texturing is done by the graphics card on current hardware archi-
tectures. Fortunately, this is not necessary either, as we may an-
ticipate reusing most of the decompressed data for subsequent 
frames. Therefore, we use three cache areas to store blocks for 
reuse: 

Firstly, we cache decompressed volume blocks from the oc-
tree. To obtain a node in the octree, we must access its parent 
node, decompress the high frequency coefficients stored in the 
node and apply the reconstruction filter to obtain all 8 child 
nodes. The nodes consist of blocks of k3 16 bit integers. The 
decompressed wavelet coefficients are not cached as these are 
only needed once to obtain the child nodes which are already 
cached. Caching is done according to an LRU-scheme. To maxi-
mize the performance of our algorithm, the user defines a fixed 
amount of cache memory. If we run short of memory, we always 
delete that decompressed leaf node in tree that was not accessed 
by the renderer for the longest time. 

Secondly, we have to create 3d-textures from the cache. The 
texture contains the scalar values and optionally the correspond-
ing gradient field for advanced shading effects2. Using again an 
LRU scheme, we fetch the most recently used subset of decom-
                                                                 
1 As textures must have extents of a power of two, we must use blocks of 
size 2n-1 in the wavelet tree (e.g.153 voxel). 
2 The gradients are stored as 8 bit RGB values and the scalars are stored in 
the alpha channel of the RGBα texture. The shading is done using pixel 
shaders similar to the approach of Meissner et al. [23]. 
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pressed blocks and convert them into OpenGL texture objects. 
Gradient maps are computed at this point, if necessary. 

Thirdly, the texture objects must be uploaded to the texture 
memory of the graphics adapter before rendering. This is done 
automatically by the OpenGL driver, again using an LRU caching 
scheme. By setting corresponding memory restrictions (see Sec-
tion 4.2), the renderer assures that we do not use more texture 
objects per frame as fit into a given amount of video memory, thus 
avoiding cache thrashing. 

5 RESULTS 
In this section, we discuss the results obtained with a prototype 
implementation of our algorithm. The algorithm was implemented 
in C++ using OpenGL with nVidia extensions for rendering. All 
benchmarks were performed on a 2Ghz Pentium 4 PC with 1GB 
of ram and an nVidia GeForce 4 Ti4600 graphics board with 
128MB of local video memory. In the following, we start with a 
description of three example data sets that we use to evaluate our 
algorithm. Then, we discuss the influence of the compression 
efficiency on the running time and image quality. After that, we 
discuss the results for interactive examination of the three exam-
ple data sets. 

5.1 Example Data Sets 
We use three different data sets for the evaluation of our algo-
rithm. All three are too large to be visualized at interactive fram-
erates using conventional brute-force rendering approaches. 

The first data set is a computer tomography scan of a Christ-
mas tree [37] at a resolution of 512 × 512 × 999 voxel with 12 bits 
per voxel. The data set was acquired at the technical university of 
Vienna to provide a large benchmark scene for volume rendering 
algorithms. The other two data sets are the visible human male 
and female data sets [33]. Both are computer tomography scans of 
a male and a female human body. We use the variants of the data 
sets that are registered against the cryosection RGB images. The 
visible human male data set has a resolution of 2048 × 1216 × 1877 
voxel and the visible human male data set has a resolution of 
2048 × 1216 × 1734 voxel. The example renderings were made 
using gradient based lighting and a classification function with 
several semi-transparent iso-surfaces. The iso-surfaces correspond 
to high derivatives in the classification function. These settings 
are very sensitive to noise and other reconstruction errors in the 
volume data and thus allow a good evaluation of the errors intro-
duce by our rendering technique. 

5.2 Compression Efficiency 
In the compression algorithm, we have the option to use different 
encoding algorithms for the wavelet coefficients. We have imple-
mented two alternatives: arithmetic coding and run-length Huff-
man coding. The decompression speed heavily depends on the 
compression algorithm. Using arithmetic coding, we achieve a 
decompression speed of 4.5 MB/s, including the wavelet recon-
struction. The run-length Huffman codec is able to decompress 50 
MB/s (including the wavelet reconstruction). The compression 
ratio of the arithmetic coding is typically only about 10% to 15% 
higher than that of the run-length Huffman coding. Therefore, we 
use the run-length Huffman coding for all examples in our paper. 

A second parameter of the compression algorithm is the 
threshold for removing small wavelet coefficients prior to encod-
ing. If we keep all coefficients, we obtain a lossless compression 
scheme. Using lossless compression, we achieve a compression 
ratio of 3.9:1 (arithmethic coding) and 3.4:1 (RLE-Huffman 
coding) for the Christmas tree data set. The visible human data 
sets could not be compressed using the lossless settings because 

the compressed data and the caches would exceed the 2GB ad-
dress space. For higher compression ratios, we must apply lossy 
compression: Figure 6 shows the dependency between compres-
sion ratio and reconstructed signal quality for the three different 
test data sets: We obtain a peak signal-to-noise ratio (PSNR) of 60 
dB for a compression ratio3 of about 12:1 (1 bit per voxel), while 
a PSNR of 50 allows a compression ratio of roughly 50:1 (0.25 
bits per voxel).  Figure 8 shows a visual comparison of the render-
ing results for the Christmas tree data set. The compression ratios 
obtained by our algorithm at a given PSNR are close to the results 
of Nguyen and Saupe [27]. These results show that it is possible 
to achieve good compression results although we use only linear 
interpolating wavelets and blockwise compression. 

Another important parameter is the block size used for the 
construction of the wavelet hierarchy. If we use small blocks, we 
are able to classify the data according to local frequency spectra 
and projected size very accurately. However, we have high hierar-
chy traversal costs. If we use larger blocks, the traversal costs 
decrease but we must process more voxels for the same image 
quality because our classification is less accurate. Additionally, 
the block size must be a power of two (minus one, for neighbor-
ing voxels, see Section 4.3) due to OpenGL restrictions. In prac-
tice, 313 blocks are not adaptive enough and 73 blocks introduce 
too much overhead. 153 blocks are a good compromise. We use 
this block size in all examples in this paper. 

5.3 Interactive Walkthroughs 
We applied our algorithm to render an interactive walkthrough of 
the three test data sets. The results are shown in Figure 9 (see also 
the accompanying video for a real-time capture of the walk-
throughs). The resolution of the output image is 2562 pixel for all 
tests. The Christmas tree data set was compressed using lossless 
compression (3.4:1), the visible human data sets were compressed 
using lossy compression. (40:1 for the femal and 30:1 for the male 
data set). The preprocessing time was 1 hour for the Christmas 
tree and about 5 hours for each of the two visible human data sets. 
The preprocessing times are dominated by hard disk access (seek 
times). The CPU-utilization was only 6-7% during compression. 

During the walkthrough, we can adjust the quality parameter 
to trade off image quality for rendering speed. The quality pa-
rameter is given as the maximum projected error value for the 
rendered hierarchy nodes. We use three different settings with 
high, medium and lower image quality. The high quality settings 
uses up to 2048 blocks and a maximum projective error of 1/128 
(an average error of 1/128 of the peak signal per pixel for each 
block) and therefore shows only very little artifacts due to a re-
duced resolution. Nevertheless, we still obtain an average framer-
ate of 3-4 frames per second during the walkthrough. The low 
quality settings uses only 512 blocks and a maximum projective 
error of 1/32 thus permitting framerates of about 10 frames per 
second at an acceptable image quality. The medium quality setting 
is a good compromise with 1024 blocks and a maximum projec-
tive error of 1/64: The image quality is still high at a rendering 
speed of about 7 frames per second. The rendering speed for the 
visible human male data set is lower than that of our other test 
data sets, because the data set contains more noise. Thus, a higher 
voxel resolution is necessary to obtain the same projected error as 
in the other example scenes. 

The cache efficiency for our walkthrough settings is very 
high. During the high quality rendering of our test dataset, only 
40-60 blocks have to be decompressed per frame and 20-30 tex-
tures have to be constructed on the average. If we deactivate the 
caching, i.e. perform wavelet decompression, gradient calculation, 
and transfer to graphics memory from the scratch for each frame, 
                                                                 
3 All compression ratio measurements are based on 12 bit datasets. 
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we obtain an average framerate of 0.3 fps for all of our test scenes. 
This is also the limit framerate if we had no temporal coherence, 
i.e. a turn of 180 degrees or moving to a random position within 
the dataset. For this test, the renderer was configured for highest 
quality, i.e. to use exactly 2048 volume blocks. Thus, the framer-
ate corresponds to a processing speed of 614 blocks per second or 
10 MB of texture data per second. 

To measure the exact timing of each part of the visualization 
is not an easy task in itself. This is due to the concurrent execu-
tion, i.e. decompression and gradient calculation are already 
executed while waiting for the last frame to complete rendering. 
For the example walkthrough animations about 6% of the time are 
spend for decompressing blocks and an additional 5% are spend 
for the gradient calculations. Transferring the textures onto the 
graphics board consumes another 1% of the time (part of this 
already runs in parallel), while the vast majority of the time with 
88% is spend for the actual rendering, i.e. the processor is waiting 
for the graphics hardware. 

The animation still shows some popping and discontinuity ar-
tifacts due to different resolutions in the rendered blocks. This is 
only a minor problem for high quality settings, but clearly visible 
for the low resolution settings. It should be quite straightforward 
to reduce these artifacts by employing mipmapping and tech-
niques similar to [35]. This will be subject of future work. 

6 CONCLUSIONS 
We presented a rendering algorithm for the visualization of very 
large data sets. The algorithm uses a hierarchical wavelet repre-
sentation to store very large data sets in main memory. The algo-
rithm extracts the levels of detail necessary for the current view 
point on-the-fly. An error metric that minimized the loss of high 
frequency information in the projected image is used to determine 
a suitable level of detail. This technique allows interactive walk-
throughs of large volume data sets like the visible human data set 
on a single commodity PC. To our knowledge, our algorithm is 
the first that achieves an interactive visualization of data set of 
this size on a single PC. 

Our rendering algorithm scales provably good. Thus, we be-
lieve that data sets of even much larger size than the visible hu-
man data set can be processed. To overcome the storage problems 
if even the compressed data set does not fit into main memory any 
longer, we should generalize our caching technique to swapping 
to hard disk. We believe that the compressed representation will 
be useful in an out-of-core scenario, too, as it can significantly 
reduce the necessary bandwidth. A special problem of out-of-core 
rendering is latency due to hard disk seek times. To circumvent 
this problem, the data must be transferred in large blocks and 
stored in caches in main memory. A (at least lossless) compres-
sion scheme would be useful to reduce the corresponding memory 
overhead. Other future directions should include improved ren-
dering techniques to minimize discontinuity artifacts between 

different resolutions [35] and a generalization to full RGBα vol-
ume data without classification, for example for rendering the 
cryosection visible human data, too. It would also be interesting 
to examine whether the wavelet coefficients in each block can be 
used more effectively to obtain a better adaptation of the render-
ing resolution to the local frequency spectrum.  
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APPENDIX: Analysis 
How efficient is octree-based projective classification? To answer this 
question we first assume that we could discretize the volume in voxels of 
arbitrary size (see Figure 7). Parameters to the algorithm are a camera 
position and a constant vertical viewing angle of α. We also assume 
w.l.o.g.4 that the original resolution of the voxel grid exactly matches the 
display resolution of w × h pixel at the near clipping plane znear. To cover 
the whole volume, we add m layers of resampled cube-shaped voxels with 
side length voxelsize(i), i = 1..m,  so that the projected size of the larger 
voxel still matches the display resolution. Let zi be the depth of voxel layer 
i. Then obviously zi + 1 = zi + voxelsize(i) and 

voxelsize(i) = iz
h 2

2tanα  = q·zi with 
2

2tan
:

h
q α

= . 

This recurrence leads to zi = znear(1+q)i. Let zfar be largest depth of a voxel 
in the volume. Then we can bound the number of layers of resampled 
voxels to: 

 ( )
( )1log

log
+

=
q

zz
m nearfar  

Thus, the number of resampled voxels is m·w·h. Note that the ratio 
znear/zfar is always bounded by the maximum diameter of the data set 
(measured in voxels). For a volume of n3 voxels the diameter is at most 

3n ∈  O(n). Therefore, we obtain a total amount of O(log n) resampled 
voxels. 

Up to now, our analysis still neglects the fact that we cannot access 
resampled voxels of arbitrary size but only octree nodes. This leads to two 
different kinds of overhead: Firstly, we are forced to use blocks of k3 
voxels (typically k = 16) of the same, fixed resolution. Secondly, we can 
choose the resolution in powers of 2 only (in each dimension). We con-
sider the overhead due to the blocking first: Using some elementary 
trigonometry, we see that the number of voxels per unit length does not 
increase by more than a factor of  

h
k

max
2tan2

31
αρ +=  

between the foremost and the most distant voxel in each block. The bound 
can be derived by considering blocks diagonal to the viewing direction 
and comparing the number of voxels per unit length. The voxel density 

                                                                 
4 There is no problem if the near clipping plane is closer to the viewer: As 
the discretization in voxel is never finer than the original resolution of the 
data set, there are always less than w·h·cot α ∈  O(1) voxel in front of znear. 
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Figure 6: PSNR for Christmas tree dataset, and the visible human dataset. The compression of the male 
dataset is not as good as for the female dataset because of a higher noise in the ice surrounding the body. 

Figure 7: Analysis of the projective 
classification strategy (appendix). 
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per unit area is given by the density per unit length squared. Thus, the 
average factor of increase of voxels due to the blocking in blocks of k3 
voxels is given by: 

 ( ) )1/(
3
1

3
1/ )(

3

1

2 −−=−= ∫ max
max

maxblock

max

dxxoverhead ρρρ
ρ

 

For typical block sizes k, this leads only to a small overhead (h = 256, α = 
45°): 

k 8 16 32 64 128
overhead 4,6% 9,2% 19,0% 40,2% 88,9%

However, the overhead is increased due to the fact that the resolution can 
be changed only in powers of two. This is easy to quantify: If we assume 
that we need all scales of resolution between 13 and 23 voxels with equal 
probability, we obtain an average oversampling factor of 75.32

1
3 =∫ dxx . 

This factor usually dominates the factor due to the blocking. 
Example: For a resolution of 2562 pixel, 90° vertical viewing angle, 

and a depth of 2048 voxels we obtain 858 layers containing 56 million 
resampled voxels. The approximation with an octree with blocks of 163 
voxels increases the amount of voxels to at most 230 million voxels. A 
20483 data set contains 8.6 billion voxels. 

In conclusion, we see that projective classification using an octree 
leads to a running time logarithmic in the size of the input data. However, 
the constants hidden in the O-notation are fairly high. Thus, the algorithm 
scales very good but additional techniques are necessary to obtain interac-
tive performance, as described in our paper. 
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(a) lossless compression, 
compression ratio 3.4:1 

 
(b) compression ratio 8.8:1, 

PSNR 63 dB 

 
(c) compression ratio 66:1, 

PSNR 53 dB 

 
(d) compression ratio 195:1, 

PSNR 48 dB 

Figure 8: comparison of the image quality at different compression ratios (Christmas-tree data set) 

 
(a) high quality, 3.1 fps 

 
(b) medium quality, 7.6 fps 

 
(c) low quality, 9.8 fps 

 
(d) high quality, 3.3 fps 

 
(e) medium quality, 6.6 fps 

 
(f) low quality, 9.5 fps 

 
(g) high quality, 2.8 fps 

 
(h) medium quality, 5.4 fps 

 
(i) low quality, 7.1 fps 

Figure 9: Comparison of the image quality for interactive walkthroughs of the Christmas tree, visible human female and visible human male data 
set. The framerates were measured as averages for a camera path through the whole data set. The image resolution is 256 × 256 pixel. 


