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Abstract We proposed a new mesoscopic model to simulate spherical colloids based
on the dissipative particle dynamics. The colloid is represented by a large spherical
bead, and its surface interacts with the solvent beads through a pair of dissipative
and stochastic forces. This new model extends the tunable-slip boundary condition
[Eur. Phys. J. E26, 115 (2008)] from planar surfaces to curved geometry, thus al-
low one to study colloids with slippery surfaces. Our simulation results show good
agreement with the prediction of hydrodynamic theories, indicating the hydrody-
namic interactions are properly accounted in our new model.

1 Introduction

Colloidal dispersions have many scientific interests and practical applications in
various fields such as soft matter physics, physical chemistry, cell biology, medicine
development, and micro- or nanofluidic devices [1, 2]. In an aqueous solution, col-
loidal particles in general have a typical size one order of magnitude larger than the
small solvent molecules. This separation of length scales presents significant chal-
lenges in simulating the dynamics of colloidal particles: On one hand, explicit con-
sideration of the solvent with molecular details imposes a huge burden on the com-
putational time, while most interesting phenomenon may notconcern solvents. On
the other hand, the solvents cannot to totally ignored because they mediate the hy-
drodynamic interactions between larger colloidal particles. This dilemma is some-
what alleviated by resorting to coarse-grained simulations, in which the solvent de-
gree of freedom are greatly reduced while the effect of solvent is still preserved by
enforcing the conservation of several physical quantities, such as the particle num-
ber and the momentum. Coarse-graining approaches allow oneto study larger sys-
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tem and reach longer time scale. Notable examples are dissipative particle dynamics
(DPD) [3, 4, 5, 6], Lattice Boltzmann (LB) [7, 8, 9], Multi-Particle Collision Dy-
namics (MPCD) [10, 11], and Direct Numerical Simulation (DNS) [12, 13, 14, 15].

Once one settles on a mesoscopic model for the solvent, the next task is to build
a colloid model which couples to the solvent. From a simulation point of view, one
would like a colloid model which is conceptually simple and easy to implement, but
also represents the correct physics. There are several approaches:

• Discretization of the large colloid
Based on the initial DPD formulation, Hoogerbrugge and Koelman [3, 4] con-
structed the colloid using the same solvent beads. The relative motion of these
small beads is “frozen” so the integrity of the large colloidis kept. Similar ap-
proach has been implemented to study many interacting colloids in microfluidic
devices [16]. This “frozen particle” model is relatively simple because the beads
in the colloid interact with the solvent through the same DPDinteractions, and
no extra parameters are required. A conceptually similar approach has been pro-
posed in Lattice Boltzmann simulations: the so-called raspberry model presents
the colloid as a collection of the surface beads. The surfacebeads couple to the
LB fluids by a viscous force which depends on the relative velocity of the beads
to the local fluids [17]. The positions of the surface beads are maintained either
by a spring force [18, 19] or by fixing the bead position with respect to the colloid
center [20, 21]. One drawback of the raspberry model is that the interacting beads
occurs only on the surface and the fluid is allowed to penetrate inside the hollow
sphere. It was later demonstrated to cause a discrepancy between the transla-
tional and rotational diffusion [22]. This can be remedied by adding the internal
coupling points [23, 24]. Raspberry model was also implemented in DPD simu-
lations [25, 26, 27, 28], where we used a repulsive interaction to prevent solvent
penetration.

• Boundary condition
Colloids can also be implemented as the boundary condition,which is common in
LB and MPCD simulations. Ladd had constructed the colloid asan extended hol-
low sphere where bounce-back collision rules are applied [29, 30, 31]. In MPCD,
the coupling between the immersed colloids and the solvent can be implemented
by either bounce-back rules or thermal wall boundary condition [32, 33, 34, 35].

• Using one single large bead
Español proposed the fluid particle model (FPM) [36] which treats the colloid as
one single object instead of combination of small particles. To model the large
colloids, two additional non-central shear components areincorporated into the
dissipative forces. Similar model has been proposed by Panet. al. [37].

Most of the colloid models are designed to realize the no-slip boundary condition
on the colloid surface, but for certain colloids with hydrophobic surfaces, slippage
can occur. We have proposed tunable-slip boundary condition for flat surfaces in
DPD [38, 39, 40, 41, 42, 43, 44, 45], which allows one to set thelocal slip length. In
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this work, we present a colloid model based on the tunable-slip boundary condition.
The remainder of this article is organized as follows: In section 2, we introduce
the colloid model and describe relevant parameters in simulation. We present the
simulation results of diffusion constant in section 3. Finally, we conclude in section
4 with a brief summary.

2 Marble Model

To facilitate the discussion, we first present a short introduction to the traditional
DPD. We then describe our new colloid model based on the same notation.

Dissipative Particle Dynamics is an well-established simulation method for
mesoscale fluid. For two solvent beadsi and j, their relative displacement is de-
noted byri j = ri − r j and their relative velocityvi j = vi −v j (see Fig. 1). The force
exerted by beadj on i is given by a pair of dissipative and random forces,

FDPD
i j = FD

i j +FR
i j. (1)

The dissipative forceFD
i j is proportional to the relative velocity between two beads,

FD
i j =−γDPDωD(ri j)(vi j · r̂i j)r̂i j, (2)

with a friction coefficientγDPD and a weight functionωD,

ωD(r) =











(

1−
r
rc

)2

if r ≤ rDPD
c ,

0 if r > rDPD
c .

(3)

The cutoff radiusrDPD
c characterizes the finite range of the interaction.

The random componentFR
i j has the form

FR
i j =

√

2kBT γDPDωD(ri j)ξ r̂i j, (4)

whereξ is a random number with zero mean and variance〈ξ (t)ξ (t ′)〉 = δ (t − t ′).
The dissipative and random forces are related by the fluctuation-dissipation theorem,
so to maintain the proper temperature in the simulation. Theforces between two
beads are the same in magnitude but opposite in direction,FDPD

i j = −FDPD
ji , hence

the momentum is conserved. The conservation of momentum is essential for DPD
to obtain the correct long-time hydrodynamic behavior.

In the following, physical quantities will be reported in a unit system ofσ
(length),m (mass),ε (energy), and a derived time unitτ = σ

√

m/ε. We use a
solvent densityρ = 3.0σ−3. The friction coefficient for the solvent isγDPD =
5.0m/τ and the cutoffrDPD

c = 1.0σ . The shear viscosity is measured asηs =
1.23±0.01m/(στ).
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Fig. 1 Sketches to demonstrate the solvent-solvent interaction (left) and colloid-solvent interaction
(right).

The colloidal particle is represented by a large spherical bead of radiusR= 3.0σ .
To prevent the solvent penetration, a modified Lennard-Jones interaction is applied
between the colloid and the solvent,

V (r) =











4ε

[

(

σ
r− r0

)12

−

(

σ
r− r0

)6

+
1
4

]

if r− r0 ≤ rLJ
c ,

0 if r− r0 > rLJ
c ,

(5)

wherer0 = 2.0σ andrLJ
c = 1.0σ .

We image that at each time step, the solvent bead interacts with the colloid
through the surface pointA, which is located on the colloid surface and on the line
which connects the solvent bead and the colloid center (see Fig. 1). The velocity of
the surface point is given by

vA = vO +ω × rOA, (6)

wherevO is center-of-mass speed andω is the angular velocity of the colloid.
Similar to the interaction between two solvent beads, the forces between the sol-

vent beadi and the surface pointA consist of a dissipative and random components.

FiA = FD
iA +FR

iA. (7)

There are at least three choices in setting the interaction between the colloid and
the solvent:
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1. Traditional DPD interactions. One can use the traditional DPD interactions, just
to think there is a solvent bead sitting at the surface pointA,

FD
iA = −γωD(riA)[(vi − vA) · r̂iA] r̂iA (8)

FR
iA =

√

2kBT γωD(riA)ξ r̂iA (9)

whereγ characterizes the coupling strength andωD is the same as in Eq. (3).

2. Transverse interactions. The second possibility is to use the transverse interac-
tions, which project the traditional DPD interactions on the plane perpendicular
to the vectorriA [46],

FD
iA = −γωD(riA)P(vi − vA) (10)

FR
iA =

√

2kBT γωD(riA)P(ξ̂ ) (11)

whereP =I − r̂iA⊗ r̂iA is the projection operator and̂ξ is a vector whose three
component are random numbers.

3. Tunable-slip interactions. In the tunable-slip approach, the dissipative compo-
nent is directly proportional to the relative velocityvi − vA. We implement this
approach in our simulations, to be consistent with our previous works on the flat
surfaces.

FD
iA = −γωD(riA)(vi − vA) (12)

FR
iA =

√

2kBT γωD(riA) ξ̂ (13)

The total force exerted on the colloid is a summation over allsolvent beads which
are less than 1.0σ away from the colloid surface,

FC = ∑
i

FAi +FLJ. (14)

Similarly, the total torque exerted on the colloid is

TC = ∑
i=1

FAi × (rA − rO), (15)

The total force and torque are then used to update the position and velocity of the
colloid in one time step using the Velocity-Verlet algorithm. All simulations were
carried out using the open source package ESPResSo [47].
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3 Results and Discussions

To test our new colloid model, we simulate a single colloid ina cubic box of sizeL.
We measure the diffusion constant of the colloid using threedifferent methods and
compare the result to the hydrodynamic theory.

The first method computes the diffusion constant through theautocorrelation
functions. We obtain two correlation functions from the simulations: the transla-
tional and rotational velocity autocorrelation functions

Cv(t) =
〈v(0) ·v(t)〉

〈v2〉
, (16)

Cω(t) =
〈ω(0) ·ω(t)〉

〈ω2〉
, (17)

wherev(t) andω(t) are the translational velocity and rotational velocity of the col-
loid at timet, respectively. Using the Green-Kubo relation, we obtain the diffusion
constant of the colloid by integrating the translational velocity autocorrelation func-
tion

D =
1
3

∫ ∞

0
dt 〈v(0) ·v(t)〉. (18)

Figure 2 shows the simulation results forγ = 5.0m/τ in log-log plots. The au-
tocorrelation functions show different behavior at short and long time scales. At
short times, both autocorrelation functions decay exponentially. At long times, hy-
drodynamic interactions lead to a slow relaxation of algebraic decay, which is called
long-time tail [48]. Mode-coupling theory predicts the coefficient of algebraic decay
at long times to be− 3

2 for the translational velocity and− 5
2 for the rotational veloc-

ity [49]. These predictions are plotted as green lines in Fig. 2. The simulation results
are consistent with the theoretical prediction fort > 10τ, but both autocorrelation
functions exhibit large fluctuation. This is due to the poor statistics for long-time
values of the correlation function. One can improve the results by running very long
simulations.

The second method to measure the diffusion constant is by calculation of the
mean squared displacement. From Einstein relation

lim
t→∞

〈(r(t)− r(0))2〉= 6Dt, (19)

wherer is the position of the colloid center. Figure 3 shows a typical mean squared
displacement as a function of the time. At short times, the colloid exhibits a ballis-
tic motion where the mean squared displacement increases ast2. At later times, the
ballistic motion is replaced by a diffusive motion where themean squared displace-
ment is proportional tot. A linear fit of the mean squared displacement att > 25τ
gives the diffusion constant.

The diffusion constant can also be obtained by a simulation experiment. We apply
a small constant force to the colloid, and at late times, the colloid reaches a constant
velocity v f . In this stationary state, the external driving force is balanced by the
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Fig. 2 Translational (top) and rotational (bottom) velocity autocorrelation functions in log-log
plots. The simulation is performed for the following parameters: colloid radiusR = 3.0σ , temper-
aturekBT = 1.0ε , and colloid-solvent parameterγ = 5.0m/τ .

viscous friction
Fext =−γ v f , (20)

whereγ is the friction coefficient. The fluctuation-dissipation theorem relates the
friction coefficient to the diffusion constant by

D =
kBT

γ
. (21)
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Fig. 3 The mean squared displacement of a spherical colloid with radius R = 3.0σ in a cubic
simulation box of sizesL = 20σ . The line shows a linear fit to datat > 25τ .

Figure 4 collects all simulation results obtained by three different methods [ve-
locity autocorrelation function (vacf), mean squared displacement (msd), and force
measurement]. The diffusion constant is measured at different values of colloid-
solvent friction coefficientγ. Error bars are calculated by three independent runs
with different initial configurations. The force measurement shows relatively small
error bars in comparison to the other two approaches.

Upon increasing ofγ, the surface property changes from slippery to no-slip, and
the diffusion constant decreases accordingly. No-slip boundary condition can be
realized by using a friction coefficientγ > 5m/τ. By adjusting theγ value, one
can set the surface boundary of the colloidal particle from no-slip to full-slip. This
freedom provides possibilities to investigate the effect of hydrodynamic slip on the
dynamics of colloidal particles [50, 51].

We use periodic boundary condition in the simulations. For small simulation
box, the colloid can interact with its periodic images, resulting a box-size dependent
diffusion constant. In general, the diffusion constant increases with increasing box
size. Hasimoto presented an analytic expression for the diffusion constant in terms
of a series expansion of 1/L, the reciprocal of the box size [52],

D =
kBT
6πηs

(

1
R
−

2.837
L

+
4.19R2

L3 + · · ·

)

. (22)

In Fig. 5, we plot the diffusion constant as a function of 1/L, based on the force
measurement. The simulation results show relatively well agreement to the Hasi-
moto formula, which is shown as the solid curve in Fig. 5.
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Fig. 4 The diffusion constantD for a spherical colloid of radiusR = 3.0σ as a function of the
surface-solvent friction coefficientγ . The simulation box has a size ofL = 20σ . The solid curve
is a guide to the eyes. The data from autocorrelation function and mean squared displacement are
shifted slightly in x-axis for a better view.
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Fig. 5 The diffusion constantD for a spherical colloid of radiusR = 3.0σ as a function of 1/L,
the reciprocal of the box size. The curve is the prediction from Eq. (22).
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4 Summary

We have developed a mesoscopic colloid model based on the dissipative particle
dynamics. The colloid is represented by a large spherical bead, and its surface in-
teracts with solvent beads through a pair of dissipative andrandom forces. We test
this new colloid model by measuring the diffusion constant of a single colloid in a
cubic box. The simulation results show good agreement with the predictions from
hydrodynamic theories. Our model can be viewed as an extension of the tunable-
slip boundary condition [38] to curved geometries, and allows one to investigate the
dynamics of colloidal particles with slippery surfaces.
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