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Abstract We proposed a new mesoscopic model to simulate spheridaidsbased
on the dissipative particle dynamics. The colloid is repreésd by a large spherical
bead, and its surface interacts with the solvent beads ghraypair of dissipative
and stochastic forces. This new model extends the tundipleeundary condition
[Eur. Phys. J. E26, 115 (2008)] from planar surfaces to curved geometry, tius a
low one to study colloids with slippery surfaces. Our sintiola results show good
agreement with the prediction of hydrodynamic theoriedjcating the hydrody-
namic interactions are properly accounted in our new model.

1 Introduction

Colloidal dispersions have many scientific interests aratfral applications in
various fields such as soft matter physics, physical cheynesll biology, medicine
development, and micro- or nanofluidic devices [1, 2]. In quneus solution, col-
loidal particles in general have a typical size one order afnitude larger than the
small solvent molecules. This separation of length scalesamts significant chal-
lenges in simulating the dynamics of colloidal particles: @e hand, explicit con-
sideration of the solvent with molecular details imposesgeiburden on the com-
putational time, while most interesting phenomenon maycoatern solvents. On
the other hand, the solvents cannot to totally ignored ezthey mediate the hy-
drodynamic interactions between larger colloidal pagscIThis dilemma is some-
what alleviated by resorting to coarse-grained simulatiamwhich the solvent de-
gree of freedom are greatly reduced while the effect of suligestill preserved by
enforcing the conservation of several physical quantisash as the particle num-
ber and the momentum. Coarse-graining approaches allowoastady larger sys-
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tem and reach longer time scale. Notable examples are dis®particle dynamics
(DPD) [3, 4, 5, 6], Lattice Boltzmann (LB) [7, 8, 9], Multi-IP&cle Collision Dy-
namics (MPCD) [10, 11], and Direct Numerical Simulation (BN12, 13, 14, 15].

Once one settles on a mesoscopic model for the solvent, #ie¢ask is to build
a colloid model which couples to the solvent. From a simatapoint of view, one
would like a colloid model which is conceptually simple arady to implement, but
also represents the correct physics. There are severalagss:

e Discretization of the large colloid
Based on the initial DPD formulation, Hoogerbrugge and Kaat [3, 4] con-
structed the colloid using the same solvent beads. Thavelatotion of these
small beads is “frozen” so the integrity of the large coll@dkept. Similar ap-
proach has been implemented to study many interactingidslio microfluidic
devices [16]. This “frozen particle” model is relativelyrgdle because the beads
in the colloid interact with the solvent through the same DR@ractions, and
no extra parameters are required. A conceptually similpr@xch has been pro-
posed in Lattice Boltzmann simulations: the so-called basfy model presents
the colloid as a collection of the surface beads. The sulfeegls couple to the
LB fluids by a viscous force which depends on the relative cigfaf the beads
to the local fluids [17]. The positions of the surface beadsmaintained either
by a spring force [18, 19] or by fixing the bead position withpect to the colloid
center [20, 21]. One drawback of the raspberry model is Heittteracting beads
occurs only on the surface and the fluid is allowed to pereinside the hollow
sphere. It was later demonstrated to cause a discrepanegdrethe transla-
tional and rotational diffusion [22]. This can be remedigdidding the internal
coupling points [23, 24]. Raspberry model was also impleie@imn DPD simu-
lations [25, 26, 27, 28], where we used a repulsive intesadth prevent solvent
penetration.

e Boundary condition
Colloids can also be implemented as the boundary conditibith is common in
LB and MPCD simulations. Ladd had constructed the colloidrasxtended hol-
low sphere where bounce-back collision rules are appliedd@, 31]. In MPCD,
the coupling between the immersed colloids and the sohaanbe implemented
by either bounce-back rules or thermal wall boundary cimd {32, 33, 34, 35].

e Using one single large bead
Espafiol proposed the fluid particle model (FPM) [36] whigats the colloid as
one single object instead of combination of small particlesmodel the large
colloids, two additional non-central shear componentsrarerporated into the
dissipative forces. Similar model has been proposed byePah [37].

Most of the colloid models are designed to realize the n@ksdundary condition
on the colloid surface, but for certain colloids with hydhopic surfaces, slippage
can occur. We have proposed tunable-slip boundary conditipflat surfaces in
DPD [38, 39, 40, 41, 42, 43, 44, 45], which allows one to setdbal slip length. In
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this work, we present a colloid model based on the tunalpeisiundary condition.
The remainder of this article is organized as follows: Intisec2, we introduce
the colloid model and describe relevant parameters in sitioml. We present the
simulation results of diffusion constant in section 3. Hinave conclude in section
4 with a brief summary.

2 Marble Model

To facilitate the discussion, we first present a short intadign to the traditional
DPD. We then describe our new colloid model based on the samadian.
Dissipative Particle Dynamics is an well-established sation method for
mesoscale fluid. For two solvent beddand |, their relative displacement is de-
noted byrij = ri —rj and their relative velocity;; = v; —v; (see Fig. 1). The force
exerted by beagl oni is given by a pair of dissipative and random forces,

FOPP =FP +FF. (1)
The dissipative forcd?Pj is proportional to the relative velocity between two beads,
F = —VPPP P (rij) (vij - Fij) i, (2)
with a friction coefficient®”P and a weight functiom®,
2
wD(r) _ <1— E) if r <rDPP @)
0 if r > r2PP.

The cutoff radius 2P characterizes the finite range of the interaction.
The random componeﬁﬁ- has the form

FR = /2T yPPOWP (1)) &F, (4)

where is a random number with zero mean and variafg)é (t')) = d(t —t').
The dissipative and random forces are related by the fluotulissipation theorem,
so to maintain the proper temperature in the simulation. fohees between two
beads are the same in magnitude but opposite in diredggff = —FbPP, hence
the momentum is conserved. The conservation of momentussengéal for DPD
to obtain the correct long-time hydrodynamic behavior.

In the following, physical quantities will be reported in aiusystem ofo
(length), m (mass),e (energy), and a derived time unit= o/m/e. We use a
solvent densityp = 3.003. The friction coefficient for the solvent ig°"P =
5.0m/t and the cutoffrP® = 1.00. The shear viscosity is measured ps=
1.234+0.01m/(o1).
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Fig. 1 Sketches to demonstrate the solvent-solvent interadgéth énd colloid-solvent interaction
(right).

The colloidal particle is represented by a large spherieatinf radiuR=3.00.
To prevent the solvent penetration, a modified Lennard-slorieraction is applied
between the colloid and the solvent,

ifr—ro<rkd,

(%)

0 if r—ro>rLd,

whererg = 2.00 andrt’ = 1.00.

We image that at each time step, the solvent bead interatistiag colloid
through the surface poim, which is located on the colloid surface and on the line
which connects the solvent bead and the colloid center (ged J: The velocity of
the surface point is given by

VA =Vo+ WX Ioa, (6)

wherevg is center-of-mass speed aads the angular velocity of the colloid.
Similar to the interaction between two solvent beads, thesfobetween the sol-
vent bead and the surface poim consist of a dissipative and random components.

Fia=F+FR. (7)

There are at least three choices in setting the interacébwmden the colloid and
the solvent:
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1. Traditional DPD interactions. One can use the traditional DPD interactions, just
to think there is a solvent bead sitting at the surface paint

FoA = —y@P(ria) [(Vi —Va) - Fial Fia (8)
Fii = \/2ke T ywP (ria) éFia (9)

wherey characterizes the coupling strength aofdlis the same as in Eq. (3).

2. Transverse interactions. The second possibility is to use the transverse interac-
tions, which project the traditional DPD interactions os filane perpendicular
to the vectoria [46],

FPL = —yw® (ria) 2 (Vi — Va) (10)
Fii = \/2ke TywP(ria) 2(&) (11)

where?? = . —fip®fia is the projection operator arfdis a vector whose three
component are random numbers.

3. Tunable-dip interactions. In the tunable-slip approach, the dissipative compo-
nent is directly proportional to the relative velocity— va. We implement this
approach in our simulations, to be consistent with our pesiworks on the flat
surfaces.

FiA = —ywP(ria) (Vi —Va) (12)

Fi = \/ 2keT yaP (ria) & (13)

The total force exerted on the colloid is a summation ovesaitent beads which
are less than.0o away from the colloid surface,

FO=S Fai+F-. (14)
2
Similarly, the total torque exerted on the colloid is
TC=S Fax(ra—ro), (15)
2

The total force and torque are then used to update the positid velocity of the
colloid in one time step using the Velocity-Verlet algorithAll simulations were
carried out using the open source package ESPResSo [47].
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3 Results and Discussions

To test our new colloid model, we simulate a single colloid icubic box of sizé..
We measure the diffusion constant of the colloid using thii#erent methods and
compare the result to the hydrodynamic theory.

The first method computes the diffusion constant throughatitecorrelation
functions. We obtain two correlation functions from the slations: the transla-
tional and rotational velocity autocorrelation functions

Cu(t) = Tv (16)
_ {w(0) - w(t))
Co(t) = T (17)

wherev(t) andw(t) are the translational velocity and rotational velocitytoé tol-
loid at timet, respectively. Using the Green-Kubo relation, we obtaedHfusion
constant of the colloid by integrating the translationdbedy autocorrelation func-
tion 1 e
D— §/ dt (v(0) - v(t)). (18)
Jo

Figure 2 shows the simulation results fpe= 5.0m/1 in log-log plots. The au-
tocorrelation functions show different behavior at shartl dong time scales. At
short times, both autocorrelation functions decay exptain At long times, hy-
drodynamic interactions lead to a slow relaxation of algehdecay, which is called
long-time tail [48]. Mode-coupling theory predicts the &agent of algebraic decay
at long times to be% for the translational velocity andg for the rotational veloc-
ity [49]. These predictions are plotted as green lines in Eig he simulation results
are consistent with the theoretical prediction fos 101, but both autocorrelation
functions exhibit large fluctuation. This is due to the pomtistics for long-time
values of the correlation function. One can improve theltesy running very long
simulations.

The second method to measure the diffusion constant is leylesibn of the
mean squared displacement. From Einstein relation

lim ((r(t) — r(0))?) = 6D, (19)
wherer is the position of the colloid center. Figure 3 shows a tyjmcaan squared
displacement as a function of the time. At short times, tHitbexhibits a ballis-
tic motion where the mean squared displacement increagésAtdater times, the
ballistic motion is replaced by a diffusive motion where thean squared displace-
ment is proportional td. A linear fit of the mean squared displacemerit at25t
gives the diffusion constant.

The diffusion constant can also be obtained by a simulatipe@ment. We apply
a small constant force to the colloid, and at late times, thieid reaches a constant
velocity v¢. In this stationary state, the external driving force isalpaked by the
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Fig. 2 Translational (top) and rotational (bottom) velocity axdoelation functions in log-log
plots. The simulation is performed for the following parders: colloid radiusk = 3.00, temper-
aturekgT = 1.0¢, and colloid-solvent parametgr= 5.0m/1.

viscous friction
Fext= —YyVt, (20)

wherey is the friction coefficient. The fluctuation-dissipatioretrem relates the
friction coefficient to the diffusion constant by

_ kT
-

D (21)
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Fig. 3 The mean squared displacement of a spherical colloid willuseR = 3.00 in a cubic
simulation box of sizek = 200. The line shows a linear fit to data> 25t.

Figure 4 collects all simulation results obtained by thréekent methods [ve-
locity autocorrelation function (vacf), mean squared ispment (msd), and force
measurement]. The diffusion constant is measured at differalues of colloid-
solvent friction coefficieny. Error bars are calculated by three independent runs
with different initial configurations. The force measurerhghows relatively small
error bars in comparison to the other two approaches.

Upon increasing of, the surface property changes from slippery to no-slip, and
the diffusion constant decreases accordingly. No-slipnbany condition can be
realized by using a friction coefficient > 5m/1. By adjusting they value, one
can set the surface boundary of the colloidal particle fraslip to full-slip. This
freedom provides possibilities to investigate the effédtyairodynamic slip on the
dynamics of colloidal particles [50, 51].

We use periodic boundary condition in the simulations. Faoals simulation
box, the colloid can interact with its periodic images, t88g a box-size dependent
diffusion constant. In general, the diffusion constantéases with increasing box
size. Hasimoto presented an analytic expression for thiesitih constant in terms
of a series expansion of L, the reciprocal of the box size [52],

D keT (1_2.837 4.19R2+m). 22)

Tems \R L TE

In Fig. 5, we plot the diffusion constant as a function gf-1based on the force
measurement. The simulation results show relatively wgléament to the Hasi-
moto formula, which is shown as the solid curve in Fig. 5.
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Fig. 4 The diffusion constanb for a spherical colloid of radiuR = 3.00 as a function of the
surface-solvent friction coefficient The simulation box has a size bf= 200. The solid curve
is a guide to the eyes. The data from autocorrelation funciwd mean squared displacement are

shifted slightly in x-axis for a better view.
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Fig. 5 The diffusion constanb for a spherical colloid of radiuR = 3.00 as a function of 1L,
the reciprocal of the box size. The curve is the predictiomfEq. (22).
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4 Summary

We have developed a mesoscopic colloid model based on thipalise particle
dynamics. The colloid is represented by a large sphericad band its surface in-
teracts with solvent beads through a pair of dissipativerandom forces. We test
this new colloid model by measuring the diffusion constdrd single colloid in a
cubic box. The simulation results show good agreement wighpredictions from
hydrodynamic theories. Our model can be viewed as an extendithe tunable-
slip boundary condition [38] to curved geometries, andvedlone to investigate the
dynamics of colloidal particles with slippery surfaces.
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