Codierungstheorie – SS 2016

DR. ANTON MALEVICH

Aufgaben zum Thema Lineare Codes

Aufgabe 2.1 Es wurde in der ersten Übung besprochen, dass der Code C aus der Aufgabe 1.3 der Hamming-Code $Ham_2(3)$ ist.

- a) Geben Sie eine Erzeugermatrix von C an.
- b) Beweisen Sie, dass

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

eine Kontrollmatrix von C ist.

- c) Bestimmen Sie die Nebenklassenanführer und deren Syndrome.
- d) Decodieren Sie mittels der Syndrom-Decodierung die Worte

Seien Sie in der Lage, eine beliebige 7-Tupel zu decodieren.

e) Sei C' der lineare Code mit Kontrollmatrix

$$H' = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Finden Sie die Permutation $\pi \in S_n$ mit $C' = CP(\pi)$.

Aufgabe 2.2 Ein nicht perfekter binärer Code.

- a) Konstruieren Sie einen [8, 4, 4]-Code $C = C_1 \propto C_2$ (siehe Aufgabe 2.5a), wobei C_1 der [4, 3, 2]-Code ist, der aus aller Wörter des geraden Gewichts besteht, und C_2 der [4, 1, 4]-Wiederholungscode ist.
- b) Geben Sie eine Kontrollmatrix H des Codes C an und konstruieren Sie die Liste aller Syndrome und Nebenklassenanführer.
- c) Realisieren Sie die Syndrom-Decodierung für den Code C (mit dem Rechner oder an der Tafel). Welche Fehler von Gewicht > 1 kann der Code C eindeutig korrigieren, welche "zweideutig", etc.?

Aufgabe 2.3 Nicht binäre Codes.

- a) Konstruieren Sie einen $[4,2,3]_3$ -Code C_1 über \mathbb{F}_3 (Ham₃(2) oder Aufgabe 2.4c) und einen $[5,3,3]_5$ -Reed-Solomon-Code C_2 über \mathbb{F}_5 (Aufgabe 2.4a)
- b) Geben Sie Kontrollmatrizen H_1 und H_2 für die Codes C_1 und C_2 an und konstruieren Sie jeweils die Liste aller Syndrome und Nebenklassenanführer.
- c) Realisieren Sie die Syndrom-Decodierung für die Codes C_1 und C_2 (mit dem Rechner oder an der Tafel).

Aufgabe 2.4 Es sei $C = C_M$ ein [n, k, n - k + 1]-Reed-Solomon-Code zur n-elementigen Menge $M = \{a_1, \ldots, a_n\} \subseteq K$. Zeigen Sie:

a) Die Matrix G ist eine Erzeugermatrix für C:

$$G = \begin{pmatrix} 1 & \cdots & 1 \\ a_1 & \cdots & a_n \\ a_1^2 & \cdots & a_n^2 \\ \vdots & & \vdots \\ a_1^{k-1} & \cdots & a_n^{k-1} \end{pmatrix}$$
 (Vandermonde-Matrix).

b) Es gilt

$$\det \begin{pmatrix} 1 & \cdots & 1 \\ a_1 & \cdots & a_n \\ a_1^2 & \cdots & a_n^2 \\ \vdots & & \vdots \\ a_1^{n-1} & \cdots & a_n^{n-1} \end{pmatrix} \neq 0 \qquad \text{(Vandermonde-Determinante)}.$$

c) Die Matrix

$$G = \begin{pmatrix} 1 & \cdots & 1 & 0 \\ a_1 & \cdots & a_n & 0 \\ a_1^2 & \cdots & a_n^2 & 0 \\ \vdots & & \vdots & \vdots \\ a_1^{k-1} & \cdots & a_n^{k-1} & 1 \end{pmatrix}$$

ist Erzeugermatrix eines [n+1, k, n-k+2]-MDS-Codes.

Aufgabe 2.5 Sei $K = \mathbb{F}_2$.

a) (Plotkin-Konstruktion) Für i = 1, 2 seien $[n, k_i, d_i]$ -Codes C_i über K gegeben. Zeigen Sie, dass

$$C = C_1 \propto C_2 = \{ (c_1, c_1 + c_2) \mid c_i \in C_i \} \le K^{2n}$$

ein $[2n, k_1 + k_2, \min \{2d_1, d_2\}]$ -Codes ist. (*Hinweis:* Benutzen Sie Aufgabe 2.6b)

b#) Für $m \in \mathbb{N}$ sei RM(0, m) der $[2^m, 1, 2^m]$ -Wiederholungscode und RM $(m, m) = K^{2^m}$. Für $1 \le r \le m - 1$ definieren wir rekursiv

$$RM(r, m) = RM(r, m - 1) \propto RM(r - 1, m - 1).$$

Beweisen Sie, dass $\mathrm{RM}(r,m)$ ein $[2^m,\sum_{j=0}^r\binom{m}{j},2^{m-r}]$ -Code ist. (Die so konstruierten Codes sind äquivalent zu den Reed-Muller-Codes; daher die gleiche Bezeichnung.)

Aufgabe 2.6 Sei K ein Körper. Für $x=(x_1,\ldots,x_n),\ y=(y_1,\ldots,y_n)\in K^n$ bezeichne $x\star y=(x_1y_1,\ldots,x_ny_n).$

Sei nun $K = \mathbb{F}_2$. Beweisen Sie, dass für alle $x, y \in K^n$ gilt

- a) $\operatorname{wt}(x+y) = \operatorname{wt}(x) + \operatorname{wt}(y) 2\operatorname{wt}(x \star y),$
- b) $\operatorname{wt}(x+y) \ge \operatorname{wt}(x) \operatorname{wt}(y)$,
- $c^{\#}$) wt(x+z) + wt(y+z) + wt(x+y+z) > 2 wt(x+y+x * y) wt(z).
- $d^{\#}$) Ist $K = \mathbb{F}_3$, so gilt $\operatorname{wt}(x) + \operatorname{wt}(y) = \operatorname{wt}(x) + \operatorname{wt}(y) f(x \star y)$, wobei f(u) = b + 2c ist, falls der Vektor $u = (u_1, \dots, u_n)$ genau a Nullen, b Einsen und c Zweien hat.

Aufgaben mit # sind etwas schwieriger und sind speziell für M.Sc. Studierenden gedacht. Diese Aufgaben werden in den Übungen nicht besprochen.