Biostatistik, WS 2010/2011

Deskriptive Statistik

Matthias Birkner

http://www.mathematik.uni-mainz.de/~birkner/Biostatistik1011/

19.11.2010

Inhalt

- Wozu Statistik?
- Graphische Darstellungen
 - Histogramme und Dichtepolygone
 - Stripcharts
 - Boxplots
 - Beispiel: Ringeltaube
 - Beispiel: Darwin-Finken
- 3 Statistische Kenngrößen
 - Median und andere Quartile
 - Mittelwert und Standardabweichung
- Vom Sinn und Unsinn von Mittelwerten
 - Beispiel: Wählerische Bachstelzen
 - Beispiel: Spiderman & Spiderwoman
 - Beispiel: Kupfertoleranz beim Roten Straußgras

It is easy to lie with statistics.

Andrejs Dunkels

It is easy to lie with statistics.
It is hard to tell the truth without it.

Andrejs Dunkels

Was ist Statistik?

Die Natur ist voller Variabilität.

Was ist Statistik?

Die Natur ist voller Variabilität.

Wie geht man mit variablen Daten um?

Was ist Statistik?

Die Natur ist voller Variabilität.

Wie geht man mit variablen Daten um?

Es gibt eine mathematische Theorie des Zufalls:

die Stochastik.

IDEE DER STATISTIK

Variabilität

durch

Zufall

modellieren.

IDEE DER STATISTIK

Variabilität

(Erscheinung der Natur)

durch

Zufall

modellieren.

IDEE DER STATISTIK

Variabilität

(Erscheinung der Natur)

durch

Zufall

(mathematische Abstraktion)

modellieren.

Statistik

=

Datenanalyse
mit Hilfe
stochastischer Modelle

Inhalt

- Wozu Statistik?
- Graphische Darstellungen
 - Histogramme und Dichtepolygone
 - Stripcharts
 - Boxplots
 - Beispiel: Ringeltaube
 - Beispiel: Darwin-Finken
- Statistische Kenngrößen
 - Median und andere Quartile
 - Mittelwert und Standardabweichung
- Vom Sinn und Unsinn von Mittelwerten
 - Beispiel: Wählerische Bachstelzen
 - Beispiel: Spiderman & Spiderwoman
 - Beispiel: Kupfertoleranz beim Roten Straußgras

Beispiel

Daten aus einer Diplomarbeit aus 2001 am Forschungsinstitut Senckenberg, Frankfurt am Main

Crustaceensektion
Leitung: Dr. Michael Türkay

Charybdis acutidens TÜRKAY 1985

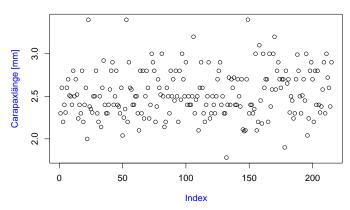
Der Springkrebs Galathea intermedia

Helgoländer Tiefe Rinne, Fang vom 6.9.1988

Carapaxlänge (mm):

Nichteiertragende Weibchen (n = 215)

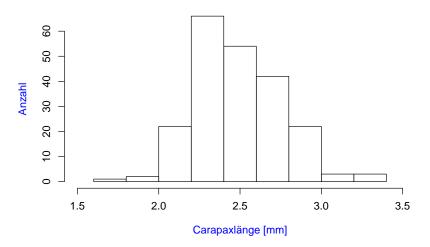
```
2,9 3,0 2,9 2,5 2,7 2,9 2,9 3,0 3,0 2,9 3,4 2,8 2,9 2,8 2,8 2,4 2,8 2,5 2,7 3,0 2,9 3,2 3,1 3,0 2,7 2,5 3,0 2,8 2,8 2,8 2,7 3,0 2,6 3,0 2,9 2,8 2,9 2,9 2,3 2,7 2.6 2,7 2,5 . . . . . . . . .
```

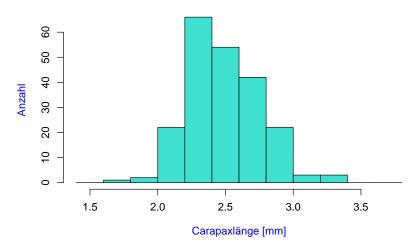


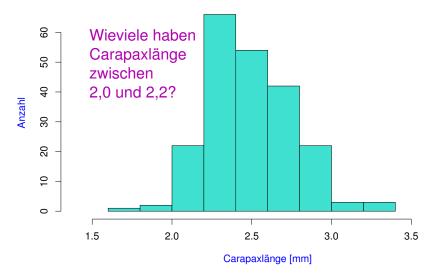
Inhalt

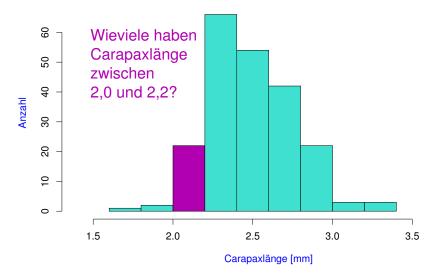
- Wozu Statistik?
- Graphische Darstellungen
 - Histogramme und Dichtepolygone
 - Stripcharts
 - Boxplots
 - Beispiel: Ringeltaube
 - Beispiel: Darwin-Finken
- Statistische Kenngrößen
 - Median und andere Quartile
 - Mittelwert und Standardabweichung
- Vom Sinn und Unsinn von Mittelwerten
 - Beispiel: Wählerische Bachstelzen
 - Beispiel: Spiderman & Spiderwoman
 - Beispiel: Kupfertoleranz beim Roten Straußgras

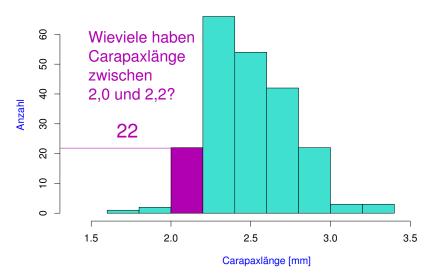
Eine Möglichkeit der graphischen Darstellung: das Histogramm



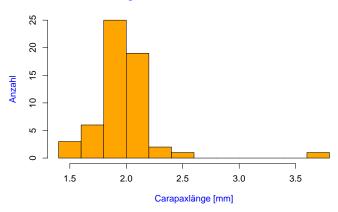






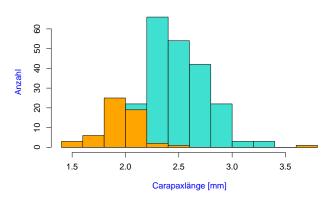


Analoge Daten zwei Monate später (3.11.88):



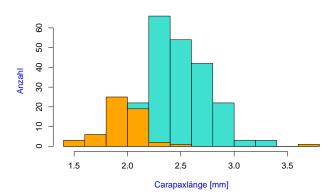
Vergleich der beiden Verteilungen

Nichteiertragende Weibchen



Vergleich der beiden Verteilungen

Nichteiertragende Weibchen

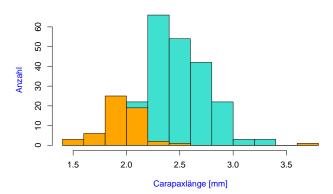


Problem: ungleiche Stichprobenumfänge:

6.Sept: n = 2153.Nov: n = 57

Vergleich der beiden Verteilungen

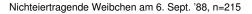
Nichteiertragende Weibchen

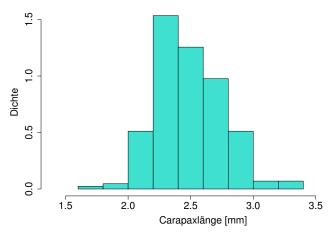


Problem: ungleiche Stichprobenumfänge:

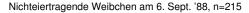
6.Sept: n = 2153.Nov: n = 57

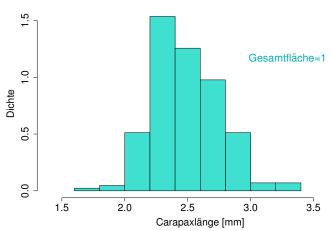
Idee: stauche vertikale Achse so, dass Gesamtfläche = 1.

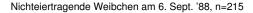




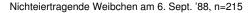
Die neue vertikale Koordinate ist jetzt eine Dichte (engl. density).

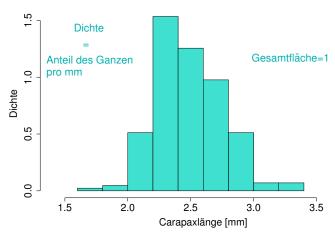


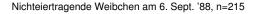


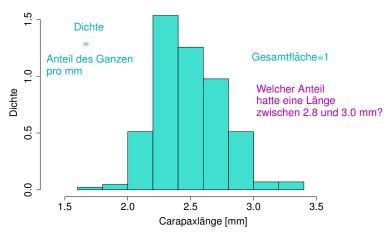


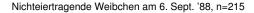


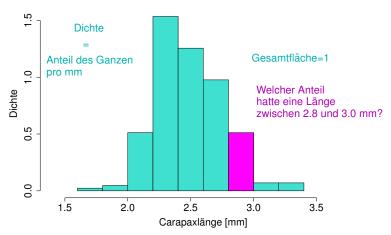


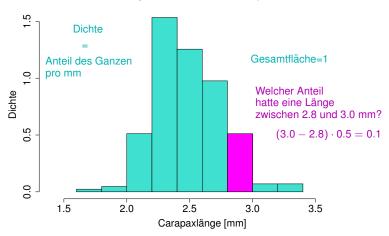




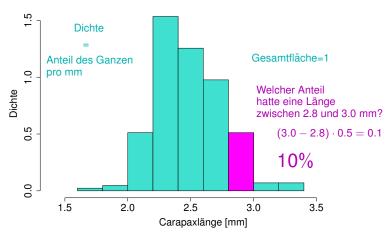








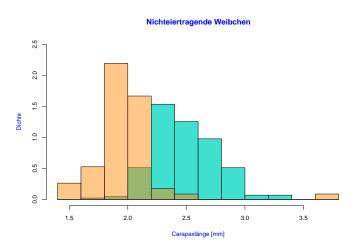
Nichteiertragende Weibchen am 6. Sept. '88, n=215

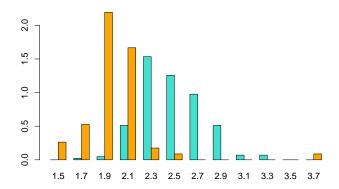


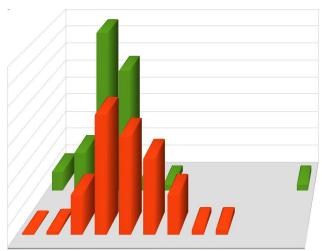
Die beiden Histogramme sind jetzt vergleichbar

Die beiden Histogramme sind jetzt vergleichbar (sie haben dieselbe Gesamtfläche).

Nichteiertragende Weibchen 2.5 1.0 0.0 1.5 2.0 2.5 3.0 3.5 Carapaxlänge [mm]







Beeindrucken Sie Jung und Alt mit total abgefahrenen 3D-Plots!

Wenn Sie Schauwerbegestalter(in) sind:

Beeindrucken Sie Jung und Alt mit total abgefahrenen 3D-Plots!

Wenn Sie Schauwerbegestalter(in) sind:

Beeindrucken Sie Jung und Alt mit total abgefahrenen 3D-Plots!

Wenn Sie Wissenschaftler(in) werden wollen:

Wenn Sie Schauwerbegestalter(in) sind:

Beeindrucken Sie Jung und Alt mit total abgefahrenen 3D-Plots!

Wenn Sie Wissenschaftler(in) werden wollen:

Bevorzugen Sie einfache und klare 2D-Darstellungen.

Problem

Histogramme kann man nicht ohne weiteres in demselben Graphen darstellen,

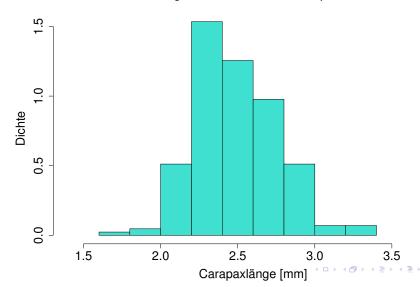
Problem

Histogramme kann man nicht ohne weiteres in demselben Graphen darstellen,

weil sie einander überdecken würden.

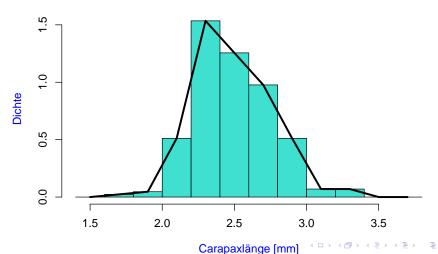
Einfache und klare Lösung: Dichtepolygone

Nichteiertragende Weibchen am 6. Sept. '88, n=215



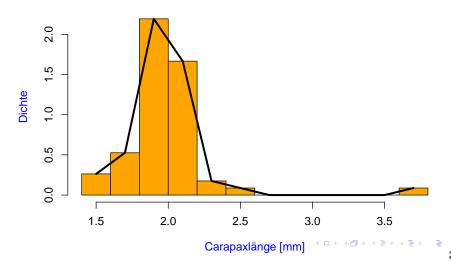
Einfache und klare Lösung: Dichtepolygone

Nichteiertragende Weibchen am 6. Sept. '88, n=215



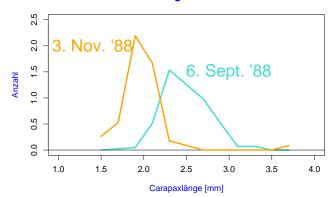
Einfache und klare Lösung: Dichtepolygone

Nichteiertragende Weibchen am 3. Nov. '88, n=57



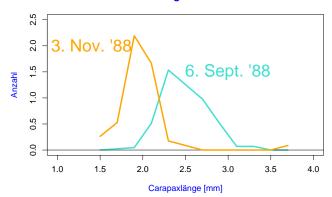
Zwei und mehr Dichtepolygone in einem Plot

Nichteiertragende Weibchen



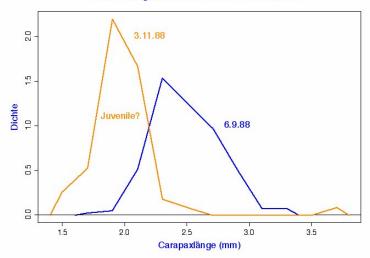
Zwei und mehr Dichtepolygone in einem Plot

Nichteiertragende Weibchen



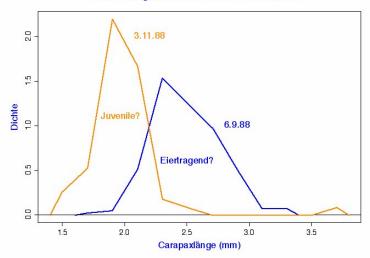
Biologische Interpretation der Verschiebung?

Nichteiertragende Weibchen 6.9.88 und 3.11.88



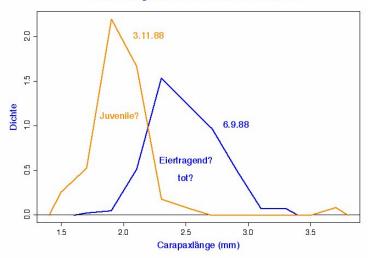
11

Nichteiertragende Weibchen 6.9.88 und 3.11.88

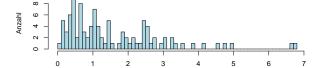


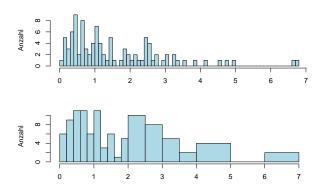
11

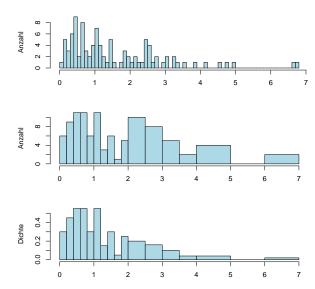
Nichteiertragende Weibchen 6.9.88 und 3.11.88

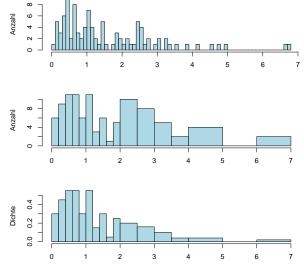


11





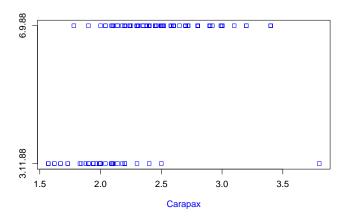


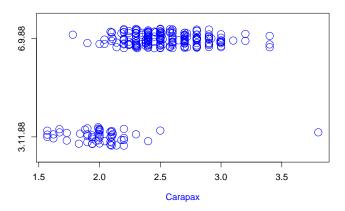


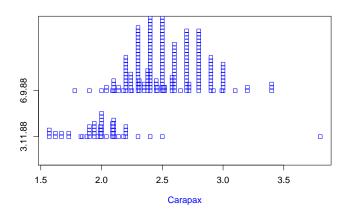
Also: Bei Histogrammen mit ungleichmäßiger Unterteilung immer Dichten verwenden!

Inhalt

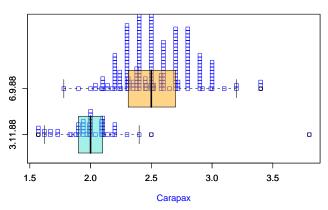
- Wozu Statistik?
- Graphische Darstellungen
 - Histogramme und Dichtepolygone
 - Stripcharts
 - Boxplots
 - Beispiel: Ringeltaube
 - Beispiel: Darwin-Finken
- Statistische Kenngrößen
 - Median und andere Quartile
 - Mittelwert und Standardabweichung
- Vom Sinn und Unsinn von Mittelwerten
 - Beispiel: Wählerische Bachstelzen
 - Beispiel: Spiderman & Spiderwoman
 - Beispiel: Kupfertoleranz beim Roten Straußgras



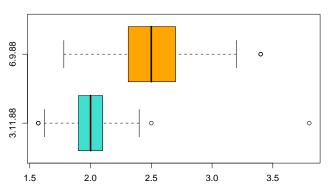


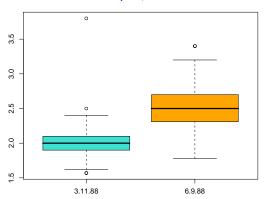


Stripchart + Boxplots, horizontal



Boxplots, horizontal





Histogramme und Dichtepolygone geben ein ausführliches Bild eines Datensatzes.

Histogramme und Dichtepolygone geben ein ausführliches Bild eines Datensatzes.

Manchmal zu ausführlich.

Inhalt

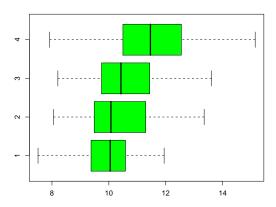
- Wozu Statistik?
 - Graphische Darstellungen
 - Histogramme und Dichtepolygone
 - Stripcharts
 - Boxplots
 - Beispiel: Ringeltaube
 - Beispiel: Darwin-Finken
- 3 Statistische Kenngrößen
 - Median und andere Quartile
 - Mittelwert und Standardabweichung
- Vom Sinn und Unsinn von Mittelwerten
 - Beispiel: Wählerische Bachstelzen
 - Beispiel: Spiderman & Spiderwoman
 - Beispiel: Kupfertoleranz beim Roten Straußgras

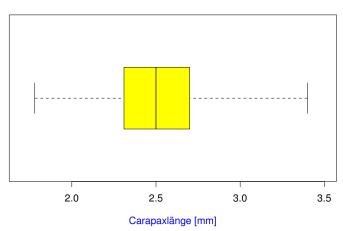
Zu viel Information erschwert den Überblick

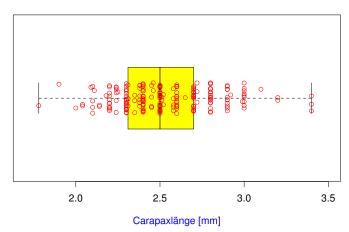
Zu viel Information erschwert den Überblick

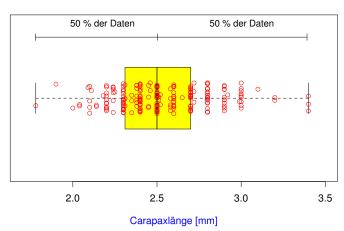
Wald?

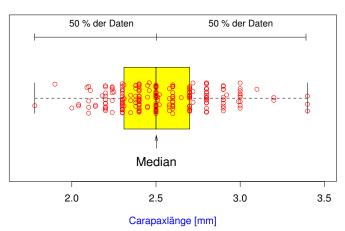
Beispiel: Vergleich von mehreren Gruppen

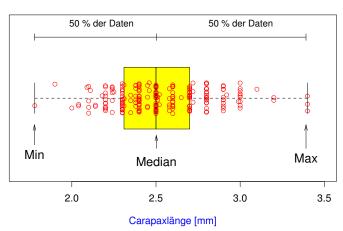


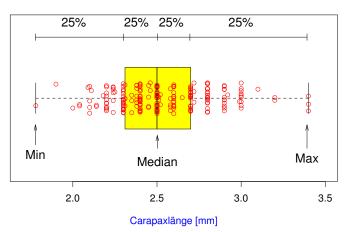


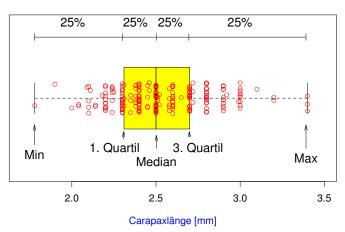


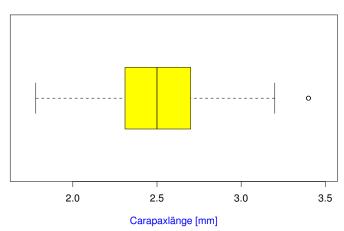


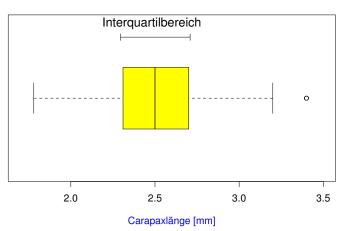


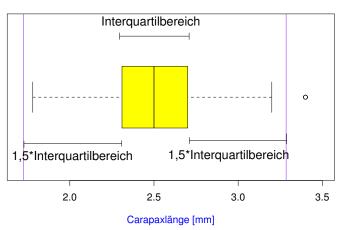


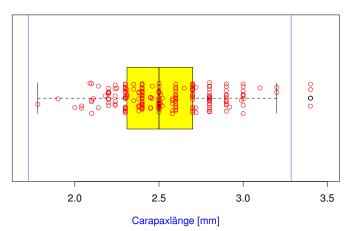




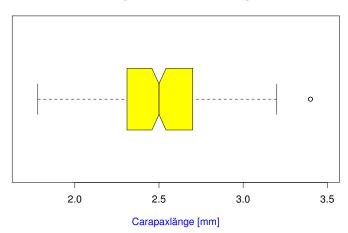




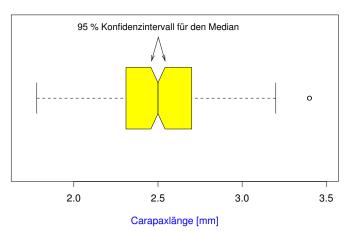




Boxplot, Profiausstattung



Boxplot, Profiausstattung



Inhalt

- Wozu Statistik?
- Graphische Darstellungen
 - Histogramme und Dichtepolygone
 - Stripcharts
 - Boxplots
 - Beispiel: Ringeltaube
 - Beispiel: Darwin-Finken
- Statistische Kenngrößen
 - Median und andere Quartile
 - Mittelwert und Standardabweichung
- Vom Sinn und Unsinn von Mittelwerten
 - Beispiel: Wählerische Bachstelzen
 - Beispiel: Spiderman & Spiderwoman
 - Beispiel: Kupfertoleranz beim Roten Straußgras

Beispiel:

Die Ringeltaube

Palumbus palumbus

Beispiel: Ringeltaube

Wie hängt die Stoffwechselrate bei der Ringeltaube von der Umgebungstemperatur ab?

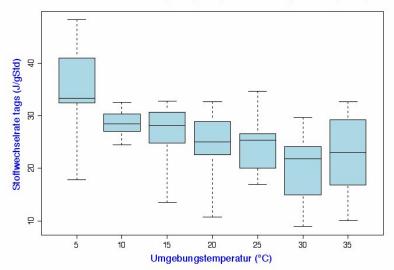
Daten

aus dem

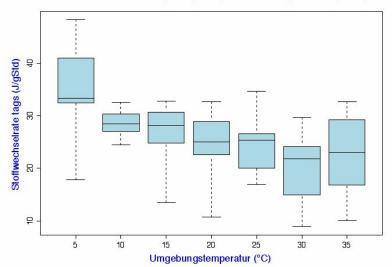
AK Stoffwechselphysiologie

Prof. Prinzinger

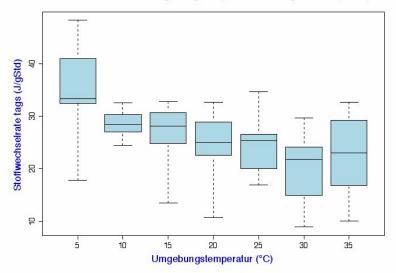
Universität Frankfurt

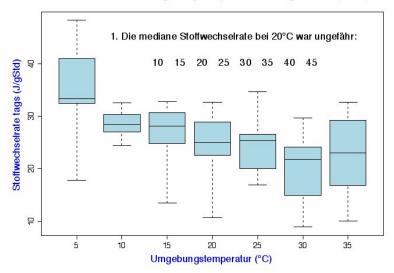


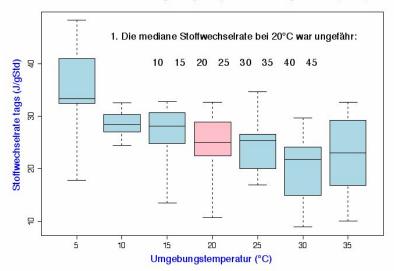
Klar:
Stoffwechselrate
höher
bei
tiefen Temperaturen

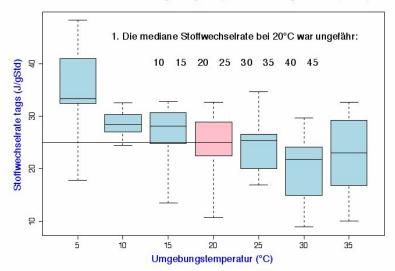


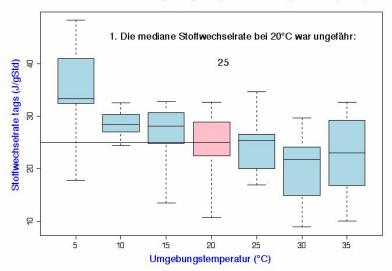
Vermutung:
Bei hohen Temperaturen
nimmt die Stoffwechselrate
wieder zu
(Hitzestress).

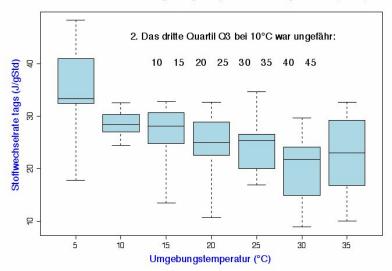


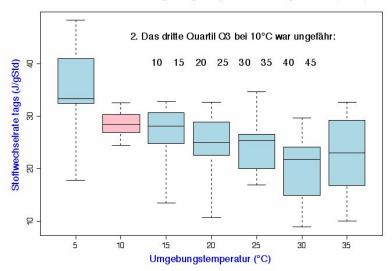


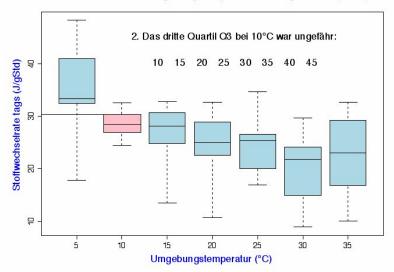


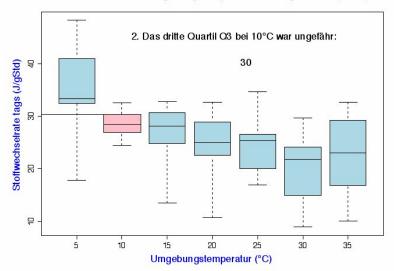


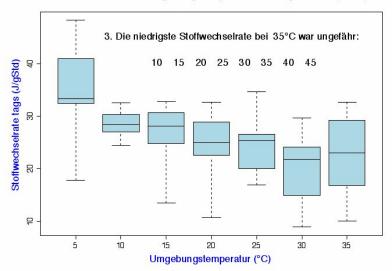


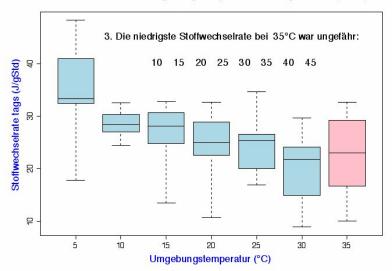




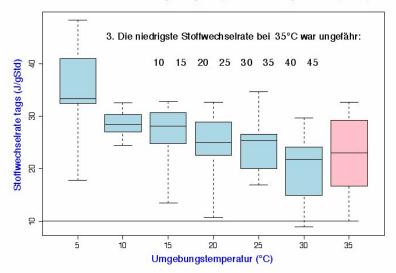




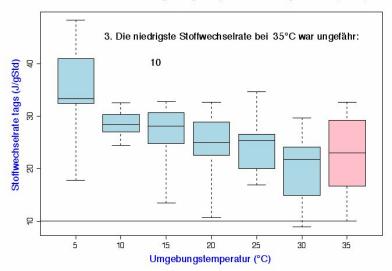




11



11



11

Graphische Darstellungen

Beispiel: Ringeltaube

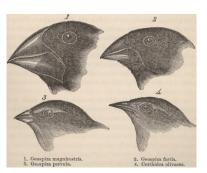
Inhalt

- Wozu Statistik?
- Graphische Darstellungen
 - Histogramme und Dichtepolygone
 - Stripcharts
 - Boxplots
 - Beispiel: Ringeltaube
 - Beispiel: Darwin-Finken
- Statistische Kenngrößen
 - Median und andere Quartile
 - Mittelwert und Standardabweichung
 - Vom Sinn und Unsinn von Mittelwerten
 - Beispiel: Wählerische Bachstelzen
 - Beispiel: Spiderman & Spiderwoman
 - Beispiel: Kupfertoleranz beim Roten Straußgras

Charles Robert Darwin (1809-1882)

Charles Robert Darwin (1809-1882)

Darwin-Finken

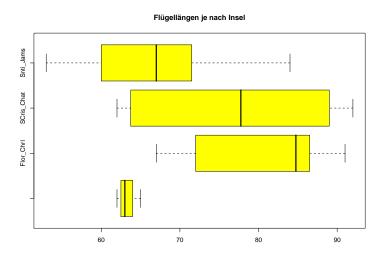


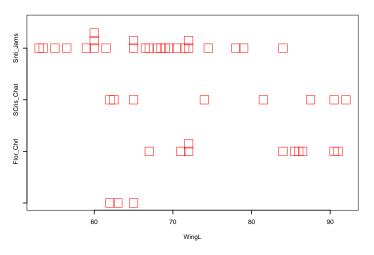
http:

 $// darwin-online.org.uk/graphics/Zoology_Illustrations.html\\$

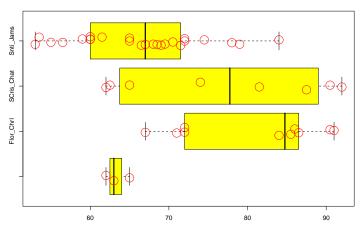
Darwins Finken-Sammlung

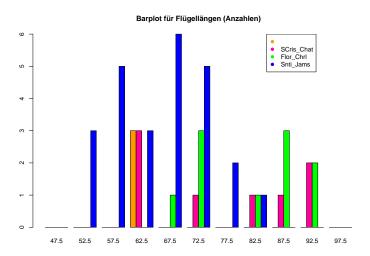
- Sulloway, F.J. (1982) The Beagle collections of Darwin's Finches (Geospizinae). *Bulletin of the British Museum* (Natural History), Zoology series **43**: 49-94.
- http://datadryad.org/repo/handle/10255/dryad.154

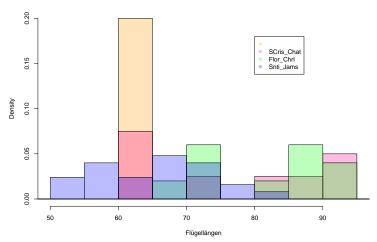


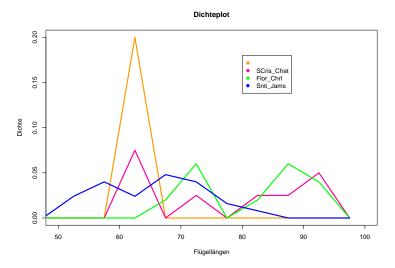


Flügellängen je nach Insel

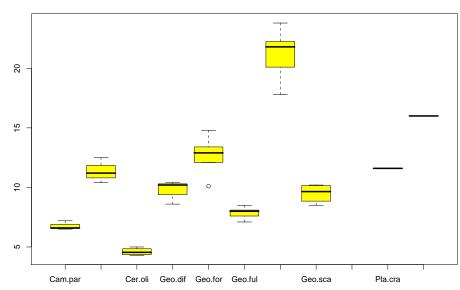




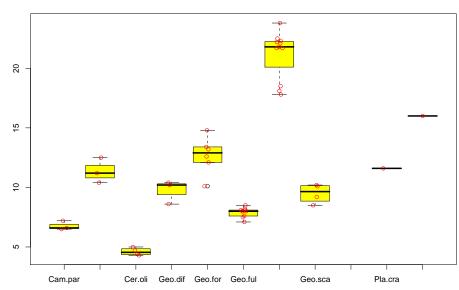




Schnabelgröße je nach Art



Schnabelgröße je nach Art



 Histogramme erlauben einen detailierten Blick auf die Daten

- Histogramme erlauben einen detailierten Blick auf die Daten
- Dichtepolygone erlauben Vergleiche zwischen vielen Verteilungen

- Histogramme erlauben einen detailierten Blick auf die Daten
- Dichtepolygone erlauben Vergleiche zwischen vielen Verteilungen
- Boxplot können große Datenmengen vereinfacht zusammenfassen

- Histogramme erlauben einen detailierten Blick auf die Daten
- Dichtepolygone erlauben Vergleiche zwischen vielen Verteilungen
- Boxplot können große Datenmengen vereinfacht zusammenfassen
- Bei kleinen Datenmengen eher Stripcharts verwenden

- Histogramme erlauben einen detailierten Blick auf die Daten
- ② Dichtepolygone erlauben Vergleiche zwischen vielen Verteilungen
- Boxplot können große Datenmengen vereinfacht zusammenfassen
- Bei kleinen Datenmengen eher Stripcharts verwenden
- Vorsicht mit Tricks wie 3D oder halbtransparenten Farben

- Histogramme erlauben einen detailierten Blick auf die Daten
- Dichtepolygone erlauben Vergleiche zwischen vielen Verteilungen
- Boxplot können große Datenmengen vereinfacht zusammenfassen
- Bei kleinen Datenmengen eher Stripcharts verwenden
- Vorsicht mit Tricks wie 3D oder halbtransparenten Farben
- Jeder Datensatz ist anders; keine Patentrezepte

Inhalt

- Wozu Statistik?
- Graphische Darstellungen
 - Histogramme und Dichtepolygone
 - Stripcharts
 - Boxplots
 - Beispiel: Ringeltaube
 - Beispiel: Darwin-Finken
- Statistische Kenngrößen
 - Median und andere Quartile
 - Mittelwert und Standardabweichung
- Vom Sinn und Unsinn von Mittelwerten
 - Beispiel: Wählerische Bachstelzen
 - Beispiel: Spiderman & Spiderwoman
 - Beispiel: Kupfertoleranz beim Roten Straußgras

Es ist oft möglich, das Wesentliche an einer Stichprobe mit ein paar Zahlen zusammenzufassen. Wesentlich:

1. Wie groß?

2. Wie variabel?

Wesentlich:

1. Wie groß?

Lageparameter

2. Wie variabel?

Wesentlich:

1. Wie groß?

Lageparameter

2. Wie variabel?

Streuungsparameter

Eine Möglichkeit kennen wir schon aus dem Boxplot:

Lageparameter

Der Median

Lageparameter Der Median

Streuungsparameter

Lageparameter Der Median

Streuungsparameter

Der Quartilabstand $(Q_3 - Q_1)$

Inhalt

- Wozu Statistik?
- Graphische Darstellungen
 - Histogramme und Dichtepolygone
 - Stripcharts
 - Boxplots
 - Beispiel: Ringeltaube
 - Beispiel: Darwin-Finken
- Statistische Kenngrößen
 - Median und andere Quartile
 - Mittelwert und Standardabweichung
- Vom Sinn und Unsinn von Mittelwerten
 - Beispiel: Wählerische Bachstelzen
 - Beispiel: Spiderman & Spiderwoman
 - Beispiel: Kupfertoleranz beim Roten Straußgras

Der Median:

die Hälfte der Beobachtungen sind kleiner, die Hälfte sind größer.

Der Median:

die Hälfte der Beobachtungen sind kleiner, die Hälfte sind größer.

Der Median ist das 50%-Quantil der Daten.

Das erste Quartil, Q_1 :

Das erste Quartil, Q_1 :
ein Viertel der Beobachtungen
sind kleiner,
drei Viertel sind größer.

Das erste Quartil, Q_1 : ein Viertel der Beobachtungen sind kleiner, drei Viertel sind größer. Q_1 ist das

25%-Quantil der Daten.

Das dritte Quartil, Q₃:

Das dritte Quartil, Q₃: drei Viertel der Beobachtungen sind kleiner, ein Viertel sind größer.

Das dritte Quartil, Q₃: drei Viertel der Beobachtungen sind kleiner, ein Viertel sind größer.

 Q_3 ist das 75%-Quantil der Daten.

Inhalt

- Wozu Statistik?
- Graphische Darstellungen
 - Histogramme und Dichtepolygone
 - Stripcharts
 - Boxplots
 - Beispiel: Ringeltaube
 - Beispiel: Darwin-Finken
- Statistische Kenngrößen
 - Median und andere Quartile
 - Mittelwert und Standardabweichung
- Vom Sinn und Unsinn von Mittelwerten
 - Beispiel: Wählerische Bachstelzen
 - Beispiel: Spiderman & Spiderwoman
 - Beispiel: Kupfertoleranz beim Roten Straußgras

Am häufigsten werden benutzt:

Lageparameter

Der Mittelwert \bar{x}

Am häufigsten werden benutzt:

Lageparameter

Der Mittelwert \bar{x}

Streuungsparameter

Die Standardabweichung s

Der Mittelwert

(engl. *mean*)

NOTATION:

Wenn die Beobachtungen

 $x_1, x_2, x_3, \dots, x_n$ heißen, schreibt man oft

für den Mittelwert.

Mittelwert

=

Summe der Messwerte
Anzahl der Messwerte

Mittelwert

=

Summe Anzahl

Der Mittelwert von x_1, x_2, \dots, x_n als Formel:

Der Mittelwert von x_1, x_2, \dots, x_n als Formel:

$$\overline{X} = (x_1 + x_2 + \cdots + x_n)/n$$

Der Mittelwert von x_1, x_2, \dots, x_n als Formel:

$$\overline{X} = (x_1 + x_2 + \cdots + x_n)/n$$
$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$x_1 = 3$$
, $x_2 = 0$, $x_3 = 2$, $x_4 = 3$, $x_5 = 1$

$$x_1 = 3$$
, $x_2 = 0$, $x_3 = 2$, $x_4 = 3$, $x_5 = 1$
 $\overline{x} = Summe/Anzahl$

$$x_1 = 3, x_2 = 0, x_3 = 2, x_4 = 3, x_5 = 1$$

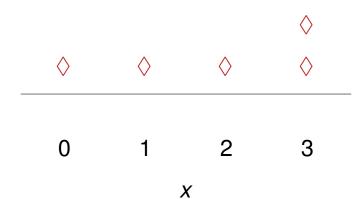
 $\overline{x} = \text{Summe/Anzahl}$
 $\overline{x} = (3 + 0 + 2 + 3 + 1)/5$

$$x_1 = 3, x_2 = 0, x_3 = 2, x_4 = 3, x_5 = 1$$
 $\overline{x} = \text{Summe/Anzahl}$
 $\overline{x} = (3 + 0 + 2 + 3 + 1)/5$
 $\overline{x} = 9/5$

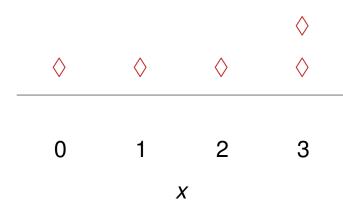
$$x_1 = 3, x_2 = 0, x_3 = 2, x_4 = 3, x_5 = 1$$
 $\overline{x} = \text{Summe/Anzahl}$
 $\overline{x} = (3 + 0 + 2 + 3 + 1)/5$
 $\overline{x} = 9/5$
 $\overline{x} = 1.8$

Geometrische Bedeutung des Mittelwerts: Der Schwerpunkt

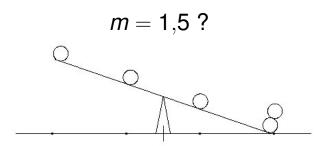
Wir stellen uns die Beobachtungen als gleich schwere Gewichte auf einer Waage vor:



Wo muß der Drehpunkt sein, damit die Waage im Gleichgewicht ist?

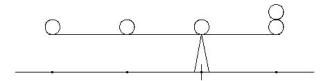


$$m = 1.5$$
?



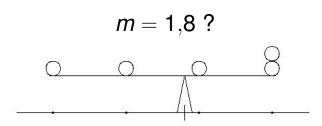
zu klein

$$m = 2$$
?



$$m=2$$
?

zu groß



richtig

Beispiel: Galathea intermedia

"Rundlichkeit"

:=

Abdominalbreite / Carapaxlänge

Beispiel: Galathea intermedia

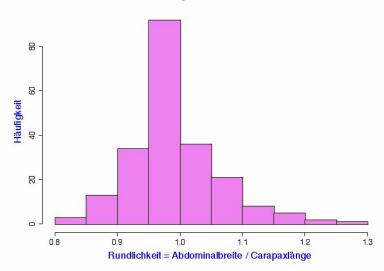
"Rundlichkeit"

:=

Abdominalbreite / Carapaxlänge

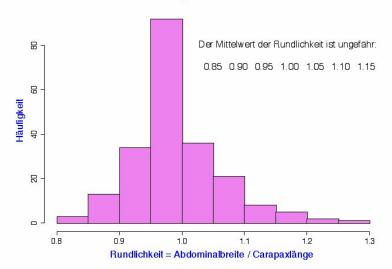
Vermutung: Rundlichkeit nimmt bei Geschlechtsreife zu

Nichteiertragende Weibchen 6.9.88



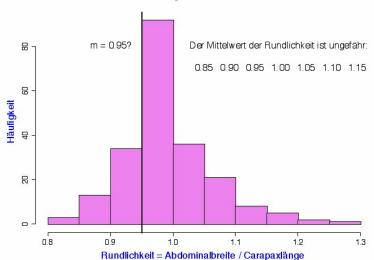
11

Nichteiertragende Weibchen 6.9.88

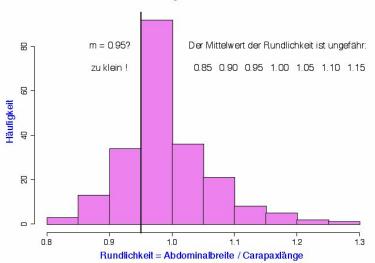


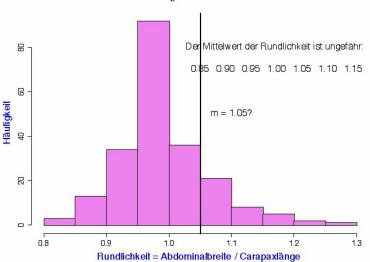
11

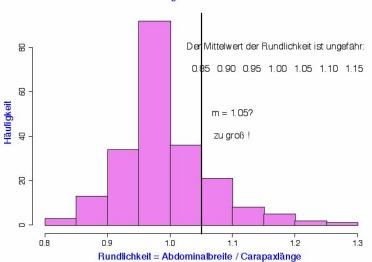
Nichteiertragende Weibchen 6.9.88

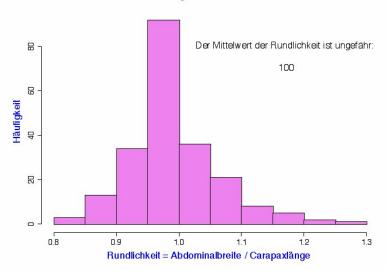


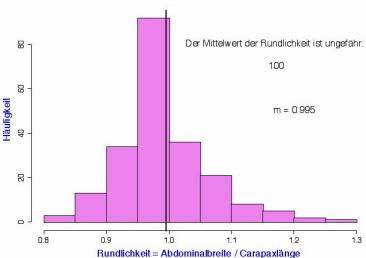
11





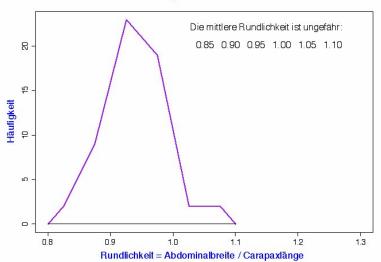


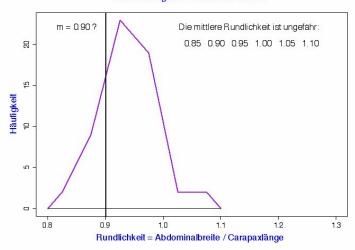


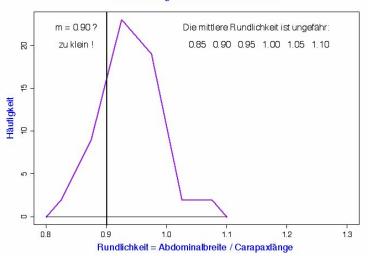


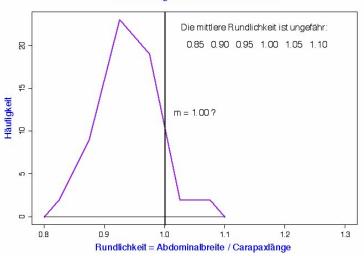
Beispiel:

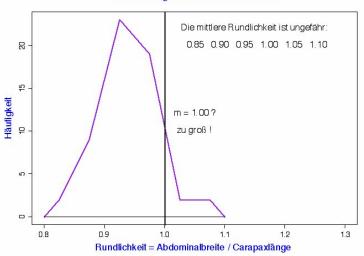
3.11.88

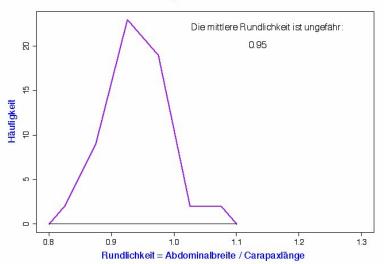


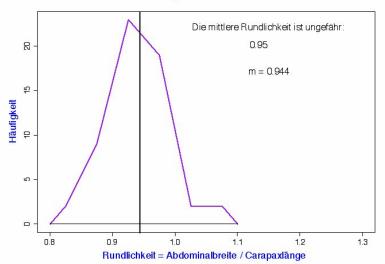








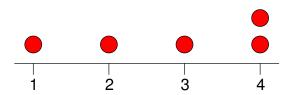


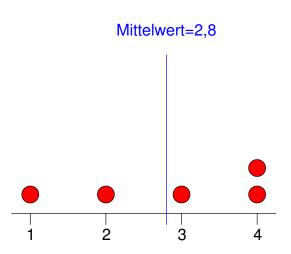


Die Standardabweichung

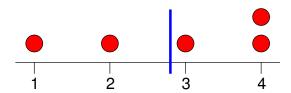
Die Standardabweichung

Wie weit weicht eine typische Beobachtung vom Mittelwert ab ?

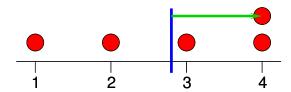




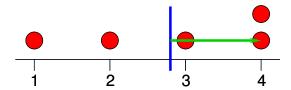
typische
Abweichung =?



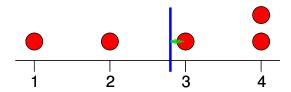
Abweichung =
$$4 - 2.8 = 1.2$$



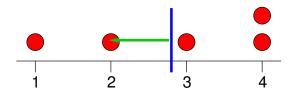
Abweichung =
$$4 - 2.8 = 1.2$$



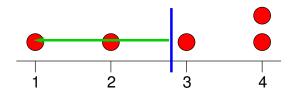
Abweichung =
$$3 - 2.8 = 0.2$$



Abweichung =
$$2 - 2.8 = -0.8$$



Abweichung =
$$1 - 2.8 = -1.8$$



Die Standardabweichung σ ("sigma") [auch SD von engl. $standard\ deviation$] ist ein

etwas komisches

gewichtetes Mittel der Abweichungsbeträge

Die Standardabweichung σ ("sigma") [auch SD von engl. standard deviation] ist ein

etwas komisches

gewichtetes Mittel der Abweichungsbeträge und zwar

$$\sigma = \sqrt{\text{Summe}(\text{Abweichungen}^2)/n}$$

Die Standardabweichung von x_1, x_2, \dots, x_n als Formel:

Die Standardabweichung von x_1, x_2, \dots, x_n als Formel:

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

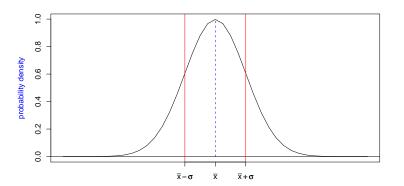
Die Standardabweichung von x_1, x_2, \dots, x_n als Formel:

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

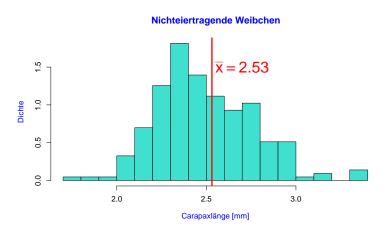
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$
 heißt Varianz.

Faustregel für die Standardabweichung

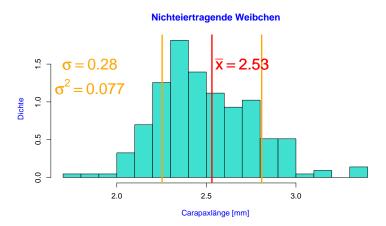
Bei ungefähr glockenförmigen (also eingipfligen und symmetrischen) Verteilungen liegen ca. 2/3 der Verteilung zwischen $\overline{x} - \sigma$ und $\overline{x} + \sigma$.



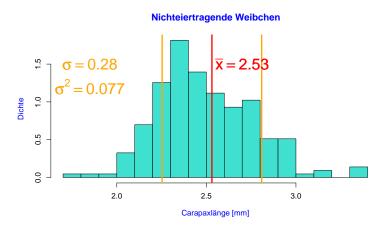
Standardabweichung der Carapaxlängen nichteiertragender Weibchen vom 6.9.88



Standardabweichung der Carapaxlängen nichteiertragender Weibchen vom 6.9.88



Standardabweichung der Carapaxlängen nichteiertragender Weibchen vom 6.9.88



Hier liegt der Anteil zwischen $\overline{x} - \sigma$ und $\overline{x} + \sigma$ bei 72%.

Alle Carapaxlängen im Meer: $\mathcal{X} = (X_1, X_2, \dots, X_N)$.

```
Alle Carapaxlängen im Meer: \mathcal{X} = (X_1, X_2, \dots, X_N).
Carapaxlängen in unserer Stichprobe: \mathcal{S} = (S_1, S_2, \dots, S_{n=215})
```

Alle Carapaxlängen im Meer: $\mathcal{X} = (X_1, X_2, \dots, X_N)$. Carapaxlängen in unserer Stichprobe: $\mathcal{S} = (S_1, S_2, \dots, S_{n=215})$ Stichprobenvarianz:

$$\sigma_S^2 = \frac{1}{n} \sum_{i=1}^{215} (S_i - \overline{S})^2 \approx 0,0768$$

Alle Carapaxlängen im Meer: $\mathcal{X} = (X_1, X_2, \dots, X_N)$. Carapaxlängen in unserer Stichprobe: $\mathcal{S} = (S_1, S_2, \dots, S_{n=215})$ Stichprobenvarianz:

$$\sigma_S^2 = \frac{1}{n} \sum_{i=1}^{215} (S_i - \overline{S})^2 \approx 0,0768$$

Können wir 0,0768 als Schätzwert für die Varianz σ_X^2 in der ganzen Population verwenden?

Varianz der Carapaxlängen nichteiertragender Weibchen vom 6.9.88

Alle Carapaxlängen im Meer: $\mathcal{X} = (X_1, X_2, \dots, X_N)$. Carapaxlängen in unserer Stichprobe: $\mathcal{S} = (S_1, S_2, \dots, S_{n=215})$ Stichprobenvarianz:

$$\sigma_{S}^{2} = \frac{1}{n} \sum_{i=1}^{215} (S_{i} - \overline{S})^{2} \approx 0,0768$$

Können wir 0,0768 als Schätzwert für die Varianz σ_X^2 in der ganzen Population verwenden? Ja, können wir machen.

Varianz der Carapaxlängen nichteiertragender Weibchen vom 6.9.88

Alle Carapaxlängen im Meer: $\mathcal{X} = (X_1, X_2, \dots, X_N)$. Carapaxlängen in unserer Stichprobe: $\mathcal{S} = (S_1, S_2, \dots, S_{n=215})$ Stichprobenvarianz:

$$\sigma_{S}^{2} = \frac{1}{n} \sum_{i=1}^{215} (S_{i} - \overline{S})^{2} \approx 0,0768$$

Können wir 0,0768 als Schätzwert für die Varianz σ_X^2 in der ganzen Population verwenden? Ja, können wir machen. Allerdings ist σ_S^2 im Durchschnitt um den Faktor $\frac{n-1}{2}$ (= 214/215 \approx 0,995) kleiner als σ_X^2

Varianz in der Population: $\sigma_X^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})^2$

Stichprobenvarianz:
$$\sigma_{\mathcal{S}}^2 = \frac{1}{n} \sum_{i=1}^{n} (S_i - \overline{S})^2$$

Varianz in der Population: $\sigma_X^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})^2$

Stichprobenvarianz: $\sigma_S^2 = \frac{1}{n} \sum_{i=1}^n (S_i - \overline{S})^2$ korrigierte Stichprobenvarianz:

$$s^2 = \frac{n}{n-1}\sigma_S^2$$

Varianz in der Population: $\sigma_X^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})^2$

Stichprobenvarianz: $\sigma_S^2 = \frac{1}{n} \sum_{i=1}^n (S_i - \overline{S})^2$ korrigierte Stichprobenvarianz:

$$s^{2} = \frac{n}{n-1}\sigma_{S}^{2}$$
$$= \frac{n}{n-1} \cdot \frac{1}{n} \cdot \sum_{i=1}^{n} (S_{i} - \overline{S})^{2}$$

Varianz in der Population: $\sigma_X^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})^2$

Stichprobenvarianz: $\sigma_S^2 = \frac{1}{n} \sum_{i=1}^n (S_i - \overline{S})^2$ korrigierte Stichprobenvarianz:

$$s^{2} = \frac{n}{n-1}\sigma_{S}^{2}$$

$$= \frac{n}{n-1} \cdot \frac{1}{n} \cdot \sum_{i=1}^{n} (S_{i} - \overline{S})^{2}$$

$$= \frac{1}{n-1} \cdot \sum_{i=1}^{n} (S_{i} - \overline{S})^{2}$$

Mit "Standardabweichung von S" ist meistens das korrigierte s gemeint.

Beispiel

Die Daten

x 1 3 0 5

X

3 0 5 1

10

$$\bar{x} = 10/5 = 2$$

1 3 0 5 1

10

 $X - \overline{X}$

$$\bar{x} = 10/5 = 2$$

X

1 3 0 5 1

10

 $x - \overline{x}$ -1 1 -2 3 -1

$$\bar{x} = 10/5 = 2$$

1 3 0 5 1

10

$$x - \overline{x}$$
 -1 1 -2 3 -1

$$(x-\overline{x})^2$$

$$\bar{x} = 10/5 = 2$$

1 3 0 5 1

10

 $x - \overline{x}$ -1 1 -2 3 -1

 $(x-\overline{x})^2$ 1 1 4 9 1

16

$$\bar{x} = 10/5 = 2$$

10

 $x - \overline{x}$ -1 1 -2 3 -1

$$(x-\overline{x})^2$$
 1 1 4 9 1

$$s^2 = \text{Summe}((x-\overline{x})^2)/(n-1)$$

$$\bar{x} = 10/5 = 2$$

$$x - \overline{x}$$
 -1 1 -2 3 -1

$$(x-\overline{x})^2$$
 1 1 4 9 1

$$s^2 = \text{Summe}((x - \overline{x})^2)/(n - 1)$$

= 16/(5 - 1)

$$\bar{x} = 10/5 = 2$$

$$x - \overline{x}$$
 -1 1 -2 3 -1

$$(x-\overline{x})^2$$
 1 1 4 9 1

$$s^2 = \text{Summe}((x - \overline{x})^2)/(n - 1)$$

= 16/(5 - 1) = 4

$$\bar{x} = 10/5 = 2$$

$$x - \overline{x}$$
 -1 1 -2 3 -1

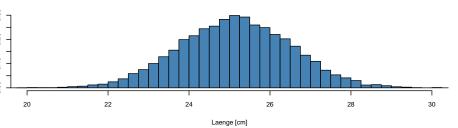
$$(x-\overline{x})^2$$
 1 1 4 9 1

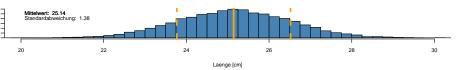
10

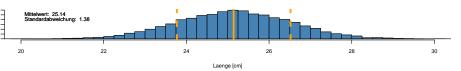
$$s^2 = \text{Summe}((x - \overline{x})^2)/(n - 1)$$

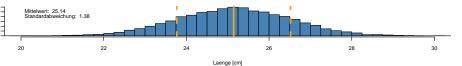
= 16/(5 - 1) = 4

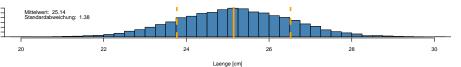
$$s = 2$$

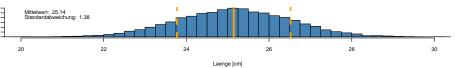


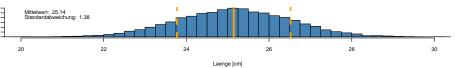


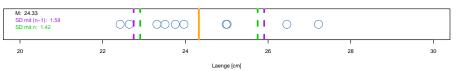


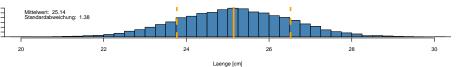


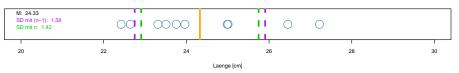


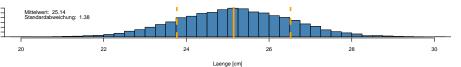


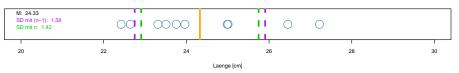


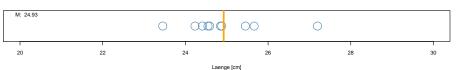


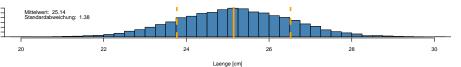


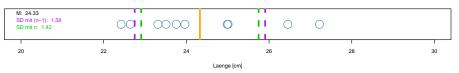


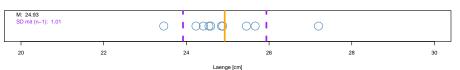


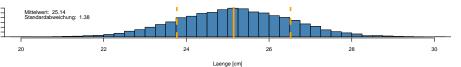


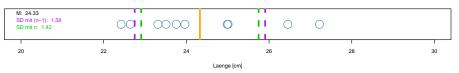


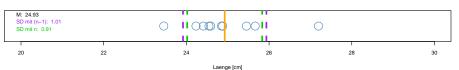




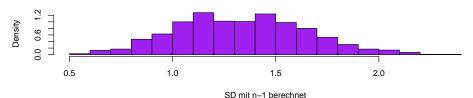


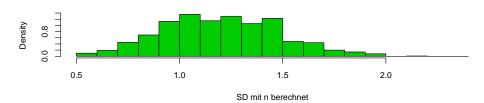




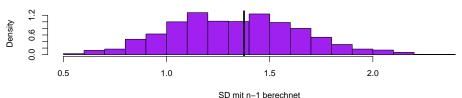


1000 Stichproben, jeweils vom Umfang n=10

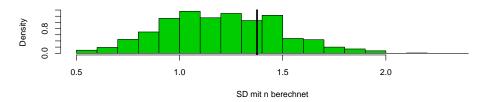




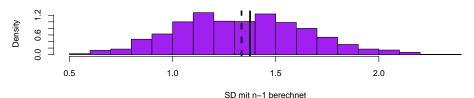
1000 Stichproben, jeweils vom Umfang n=10

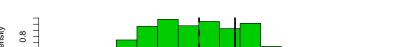


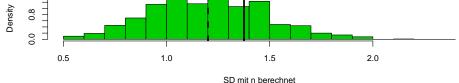
SD mit n=1 berechnet



1000 Stichproben, jeweils vom Umfang n=10







σ mit *n* oder n-1 berechnen?

Die Standardabweichung σ eines Zufallsexperiments mit n gleichwahrscheinlichen Ausgängen x_1, \ldots, x_n (z.B. Würfelwurf) ist klar definiert durch

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(\overline{X}-X_{i})^{2}}.$$

σ mit *n* oder n-1 berechnen?

Die Standardabweichung σ eines Zufallsexperiments mit n gleichwahrscheinlichen Ausgängen x_1, \ldots, x_n (z.B. Würfelwurf) ist klar definiert durch

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(\overline{X}-X_{i})^{2}}.$$

Wenn es sich bei x_1, \ldots, x_n um eine Stichprobe handelt (wie meistens in der Statistik), sollten Sie die Formel

$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}\left(\overline{x}-x_{i}\right)^{2}}$$

verwenden.

Inhalt

- Wozu Statistik?
- Graphische Darstellungen
 - Histogramme und Dichtepolygone
 - Stripcharts
 - Boxplots
 - Beispiel: Ringeltaube
 - Beispiel: Darwin-Finken
- Statistische Kenngrößen
 - Median und andere Quartile
 - Mittelwert und Standardabweichung
- Vom Sinn und Unsinn von Mittelwerten
 - Beispiel: Wählerische Bachstelzen
 - Beispiel: Spiderman & Spiderwoman
 - Beispiel: Kupfertoleranz beim Roten Straußgras

Mittelwert und Standardabweichung...

 charakterisieren die Daten gut, falls deren Verteilung glockenförmig ist

Mittelwert und Standardabweichung...

- charakterisieren die Daten gut, falls deren Verteilung glockenförmig ist
- und müssen andernfalls mit Vorsicht interpretiert werden.

Mittelwert und Standardabweichung...

- charakterisieren die Daten gut, falls deren Verteilung glockenförmig ist
- und müssen andernfalls mit Vorsicht interpretiert werden.

Wir betrachten dazu einige Lehrbuch-Beispiele aus der Ökologie, siehe z.B.

Mittelwert und Standardabweichung...

- charakterisieren die Daten gut, falls deren Verteilung glockenförmig ist
- und müssen andernfalls mit Vorsicht interpretiert werden.

Wir betrachten dazu einige Lehrbuch-Beispiele aus der Ökologie, siehe z.B.

M. Begon, C. R. Townsend, and J. L. Harper. Ecology: From Individuals to Ecosystems. Blackell Publishing, 4 edition, 2008.

Im Folgenden verwenden wir zum Teil simulierte Daten, wenn die Originaldaten nicht verfügbar waren. Glauben Sie uns also nicht alle Datenpunkte.

Inhalt

- Wozu Statistik?
- Graphische Darstellungen
 - Histogramme und Dichtepolygone
 - Stripcharts
 - Boxplots
 - Beispiel: Ringeltaube
 - Beispiel: Darwin-Finken
- Statistische Kenngrößen
 - Median und andere Quartile
 - Mittelwert und Standardabweichung
- Vom Sinn und Unsinn von Mittelwerten
 - Beispiel: Wählerische Bachstelzen
 - Beispiel: Spiderman & Spiderwoman
 - Beispiel: Kupfertoleranz beim Roten Straußgras

Bachstelzen fressen Dungfliegen

Räuber

Bachstelze (White Wagtail) Motacilla alba alba

image (c) by Artur Mikołajewski

Beute

Gelbe Dungfliege Scatophaga stercoraria

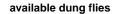
image (c) by Viatour Luc

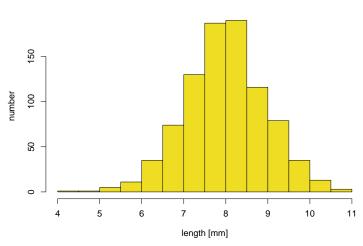
Vermutung

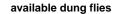
- Die Fliegen sind unterschiedlich groß
- Effizienz für die Bachstelze = Energiegewinn / Zeit zum Fangen und fressen
- Laborexperimente lassen vermuten, dass die Effizienz bei 7mm großen Fliegen maximal ist.
- N.B. Davies.

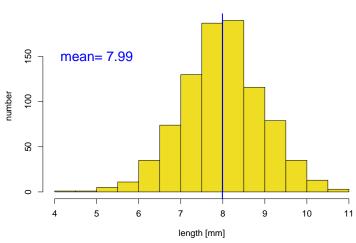
Prey selection and social behaviour in wagtails (Aves: Motacillidae).

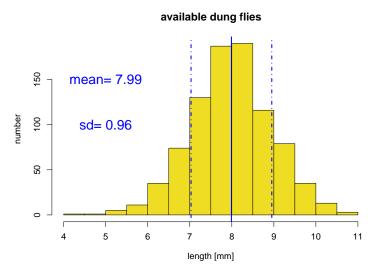
J. Anim. Ecol., 46:37-57, 1977.



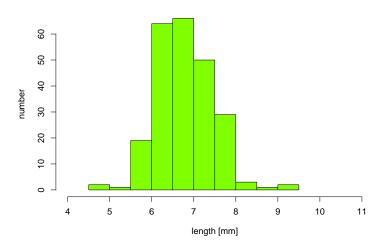


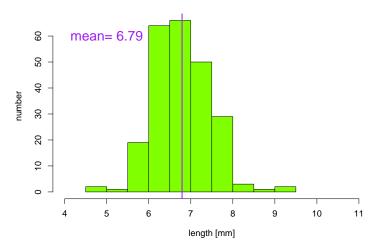


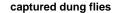


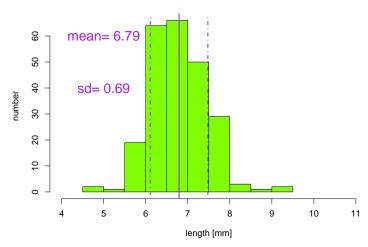


captured dung flies

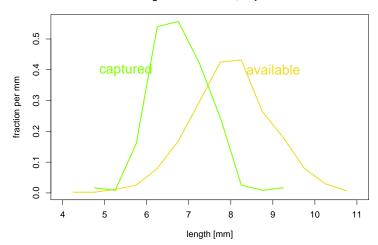


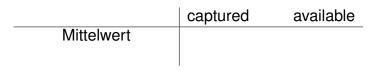




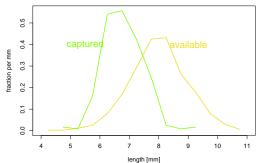


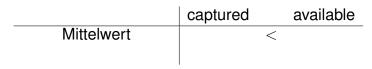
dung flies: available, captured



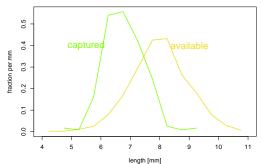


dung flies: available, captured



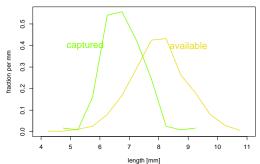


dung flies: available, captured



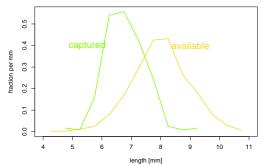
	captured		available
Mittelwert	6.29	<	7.99

dung flies: available, captured



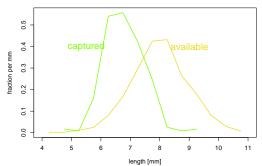
	captured		available
Mittelwert	6.29	<	7.99
Standardabweichung			

dung flies: available, captured



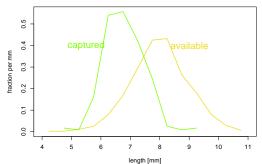
	captured		available
Mittelwert	6.29	<	7.99
Standardabweichung		<	

dung flies: available, captured



	captured		available
Mittelwert	6.29	<	7.99
Standardabweichung	0.69	<	0.96

dung flies: available, captured



Interpretation

Die Bachstelzen bevorzugen Dungfliegen, die etwa 7mm groß sind.

Interpretation

Die Bachstelzen bevorzugen Dungfliegen, die etwa 7mm groß sind.

Hier waren die Verteilungen glockenförmig und es genügten 4 Werte (die beiden Mittelwerte und die beiden Standardabweichungen), um die Daten adäquat zu beschreiben.

Inhalt

- Wozu Statistik?
- Graphische Darstellungen
 - Histogramme und Dichtepolygone
 - Stripcharts
 - Boxplots
 - Beispiel: Ringeltaube
 - Beispiel: Darwin-Finken
- Statistische Kenngrößen
 - Median und andere Quartile
 - Mittelwert und Standardabweichung
- Vom Sinn und Unsinn von Mittelwerten
 - Beispiel: Wählerische Bachstelzen
 - Beispiel: Spiderman & Spiderwoman
 - Beispiel: Kupfertoleranz beim Roten Straußgras

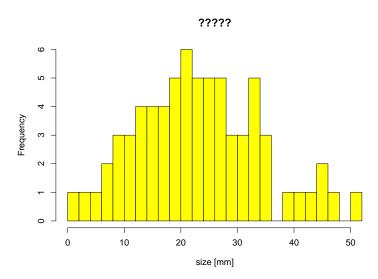
Nephila madagascariensis image (c) by Bernard Gagnon

Simulated Data:

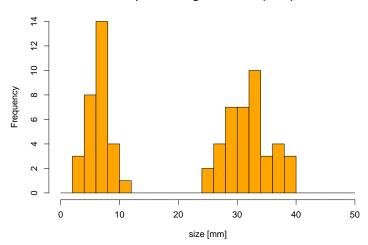
Eine Stichprobe von 70 Spinnen

Mittlere Größe: 21,06 mm

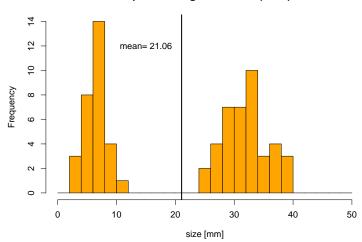
Standardabweichung der Größe: 12,94 mm



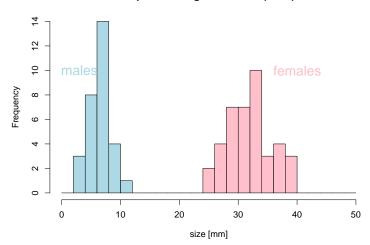
Nephila madagascariensis (n=70)

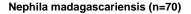


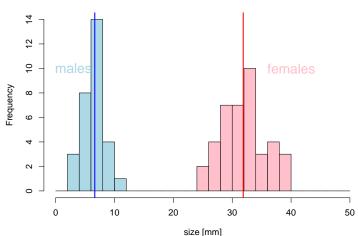
Nephila madagascariensis (n=70)



Nephila madagascariensis (n=70)







Nephila madagascariensis image (c) by Arthur Chapman

Fazit des Spinnenbeispiels

Wenn die Daten aus verschiedenen Gruppen zusammengesetzt sind, die sich bezüglich des Merkmals deutlich unterscheiden, kann es sinnvoll sein, Kenngrößen wie den Mittelwert für jede Gruppe einzeln zu berechnen.

Inhalt

- Wozu Statistik?
- Graphische Darstellungen
 - Histogramme und Dichtepolygone
 - Stripcharts
 - Boxplots
 - Beispiel: Ringeltaube
 - Beispiel: Darwin-Finken
- Statistische Kenngrößen
 - Median und andere Quartile
 - Mittelwert und Standardabweichung
- Vom Sinn und Unsinn von Mittelwerten
 - Beispiel: Wählerische Bachstelzen
 - Beispiel: Spiderman & Spiderwoman
 - Beispiel: Kupfertoleranz beim Roten Straußgras

Kupfertolerantes Rotes Straußgras

Rotes Straußgras *Agrostis tenuis*

image (c) Kristian Peters

Kupfer Cuprum

Hendrick met de Bles

Population Differentiation in *agrostis tenius Sibth*. III. populations in varied environments.

New Phytologist, 59(1):92 - 103, 1960.

T. McNeilly and A.D Bradshaw.

Evolutionary Processes in Populations of Copper Tolerant Agrostis tenuis Sibth.

Evolution, 22:108-118, 1968.

Population Differentiation in *agrostis tenius Sibth*. III. populations in varied environments. *New Phytologist*, 59(1):92 – 103, 1960.

T. McNeilly and A.D Bradshaw.

Evolutionary Processes in Populations of Copper Tolerant Agrostis tenuis Sibth.

Evolution, 22:108-118, 1968.

Wir verwenden hier wieder simulierte Daten, da die Originaldaten nicht zur Verfügung stehen.

Anpassung an Kupfer?

 Pflanzen, denen das Kupfer schadet, haben kürzere Wurzeln.

Anpassung an Kupfer?

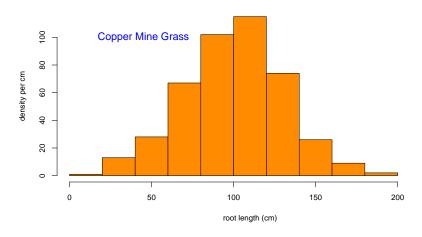
- Pflanzen, denen das Kupfer schadet, haben kürzere Wurzeln.
- Die Wurzellängen von Pflanzen aus der Umgebung von Kupferminen wird gemessen.

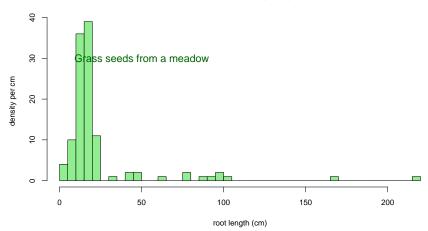
Anpassung an Kupfer?

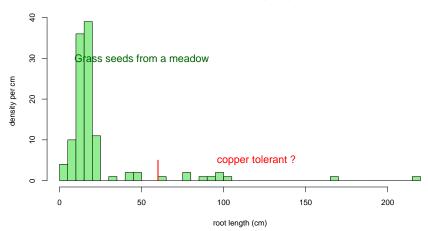
- Pflanzen, denen das Kupfer schadet, haben kürzere Wurzeln.
- Die Wurzellängen von Pflanzen aus der Umgebung von Kupferminen wird gemessen.
- Samen von unbelasteten Wiesen werden bei Kupferminen eingesät.

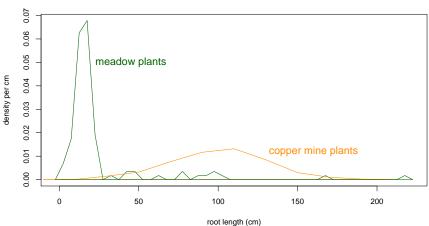
Anpassung an Kupfer?

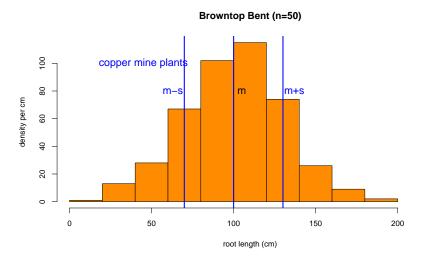
- Pflanzen, denen das Kupfer schadet, haben kürzere Wurzeln.
- Die Wurzellängen von Pflanzen aus der Umgebung von Kupferminen wird gemessen.
- Samen von unbelasteten Wiesen werden bei Kupferminen eingesät.
- Die Wurzellängen dieser "Wiesenpflanzen" werden gemessen.

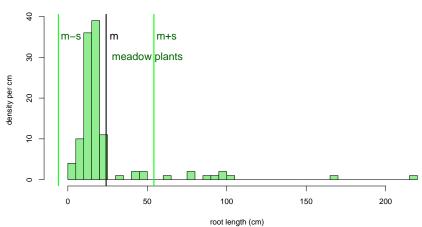












2/3 der Wurzellängen innerhalb [m-sd,m+sd]???? Nein!

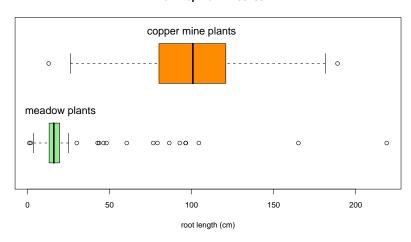
Fazit des Straußgras-Beispiels

Manche Verteilungen können nur mit mehr als zwei Variablen angemessen beschrieben werden.

Fazit des Straußgras-Beispiels

Manche Verteilungen können nur mit mehr als zwei Variablen angemessen beschrieben werden.

z.B. mit den fünf Werten der Boxplots: min, Q_1 , median, Q_3 , max



Schlussfolgerung

In der Biologie sind viele Datenverteilungen annähernd glockenförmig und können durch den Mittelwert und die Standardabweichung hinreichend beschrieben werden.

Schlussfolgerung

In der Biologie sind viele Datenverteilungen annähernd glockenförmig und können durch den Mittelwert und die Standardabweichung hinreichend beschrieben werden.

Es gibt aber auch Ausnahmen. Also: Immer die Daten erst mal graphisch untersuchen!

Schlussfolgerung

In der Biologie sind viele Datenverteilungen annähernd glockenförmig und können durch den Mittelwert und die Standardabweichung hinreichend beschrieben werden.

Es gibt aber auch Ausnahmen. Also: Immer die Daten erst mal graphisch untersuchen!

Verlassen sie sich niemals allein auf numerische Kenngrößen!