Statistik für Informatiker, SS 2017

1.2 Bedingte Wahrscheinlichkeiten und mehrstufige Zufallsexperimente

1.2.1 Nochmal zur Unabhängigkeit 1.2.2 Faltung

Matthias Birkner

http://www.staff.uni-mainz.de/birkner/StatInfo17/

UNIVERSITÄT MAIN

Erinnerung. Zufallsvariablen X_1, \ldots, X_n (X_i habe Wertebereich S_i) heißen (stochastisch) *unabhängig*, wenn für alle Ereignisse $\{X_i \in B_i\}$ gilt

$$P(X_1 \in B_1, X_2 \in B_2, ..., X_n \in B_n) = \prod_{i=1}^n P(X_i \in B_i)$$
 (1)

(vgl. Def. 1.13).

Dann ist die Pfadformel (vgl. Beob. 1.51) besonders "angenehm".

Erinnerung. Zufallsvariablen $X_1, ..., X_n$ (X_i habe Wertebereich S_i) heißen (stochastisch) *unabhängig*, wenn für alle Ereignisse $\{X_i \in B_i\}$ gilt

$$P(X_1 \in B_1, X_2 \in B_2, \dots, X_n \in B_n) = \prod_{i=1}^n P(X_i \in B_i)$$
 (1)

(vgl. Def. 1.13).

Dann ist die Pfadformel (vgl. Beob. 1.51) besonders "angenehm".

Definition 1.53

Ereignisse A_1, \ldots, A_n heißen *unabhängig*, wenn dies für ihre Indikatorvariablen I_{A_1}, \ldots, I_{A_n} gilt.

Speziell: A und B unabhängige Ereignisse (mit P(B) > 0), so ist $P(A \cap B) = P(A)P(B)$ und somit $P(A \mid B) = P(A)$.

Bemerkung 1.54

Sind ZVn X_1, \ldots, X_n unabhängig, so auch

- jede Teilfamilie X_{i_1}, \ldots, X_{i_k} (für $1 \le i_1 < \cdots < i_k \le n$) (wähle $B_i = S_i$ in (1) für $i \notin \{i_1, \ldots, i_k\}$)
- ② $f_1(X_1), f_2(X_2), \dots, f_n(X_n)$ für Funktionen $f_i : S_i \to S'_i$ (beachte $\{f_i(X_i) \in B'_i\} = \{X_i \in f_i^{-1}(B'_i)\}$ in (1), vgl. Bsp. 1.4, 2.)

Bemerkung 1.54 (Fortsetzung)

In Def. 1.53 genügt es i.A. nicht, jeweils nur Paare auf Unabhängigkeit zu prüfen:

Beispiel: Seien X_1, X_2, X_3 unabhängige faire Münzwürfe $P(X_i = 0) = P(X_i = 1) = \frac{1}{2}$, $Y_1 = I_{\{X_1 = X_2\}}$, $Y_2 = I_{\{X_1 = X_3\}}$, $Y_3 = I_{\{X_2 = X_3\}}$. Dann sind jeweils Y_1 und Y_2 , Y_1 und Y_3 , Y_2 und Y_3 unabhängig, aber Y_1, Y_2, Y_3 zusammen *nicht*.

Bemerkung 1.54 (Fortsetzung)

In Def. 1.53 genügt es i.A. nicht, jeweils nur Paare auf Unabhängigkeit zu prüfen:

Beispiel: Seien X_1, X_2, X_3 unabhängige faire Münzwürfe $P(X_i = 0) = P(X_i = 1) = \frac{1}{2}$, $Y_1 = I_{\{X_1 = X_2\}}, Y_2 = I_{\{X_1 = X_3\}}, Y_3 = I_{\{X_2 = X_3\}}$. Dann sind jeweils Y_1 und Y_2 , Y_1 und Y_3 , Y_2 und Y_3 unabhängig, aber Y_1, Y_2, Y_3 zusammen *nicht*.

(Es ist
$$P(Y_i = 1) = \frac{1}{2}$$
, z.B.
 $P(Y_1 = 1, Y_2 = 1) = P(\{X_1 = X_2 = X_3 = 1\} \cup \{X_1 = X_2 = X_3 = 0\}) = (1/2)^3 + (1/2)^3 = 1/4 = P(Y_1 = 1)P(Y_2 = 1),$
 $P(Y_1 = 1, Y_2 = 0) = P(\{X_1 = X_2 = 1, X_3 = 0\} \cup \{X_1 = X_2 = 0, X_3 = 1\}) = (1/2)^3 + (1/2)^3 = 1/4 = P(Y_1 = 1)P(Y_2 = 0),$
etc.)

Bemerkung 1.54 (Fortsetzung)

In Def. 1.53 genügt es i.A. nicht, jeweils nur Paare auf Unabhängigkeit zu prüfen:

Beispiel: Seien X_1, X_2, X_3 unabhängige faire Münzwürfe $P(X_i = 0) = P(X_i = 1) = \frac{1}{2}$, $Y_1 = I_{\{X_1 = X_2\}}$, $Y_2 = I_{\{X_1 = X_3\}}$, $Y_3 = I_{\{X_2 = X_3\}}$. Dann sind jeweils Y_1 und Y_2 , Y_1 und Y_3 , Y_2 und Y_3 unabhängig, aber Y_1, Y_2, Y_3 zusammen *nicht*.

(Es ist
$$P(Y_1 = 1) = \frac{1}{2}$$
, z.B.
 $P(Y_1 = 1, Y_2 = 1) = P(\{X_1 = X_2 = X_3 = 1\} \cup \{X_1 = X_2 = X_3 = 0\}) = (1/2)^3 + (1/2)^3 = 1/4 = P(Y_1 = 1)P(Y_2 = 1),$
 $P(Y_1 = 1, Y_2 = 0) = P(\{X_1 = X_2 = 1, X_3 = 0\} \cup \{X_1 = X_2 = 0, X_3 = 1\}) = (1/2)^3 + (1/2)^3 = 1/4 = P(Y_1 = 1)P(Y_2 = 0),$
etc.)

Man sagt dazu auch: Y_1 , Y_2 , Y_3 sind *paarweise* unabhängig, aber eben nicht unabhängig.

Faltung

Definition 1.55

X und Y unabhängige reellwertige ZVn, $X \sim \mu$, $Y \sim \nu$ (in einem gewissen Zufallsexperiment \mathscr{X}). Die Verteilung von X + Y heißt die *Faltung* von μ und ν , geschrieben $\mu * \nu$:

$$(\mu * \nu)(B) = P(X + Y \in B), \quad B \subset \mathbb{R}$$

Faltung

Definition 1.55

X und Y unabhängige reellwertige ZVn, $X \sim \mu$, $Y \sim \nu$ (in einem gewissen Zufallsexperiment \mathscr{X}). Die Verteilung von X + Y heißt die *Faltung* von μ und ν , geschrieben $\mu * \nu$:

$$(\mu * \nu)(B) = P(X + Y \in B), \quad B \subset \mathbb{R}$$

Bemerkung. $\mu * \nu = \nu * \mu$ (denn X + Y = Y + X).

Beobachtung 1.56 (Diskreter Fall)

Falls $\mu(\mathbb{Z}) = \nu(\mathbb{Z}) = 1$ (d.h. X und Y haben Werte in \mathbb{Z}), so ist

$$(\mu * \nu)(\{k\}) = P(X + Y = k) = \sum_{m \in \mathbb{Z}} P(X = m, Y = k - m)$$
$$= \sum_{m \in \mathbb{Z}} \mu(\{m\}) \nu(\{k - m\}).$$

Im allg. diskreten Fall $P(X \in \{x_i, i \in \mathbb{N}\}, Y \in \{y_j, j \in \mathbb{N}]\}) = 1$ muss man die "Doppelsumme" betrachten:

$$P(X + Y = Z) = \sum_{i,j:x_i+y_i=Z} P(X = x_i)P(Y = y_j)$$

Beispiel 1.57

W₁, W₂ unabhängige 6-er Würfelwürfe, dann ist

$$S := W_1 + W_2 \sim \text{Unif}_{\{1,2,\dots,6\}} * \text{Unif}_{\{1,2,\dots,6\}}$$

mit

$$P(S = k) = \sum_{m=\max\{k-6,1\}}^{\min\{k-1,6\}} P(W_1 = m) P(W_2 = k - m)$$

$$= \frac{1}{36} \left(\min\{k-1,6\} - \max\{k-6,1\} + 1 \right)$$

$$= \frac{6 - |7 - k|}{36}$$

für
$$k \in \{2, 3, ..., 12\}$$

② X, Y u.a., $\sim \operatorname{Ber}_p$, so ist $X + Y \sim \operatorname{Bin}_{2,p}$, d.h. $\operatorname{Ber}_p * \operatorname{Ber}_p = \operatorname{Bin}_{2,p}$.

Insbes.

- X, Y u.a., $\sim \operatorname{Ber}_p$, so ist $X + Y \sim \operatorname{Bin}_{2,p}$, d.h. $\operatorname{Ber}_p * \operatorname{Ber}_p = \operatorname{Bin}_{2,p}$.
- (Binomialfamilie) X_1, X_2, \dots, X_n u.a., $\sim \operatorname{Ber}_p$, so ist $X_1 + X_2 + \dots + X_n \sim \operatorname{Bin}_{n,p}$, d.h.

$$\operatorname{Ber}_{p}^{*n} = \operatorname{\underline{Ber}}_{p} * \operatorname{Ber}_{p} * \cdots * \operatorname{Ber}_{p} = \operatorname{Bin}_{n,p}.$$

$$\mathrm{Bin}_{n_1,\rho}\ast\mathrm{Bin}_{n_2,\rho}=\mathrm{Bin}_{n_1+n_2,\rho}\quad\text{für }\rho\in\left[0,1\right],n_1,n_2\in\mathbb{N},$$

die Binomialverteilungen bilden (für festes *p*) eine *Faltungsfamilie*.

- X, Y u.a., $\sim \operatorname{Ber}_p$, so ist $X + Y \sim \operatorname{Bin}_{2,p}$, d.h. $\operatorname{Ber}_p * \operatorname{Ber}_p = \operatorname{Bin}_{2,p}$.
- (Binomialfamilie) X_1, X_2, \dots, X_n u.a., $\sim \operatorname{Ber}_p$, so ist $X_1 + X_2 + \dots + X_n \sim \operatorname{Bin}_{n,p}$, d.h.

$$\operatorname{Ber}_{\rho}^{*n} = \underbrace{\operatorname{Ber}_{\rho} * \operatorname{Ber}_{\rho} * \cdots * \operatorname{Ber}_{\rho}}_{n\text{-mal}} = \operatorname{Bin}_{n,\rho}.$$
Insbes.

$$\operatorname{Bin}_{n_1,p} * \operatorname{Bin}_{n_2,p} = \operatorname{Bin}_{n_1+n_2,p} \quad \text{für } p \in [0,1], n_1, n_2 \in \mathbb{N},$$

die Binomialverteilungen bilden (für festes *p*) eine *Faltungsfamilie*.

(Schreibe
$$S_1 := X_1 + \dots + X_{n_1} \sim \text{Bin}_{n_1,p}$$
, $S_2 := X_{n_1+1} + X_{n_1+2} + \dots + X_{n_1+n_2} \sim \text{Bin}_{n_2,p}$, so ist $S_1 + S_2 = X_1 + \dots + X_{n_1+n_2} \sim \text{Bin}_{n_1+n_2,p}$.)

(Poissonfamilie) Für $\alpha, \beta > 0$ ist $Poi_{\alpha} * Poi_{\beta} = Poi_{\alpha+\beta}$, denn

$$\sum_{m=0}^{k} e^{-\alpha} \frac{\alpha^{m}}{m!} \cdot e^{-\beta} \frac{\beta^{k-m}}{(k-m)!} = e^{-(\alpha+\beta)} \frac{1}{k!} \sum_{m=0}^{k} {k \choose m} \alpha^{m} \beta^{k-m}$$
$$= e^{-(\alpha+\beta)} \frac{(\alpha+\beta)^{k}}{k!}$$
$$= \operatorname{Poi}_{\alpha+\beta}(\{k\}), \quad k \in \mathbb{N}_{0}.$$

Auch die Poissonverteilungen bilden eine Faltungsfamilie.

Beobachtung 1.58 (Faltung von Dichten)

X, Y u.a. reellwertige ZVn mit Dichte f_X bzw. f_Y , so hat X + Y die Dichte

$$(f_X * f_Y)(z) := \int_{\mathbb{R}} f_X(x) f_Y(z-x) dx, \ z \in \mathbb{R}.$$

Beobachtung 1.58 (Faltung von Dichten)

X, Y u.a. reellwertige ZVn mit Dichte f_X bzw. f_Y , so hat X + Y die Dichte

$$(f_X * f_Y)(z) := \int_{\mathbb{R}} f_X(x) f_Y(z-x) dx, \ z \in \mathbb{R}.$$

Es ist nämlich

$$P(X + Y \le w) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbf{1}_{\{x+y \le w\}} f_X(x) f_Y(y) \, dy dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbf{1}_{\{x+z-x \le w\}} f_X(x) f_Y(z-x) \, dz dx$$

$$= \int_{-\infty}^{\infty} \mathbf{1}_{\{z \le w\}} \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \, dx \, dz$$

$$= \int_{-\infty}^{w} (f_X * f_Y)(z) \, dz$$

wobei wir in der 2. Zeile y = z - x substituiert haben.

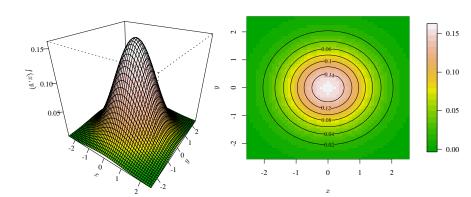
Beispiel 1.59 (Die Normalverteilungen bilden eine Faltungsfamilie)

Es gilt

$$\mathcal{N}_{\mu_1,\sigma_1^2} * \mathcal{N}_{\mu_2,\sigma_2^2} = \mathcal{N}_{\mu_1 + \mu_2,\sigma_1^2 + \sigma_2^2} \quad \text{für } \mu_1, \mu_2 \in \mathbb{R}, \ \sigma_1, \sigma_2 > 0$$

Erinnerung. Die 2-dimensionale Standard-Normalverteilung hat Dichte

$$f(x,y) = \frac{1}{2\pi} \exp\left(-\frac{1}{2}(x^2 + y^2)\right)$$



Seien $a, b \in (0, 1)$ mit $a^2 + b^2 = 1$, so ist die 2×2 -Matrix

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
 orthogonal

Dies ist eine Drehmatrix, wir könnten $a = \cos(\varphi), b = \sin(\varphi)$ für ein geeign. $\varphi \in [-\pi, \pi)$ schreiben, und

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & -ab + ba \\ -ba + ab & a^2 + b^2 \end{pmatrix}$$

Seien $a, b \in (0, 1)$ mit $a^2 + b^2 = 1$, so ist die 2×2 -Matrix

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
 orthogonal

Dies ist eine Drehmatrix, wir könnten $a = \cos(\varphi), b = \sin(\varphi)$ für ein geeign. $\varphi \in [-\pi, \pi)$ schreiben, und

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & -ab + ba \\ -ba + ab & a^2 + b^2 \end{pmatrix}$$

Seien Z_1, Z_2 u.a., ~ $\mathcal{N}_{0,1}$, dann haben nach Beob. 1.42

$$\begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} = \begin{pmatrix} aZ_1 + bZ_2 \\ -bZ_1 + aZ_2 \end{pmatrix}$$

dieselbe Verteilung

Seien $a, b \in (0, 1)$ mit $a^2 + b^2 = 1$, so ist die 2×2 -Matrix

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
 orthogonal

Dies ist eine Drehmatrix, wir könnten $a = \cos(\varphi), b = \sin(\varphi)$ für ein geeign. $\varphi \in [-\pi, \pi)$ schreiben, und

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & -ab + ba \\ -ba + ab & a^2 + b^2 \end{pmatrix}$$

Seien Z_1, Z_2 u.a., ~ $\mathcal{N}_{0,1}$, dann haben nach Beob. 1.42

$$\begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} = \begin{pmatrix} aZ_1 + bZ_2 \\ -bZ_1 + aZ_2 \end{pmatrix}$$

dieselbe Verteilung, d.h. auch $aZ_1 + bZ_2$ und $-bZ_1 + aZ_2$ sind u.i.v., $\sim \mathcal{N}_{0,1}$, insbesondere ist $aZ_1 + bZ_2$ standard-normalverteilt.

Setzen wir
$$a := \frac{\sigma_1}{\sqrt{\sigma_1^2 + \sigma_2^2}}, \ b := \frac{\sigma_2}{\sqrt{\sigma_1^2 + \sigma_2^2}}, \ \text{so finden wir:}$$
 $X_1 := \sigma_1 Z_1 \sim \mathcal{N}_{0,\sigma_1^2}, \ X_2 := \sigma_2 Z_2 \sim \mathcal{N}_{0,\sigma_2^2} \ (\text{und } X_1, X_2 \ \text{sind u.a.}),$

$$\frac{X_1}{\sqrt{\sigma_1^2 + \sigma_2^2}} + \frac{X_2}{\sqrt{\sigma_1^2 + \sigma_2^2}} = aZ_1 + bZ_2 \sim \mathcal{N}_{0,1},$$

also gilt $X_1 + X_2 \sim \mathcal{N}_{0,\sigma_1^2 + \sigma_2^2}$.

(Man kann – anstelle von Beob. 1.42 – in diesem Fall auch das Faltungsintegral explizit ausrechnen, vgl. Notizen)