Herzlich willkommen zur Vorlesung Statistik für Informatiker, SS 2021

Matthias Birkner

Zufallsvaniablen mit Dichten.

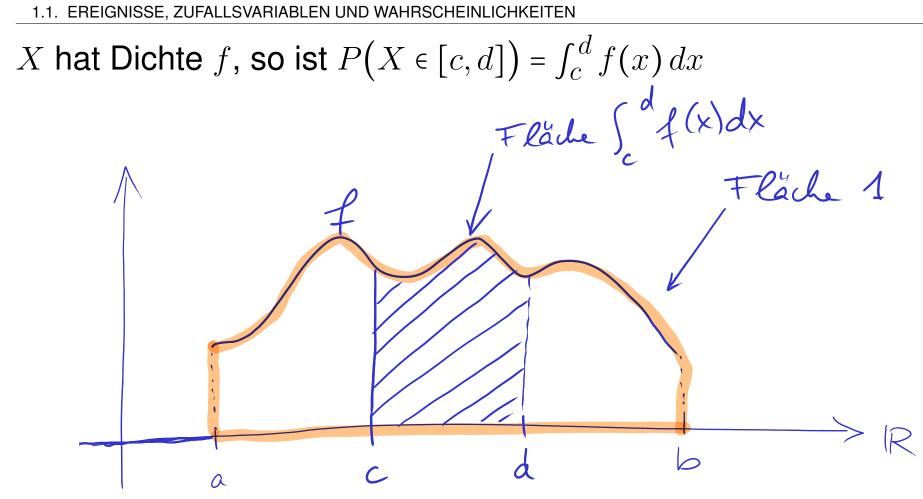
Definition 1.24. Sei X eine Zufallsvariable mit Werten in einem Intervall $S = [a,b] \subset \mathbb{R}$ mit $-\infty \le a < b \le \infty$ (im Fall $a > -\infty, b = \infty$ meinen wir $S = [a,\infty)$, etc.) und sei $f:S \to [0,\infty)$ eine integrierbare Funktion mit

$$\int_a^b f(x) \, dx = 1.$$

X besitzt die Dichte (auch: Wahrscheinlichkeitsdichte) f, wenn gilt

$$P(X \in [c,d]) = \int_{c}^{d} f(x) dx$$
 für jedes Teilintervall $[c,d] \subset S$.

Wir notieren oft auch f_X für die Dichte einer ZV X (um den Bezug zu X zu betonen, speziell wenn wir mehrere ZVn zugleich ins Auge fassen).



Interpretation der Dichte:

X ZV mit Dichte f_X , für $x \in \mathbb{R}$ und kleines $\delta > 0$ ist

$$P(X \in [x, x + \delta]) = \int_{x}^{x + \delta} f_X(a) \, da \approx \delta f_X(x)$$

(wörtlich zumindest für Stetigkeitsstellen x von f_X), also

$$f_X(x) = \lim_{\delta \downarrow 0} \frac{1}{\delta} P(X \in [x, x + \delta])$$

Man formuliert dies gelegentlich auch mit "infinitesimalen Größen" als

$$P(X \in dx) = f_X(x) dx$$

(Dieser suggestive Ausdruck erhält einen Sinn im Sinne der "Standard-Analysis", wenn man auf beiden Seiten x über ein Intervall [c,d] integriert, dann erhält man Def. 1.24).

Bemerkung.

Für eine ZV X mit Dichte f_X ist es – im Gegensatz zum Fall mit Gewichten – nicht besonders sinnvoll, nach der Wahrscheinlichkeit von Ereignissen $\{X = x\}$ für feste Punkte $x \in \mathbb{R}$ zu fragen.

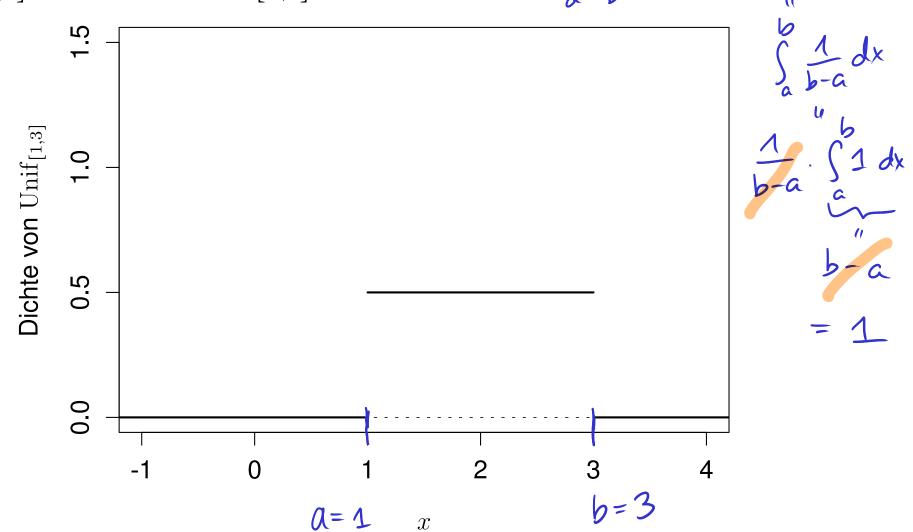
$$P(X=x) = P(X \in [x,x]) = \int_{x}^{x} f_{X}(a)da = 0$$

für jeden $x \in \mathbb{R}$.

beachte: IR sind wicht abzählbar

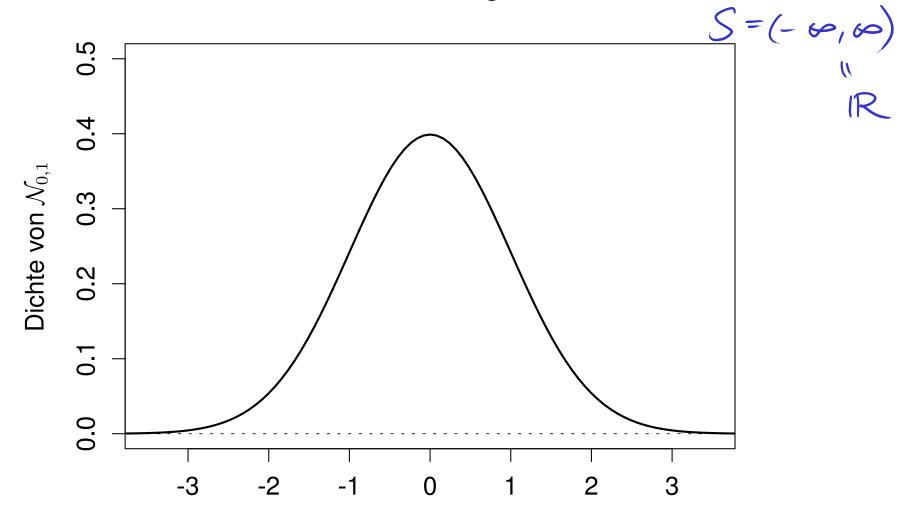
Beispiel 1.25 (Einige "klassische" eindimensionale Verteilungen mit Dichte).

1. (uniforme Verteilung) $a, b \in \mathbb{R}$, a < b. Unif[a,b] mit Dichte $\frac{1}{b-a}\mathbf{1}_{[a,b]}(x)$



Beispiel 1.25. 2. $\mu \in \mathbb{R}$, $\sigma > 0$. $\mathcal{N}_{\mu,\sigma^2}$ mit Dichte $\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ heißt Normalverteilung mit Mittelwert μ und Varianz σ^2 .

 $\mathcal{N}_{0,1}$ heißt die *Standardnormalverteilung*.

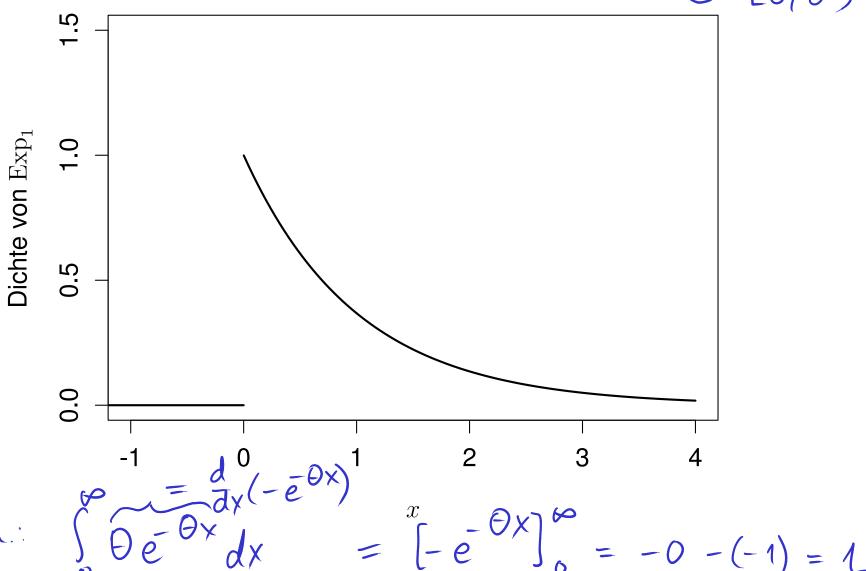


 \mathcal{X}

Beispiel 1.25. 3. (Exponentialverteilung[en]) $\theta > 0$,

 $\operatorname{Exp}_{\theta}$ hat Dichte $\theta e^{-\theta x}\mathbf{1}_{[0,\infty)}(x)$

Werlebereich S=[0,00)



bem.

Definition 1.26 (Verteilungsfunktion). Für eine Zufallsvariable X mit Werten in \mathbb{R} (bzw. in einer Teilmenge $S \subset \mathbb{R}$) heißt die Funktion

$$F_X(x) \coloneqq P(X \le x), \quad x \in \mathbb{R}$$
 (1.9) die Verteilungsfunktion von X . $= \mathcal{P}(X \in (-\infty, \times])$

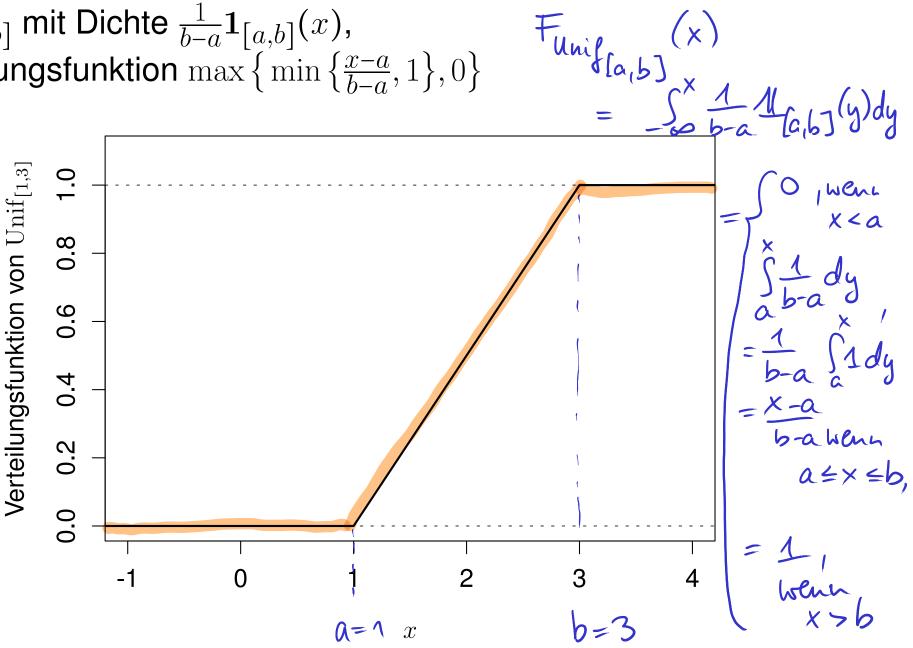
Wenn X mit Wertebereich $S \subset \mathbb{R}$ die Dichte f_X besitzt, so gilt offenbar

$$F_X(x) = \int_{-\infty}^x f_X(a) da \tag{1.10}$$

(mit Setzung $f_X(a) = 0$ für $a \notin S$, dem Wertebereich von X).

Beispiel 1.25 (Fortsetzung). 1. (uniforme Verteilung) $a, b \in \mathbb{R}$, a < b.

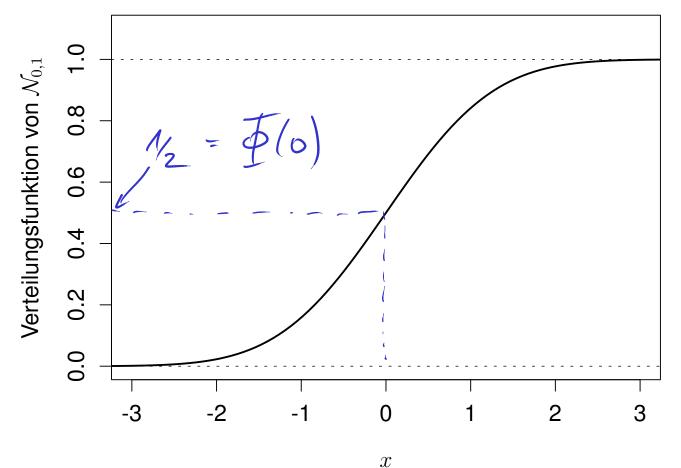
Unif_[a,b] mit Dichte $\frac{1}{b-a}\mathbf{1}_{[a,b]}(x)$, Verteilungsfunktion $\max \{ \min \{ \frac{x-a}{b-a}, 1 \}, 0 \}$



Beispiel 1.25 (Fortsetzung). 2. Die Verteilungsfunktion der *Standardnormalverteilung* $\mathcal{N}_{0.1}$,

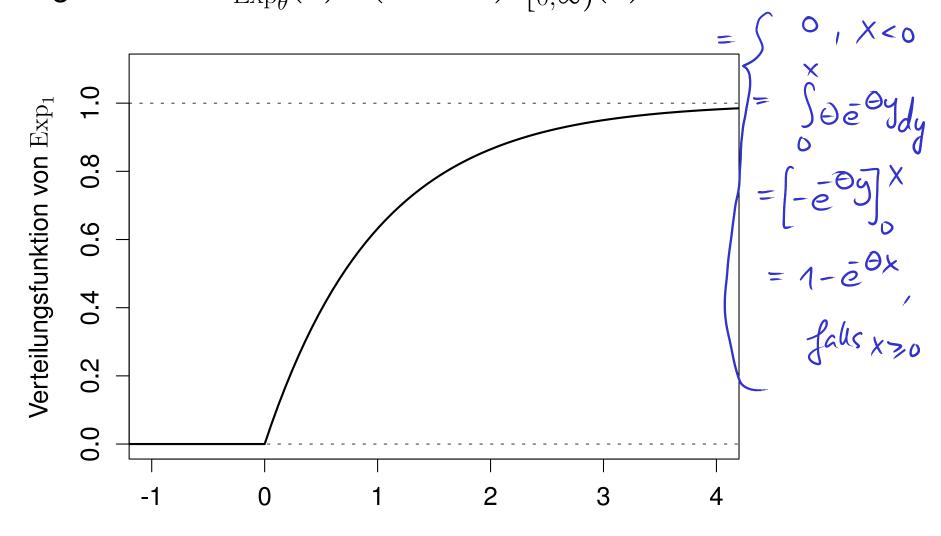
$$\Phi(x) := F_{\mathcal{N}_{0,1}}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

ist tabelliert bzw. in vielen Computerprogrammen implementiert (z.B. pnorm in R)



Beispiel 1.25 (Fortsetzung). 3. (Exponentialverteilung[en]) $\theta > 0$

 $\operatorname{Exp}_{\theta}$ hat Dichte $\theta e^{-\theta x} \mathbf{1}_{[0,\infty)}(x)$, = $\int_{-\infty}^{\infty} \mathbf{1}_{[0,\infty)}(x) dx$ Verteilungsfunktion $F_{\operatorname{Exp}_{\theta}}(x) = (1 - e^{-\theta x}) \mathbf{1}_{[0,\infty)}(x)$



 \mathcal{X}

Bemerkung 1.27. 1. Die Dichte / Verteilungsfunktion von X hängt nur von der Verteilung von X ab:

wenn $Y = {}^d X$ ("Gleichheit in Verteilung"), also $P(X \in B) = P(Y \in B)$ für alle B gilt, so hat Y dieselbe (offenbar).

Wir sprechen daher oft auch kurz von der Dichte bzw. Verteilungsfunktion einer Wahrscheinlichkeitsverteilung auf \mathbb{R} , ohne die zugehörige ZV explizit zu machen.

2. Wenn X Dichte f_X und Verteilungsfunktion F_X besitzt, so ist

$$\frac{d}{dx}F_X(x) = \frac{d}{dx}\int_{-\infty}^x f_X(a) \, da = f_X(x)$$

(zumindest an Stetigkeitspunkten von f_X)

$$F_X(x) = P(X \in (-\omega, x]) = \int_{-\omega}^{x} f_X(a) da$$

Bemerkung 1.27. 3. X ZV mit Werten in $S \subset \mathbb{R}$ mit Verteilungsfunk-

tion
$$F_X$$
, $c < d$, so ist
$$P(X \in (- \smile, d) \setminus (- \smile, c))$$

$$P(X \in (c, d]) = P(X \le d) - P(X \le c) = F(d) - F(c)$$

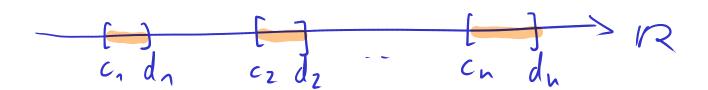
(und falls P(X = c) = 0, z.B. weil X eine Dichte besitzt, so ist natürlich auch $P(X \in [c,d]) = P(X = c) + P(X \in (c,d]) = F(d) - F(c)$).

Für $B = \bigcup_{i=1}^{n} (c_i, d_i]$ mit $c_1 < d_1 < c_2 < d_2 < \cdots < c_n$ < d_n ist (mit Eigenschaft (A) aus Def. 1.7)

$$P(X \in B) = \sum_{i=1}^{n} P(X \in (c_i, d_i]) = \sum_{i=1}^{n} (F_X(d_i) - F_X(c_i))$$

(und "allgemeine" Mengen $B \subset \mathbb{R}$ können auf diese Weise approximiert werden).

In diesem Sinne "weiß F_X alles" über die Verteilung von X.



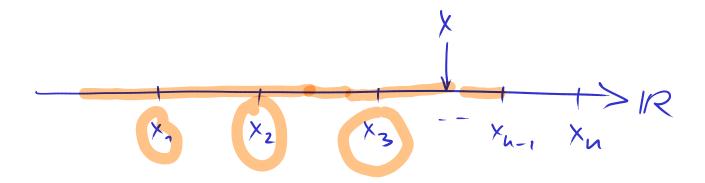
Bemerkung 1.27. 4. (Bezug zum diskreten Fall). Sei X ZV mit (höchstens) abzählbarem Wertebereich $S = \{x_1, x_2, \dots\} \subset \mathbb{R}$ und Gewichten $\rho_X(x_n)$ wie in in Def. 1.11, d.h.

$$P(X \in B) = \sum_{n: x_n \in B} \rho_X(x_n), \qquad \forall \subseteq \mathbb{R}$$

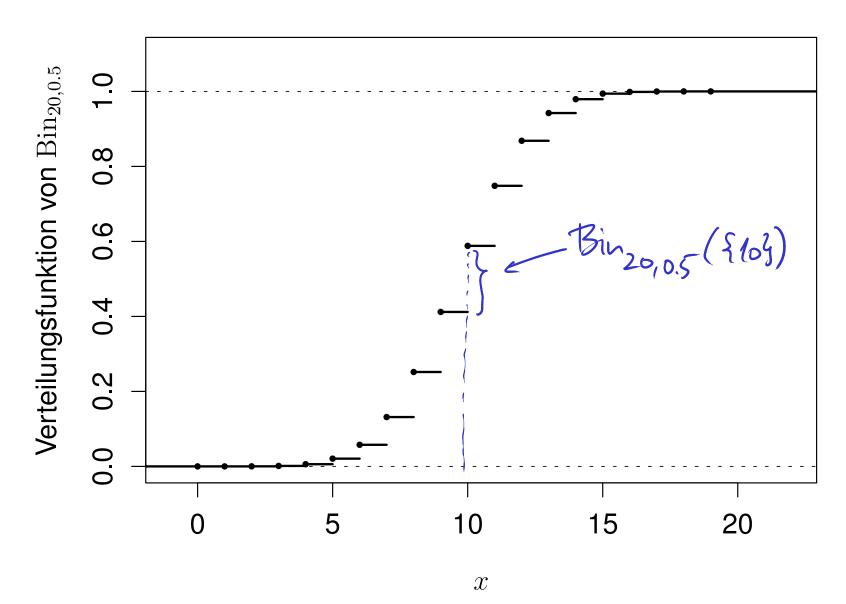
dann ergibt sich als Verteilungsfunktion

erteilungsfunktion
$$F_X(x) = \sum_{n: x_n \le x} \rho_X(x_n).$$
 für $\mathbb{Z} = (-\infty, \times]$ mit $x \in \mathbb{R}$

(Diese ist stückweise konstant mit [höchstens] abzählbar vielen Sprüngen.)



Beispiel: Verteilungsfunktion einer Binomialverteilung



Bemerkung 1.27. 5. Stets ist F_X nicht-fallend und rechtsstetig (wenn X eine Dichte besitzt, so ist F_X stetig) mit

$$\lim_{x \to \infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to \infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to \infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to \infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to \infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to \infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to \infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to \infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to \infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

$$\lim_{x \to -\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

6. Umgekehrt gibt es zu jeder Funktion $F : \mathbb{R} \to [0,1]$ mit den Eigenschaften aus Def. 1.26, 5. eine ZV X mit $F_X = F$.

(Wir kommen darauf zurück, siehe Beob. 1.29 unten.)

Definition 1.28. Die (verallgemeinerte) inverse Funktion von F_X ,

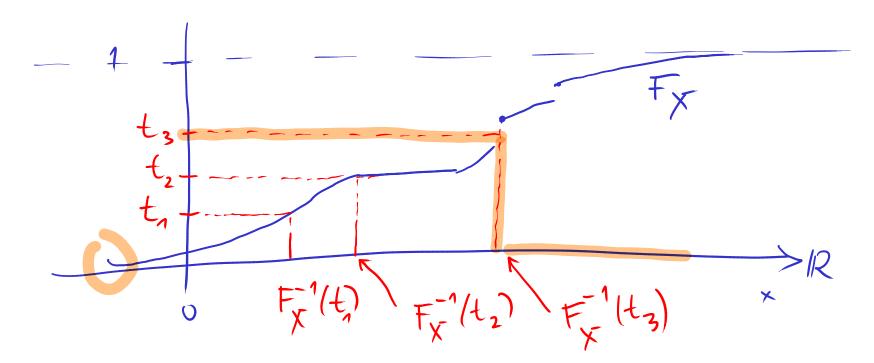
$$F_X^{-1}(t) := \inf\{x \in \mathbb{R} : F(x) \ge t\}, \quad t \in [0, 1]$$

(mit Setzung $\inf \emptyset = +\infty$) heißt auch die *Quantilfunktion* von X.

(Beachte, dass die so definierte Funktion F_X^{-1} linksstetig ist. In der Literatur gibt es leicht verschiedene Definitionen der "Quantilfunktion", man prüfe ggfs. jeweils die verwendete Konvention.)

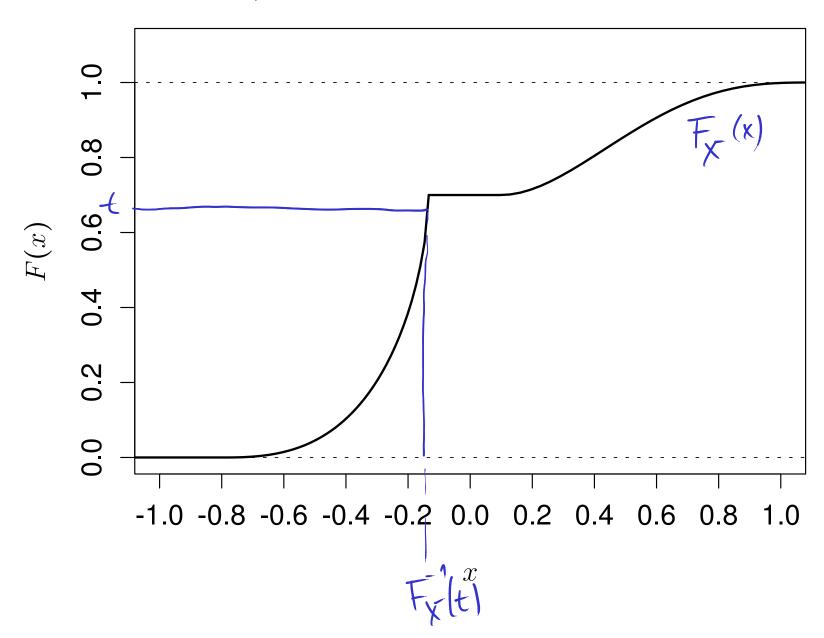
Mit dieser Definition ergibt sich für $x \in \mathbb{R}$, $t \in [0,1]$ die Beziehung

$$F_X^{-1}(t) \le x \iff t \le F_X(x).$$

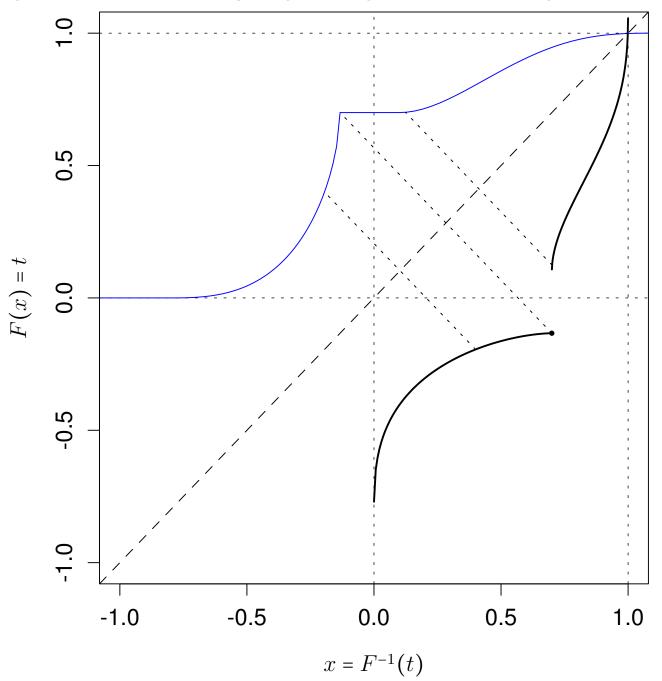


Beispiel: Ablesen von F^{-1}

$$F_X^{-1}(t) := \inf\{x \in \mathbb{R} : F(x) \ge t\}, \quad t \in [0, 1]$$



Erinnerung: Inverse via Spiegelung an der Diagonalen



runif (1))

Beobachtung 1.29 (Erzeugung reeller ZVn mit vorgegebener Verteilung). Sei $F: \mathbb{R} \to [0,1]$ eine Verteilungsfunktion,

$$F^{-1}(t) := \inf \{ x \in \mathbb{R} : F(x) \ge t \}, \quad t \in [0, 1]$$

die inverse Verteilungsfunktion oder Quantilfunktion (aus Def. 1.28), U reelle ZV, $U \sim \mathrm{Unif}_{[0,1]}$, dann hat

$$X \coloneqq F^{-1}(U)$$

die Verteilungsfunktion $F_X = F$.

Denu: Es gilt
$$F^{-1}(t) \leq x \iff t \leq F(x)$$

(fiv $t \in [0,1]$, $x \in IR$).
Sei $x \in IR$

$$= P(X \leq x) = P(F^{-1}(U) \leq x) = P(U \leq F(x))$$

$$= P(0 \leq U \leq F(x)) = \frac{F(x) - 0}{1 - 0} = F(x)$$

Beispiel 1.30. 1. Exp_{θ} hat Verteilungsfunktion

Beispiel 1.30. 1.
$$\operatorname{Exp}_{\theta}$$
 nat vertellungstunktion $F_{\operatorname{Exp}_{\theta}}(x) = (1 - e^{-\theta x}) \mathbf{1}_{[0,\infty)}(x)$ mit
$$(1 - e^{-\theta x}) \mathbf{1}_{[0,\infty)}(x) = (1 - e^{-\theta x}) \mathbf{1}_{[0,\infty)}(x)$$

inverser Funktion $F_{\text{Exp}_{\theta}}^{-1}(t) = -\frac{1}{\theta}\log(1-t)$, also ist $-\frac{1}{\theta}\log(1-U)$

(und natürlich ebenso $-\frac{1}{a}\log(U)$)

2. $p(k), k \in \mathbb{N}_0$ Wahrscheinlichkeitsgewichte, $F(x) = \sum_{k: k \le x} p(k)$ zugehörige Verteilungsfunktion (vgl. Bem. 1.27, 4.), so hat

$$X := \min \left\{ n \in \mathbb{N}_0 : \sum_{k=0}^n p(k) \ge U \right\}$$

die Gewichte $(p(k))_{k \in \mathbb{N}_0}$.

(Dies ist etwa eine Möglichkeit, eine Poisson-verteilte ZV zu simulieren.)

Bericht: Verteilungen in R.

R verwendet folgende Namenskonvention: Wenn name für eine Verteilung steht, so ist

- dname die Dichte- bzw. Gewichtsfunktion von name
- pname die Verteilungsfunktion von name ("p" steht für "probability distribution function")
- qname die Quantilfunktion von name
- rname simuliert gemäß name ("r" steht für "random")

Beispiele:

- Uniforme Verteilung $Unif_{[a,b]}$: [d|p|q|r]unif(...,min=a,max=b)
- Normalverteilung $\mathcal{N}_{\mu,\sigma^2}$: [d|p|q|r]norm(...,mean= μ ,sd= σ) (beachte: R parametrisiert mit σ , nicht mit σ^2)
- Exponentialverteilung $\operatorname{Exp}_{\lambda}$: [d|p|q|r]exp(...,rate= λ)
- Poissonverteilung Poi_{λ} : [d|p|q|r]pois(...,lambda= λ)
- Binomialverteilung $Bin_{n,p}$: [d|p|q|r]binom(...,size=n,prob=p)

(Siehe auch die Online-Hilfe in R.)

Transformation von Dichten

Beobachtung 1.31. *X* habe Dichte f_X , sei a > 0, $b \in \mathbb{R}$, so hat Y :=

$$aX + b$$
 die Dichte

$$f_{Y}(y) = \frac{1}{a} f_{X}((y-b)/a)$$

$$\begin{cases} y = ax + b \iff x = y - b \\ a \end{cases}$$

$$\begin{cases} y = ax + b \iff x = y - b \\ a \end{cases}$$

$$\begin{cases} x \in (y - b, y - b) \\ x \in (y - b, y - b) \end{cases}$$

beachte:

$$P(Y \in y) = P(X \in y-b) = \int_{a}^{y-b} f_{X}(x)dx$$
Substituine $x = \frac{2-b}{a} \iff 2 = ax+b$, $\frac{d^{2}}{dx} = a$, $\frac{dx}{dt} = \frac{1}{a}$

$$= \int_{a}^{y} f_{X}(\frac{2-b}{a}) \frac{1}{a} dz$$

Beispiel 1.32. 1. $X \sim \mathcal{N}_{0,1}$, $\mu \in \mathbb{R}$, $\sigma > 0$, so ist $Y \coloneqq \sigma X + \mu \sim \mathcal{N}_{\mu,\sigma^2}$

Insbesondere gilt $\mathcal{N}_{\mu,\sigma^2}((-\infty,x]) = \Phi((x-\mu)/\sigma)$

$$\oint_{W_{0,1}} (x) = f(x)$$

Dichte e^{x} $\mathbf{1}_{(\delta_{(w)})}(x)$ 2. $X \sim \operatorname{Exp}_{1}$, a > 0, so hat Y := aX die Dichte $\frac{1}{a}e^{-x/a}\mathbf{1}_{[0,\infty)}(x)$ (d.h. $Y \sim \text{Exp}_{1/a}$)

Transformation von Dichten, 2

Proposition 1.33 (Allgemeine Dichtetransformation im Fall \mathbb{R}^1).

X reelle ZV mit Dichte f_X , d.h. $F_X(x) = \int_{-\infty}^x f_X(z) \, dz$, $I \subset \mathbb{R}$

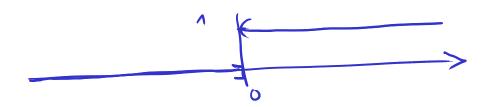
(möglicherweise unbeschränktes) offenes Intervall mit $P(X \in I) = 1$,

 $J \subset I$, $\varphi : I \to J$ stetig differenzierbar, bijektiv.

Dann hat $Y := \varphi(X)$ die Dichte

$$f_Y(y) = \begin{cases} \frac{f_X(\varphi^{-1}(y))}{|\varphi'(\varphi^{-1}(y))|}, & y \in J, \\ 0, & y \notin J. \end{cases}$$

[Bem.: Wenn φ nicht bijektiv ist, so wird $\varphi(X)$ i.A. keine Dichte besitzen, z.B. $X \sim \mathcal{N}_{0,1}$, $\varphi(x) = \mathbf{1}_{(0,\infty)}(x)$, so ist $\varphi(X) \sim \mathrm{Ber}_{1/2}$.]



$$Y=\varphi(X)$$
 hat Dichte $f_X(\varphi^{-1}(y))/\varphi'(\varphi^{-1}(y))$
(Wir hehmer an, class φ shiket monoton wachsend risk.)

$$Z \leq rinf$$
 => $P(Y \leq 2) = 0$,
also $fy(z) = 0$ für alle $z \leq rinf$

$$z \gtrsim Sup J \Rightarrow P(Y \leq z) = 1$$

also $fy(z) = 0$ for alle $z > Sup J$

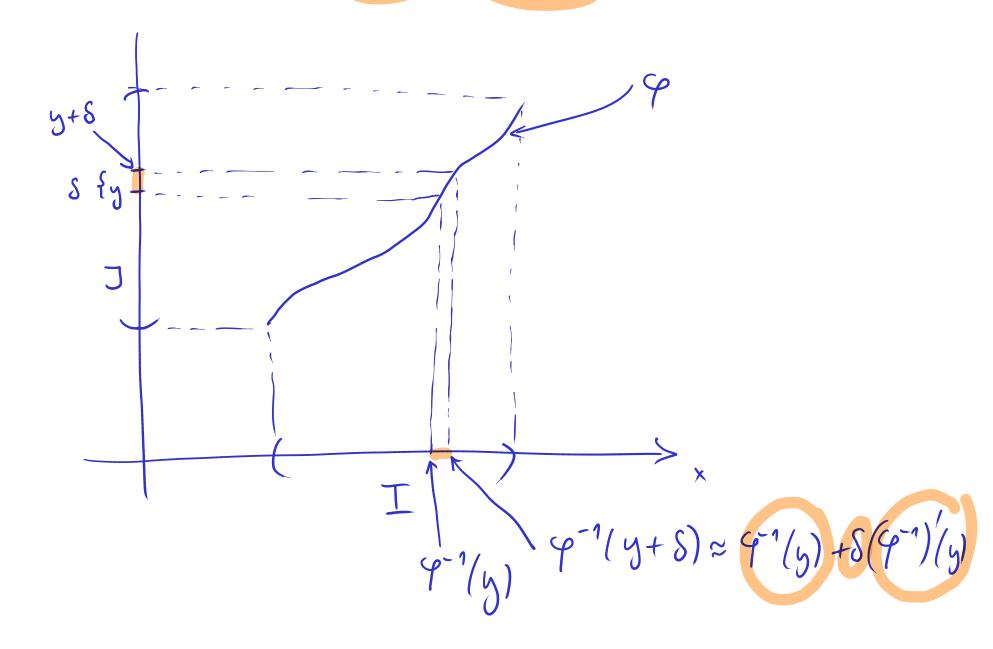
$$2 \in J: P(Y \leq z) = P(\varphi(X) \leq z) = P(X \leq \varphi(z))$$

$$= \int_{\varphi(x)}^{\varphi(z)} f_{X}(x) dx = \int_{\inf J}^{z} f_{X}(\varphi(y)) \frac{1}{\varphi(\varphi(y))} dy$$

$$\text{Substituiene } x = \varphi(y) \iff \varphi(x) = y, \quad dx = (\varphi(y)) = \frac{1}{\varphi(\varphi(y))}$$

"Dichtetransformel"
(1-dimensionaler
Tah)

$$Y = \varphi(X)$$
 hat Dichte $f_X(\varphi^{-1}(y))/\varphi'(\varphi^{-1}(y))$



Beispiel 1.34. 1. $U \sim \operatorname{Unif}_{[0,1]}$, so hat

 $X := -\log(U)$ Dichte e^{-x} für $x \ge 0$ (wie wir in Bsp. 1.30 gesehen haben)

2. $U \sim \text{Unif}_{[0,1]}$, $n \in \mathbb{N}$, so hat $Y := U^n$ Dichte $f_Y(y) = n^{-1}y^{1/n-1}$ (für $0 \le y \le 1$)

1.1.3 Zum mehrdimensionalen Fall

Dichten im mehrdimensionalen Fall

Definition 1.35. Sei $f: \mathbb{R}^d \to \mathbb{R}_+$ eine (geeignet) integrierbare* Funktion mit

$$\int_{\mathbb{R}^d} f(x) \, dx = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_d) \, dx_1 \cdots dx_d = 1.$$

Eine Zufallsvariable X mit Werten in \mathbb{R}^d besitzt die *Dichte f*, wenn für (geeignete) Teilmengen $A \subset \mathbb{R}^d$ gilt

$$P(X \in A) = \int_{A}^{\infty} f(x) dx$$

$$:= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \mathbf{1}_{A}(x_{1}, \dots, x_{d}) f(x_{1}, \dots, x_{d}) dx_{1} \cdots dx_{d}.$$

^{*}Wir denken hier z.B. an ein d-fach iteriertes Riemann-Integral.

Dichten im mehrdimensionalen Fall

Analog zum 1-dimensionalen Fall besitzt die Dichte f_X einer d-dimensionalen ZV X die Interpretation

$$P(X \in [x_1, x_1 + \delta_1] \times [x_2, x_2 + \delta_2] \times \dots \times [x_d + \delta_d])$$

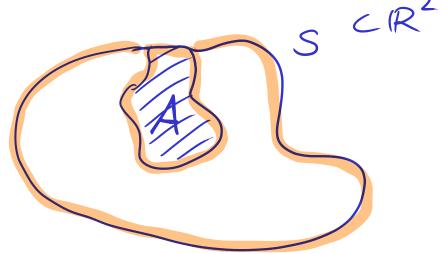
$$\approx \delta_1 \delta_2 \dots \delta_d \cdot f_X((x_1, \dots, x_d))$$

$$[\times_{d_1} \times_{d_2} \times \dots \times [x_d + \delta_d]]$$
für $(x_1, \dots, x_d) \in \mathbb{R}^d$ und $0 < \delta_1, \delta_2, \dots, \delta_d \ll 1$.

Beispiel 1.36. 1. Uniforme oder Laplace-Verteilung auf einem beschränkten Gebiet $S \subset \mathbb{R}^d$: X mit Dichte $f_X(x) = \frac{1}{\text{vol}(S)} \mathbf{1}_S(x)$ erfüllt für $A \subset S$ (geeignet*)

$$P(X \in A) = \int_A \frac{1}{\operatorname{vol}(S)} \mathbf{1}_S(x) \, dx = \frac{\int_A 1 \, dx}{\int_S 1 \, dx} = \frac{\operatorname{vol}(A)}{\operatorname{vol}(S)}.$$

(Z.B. der zufällig gewählte Punkt Z aus Kapitel 0 kann als uniform auf $S = [0,1]^2$ verteilt modelliert werden.)



^{*}in dem Sinne, dass ein d-dimensionales "Volumen" vol(A) definierbar ist

Beispiel 1.36 (Forts.).

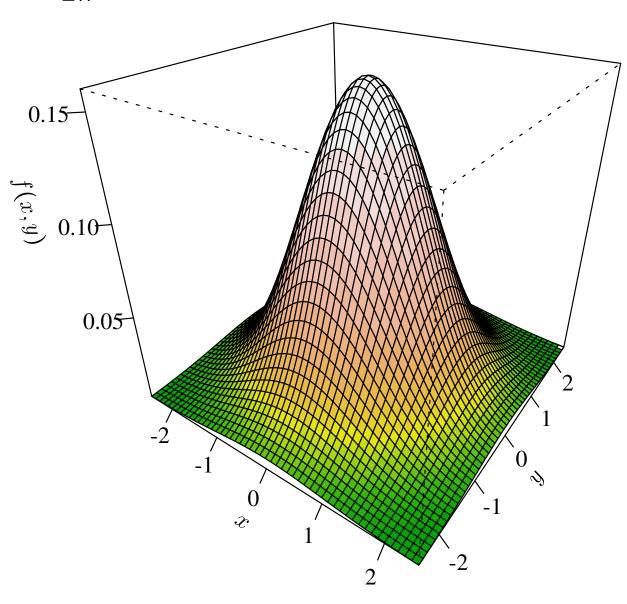
2. Die 2-dimensionale Standard-Normalverteilung hat Dichte $f(x,y) = \frac{1}{2\pi} \exp\left(-\frac{1}{2}(x^2+y^2)\right)$

3. Allgemeiner: Die d-dimensionale Standard-Normalverteilung hat Dichte

$$f(x_1, \dots, x_d) = \frac{1}{(2\pi)^{d/2}} \exp\left(-\frac{1}{2}(x_1^2 + \dots + x_d^2)\right)$$
$$= \|(x_1, x_2, \dots, x_d)\|_2^2$$

Die 2-dimensionale Standard-Normalverteilung hat

Dichte
$$f(x,y) = \frac{1}{2\pi} \exp(-\frac{1}{2}(x^2 + y^2))$$



Die 2-dimensionale Standard-Normalverteilung hat

Dichte
$$f(x,y) = \frac{1}{2\pi} \exp(-\frac{1}{2}(x^2 + y^2))$$

