Aufgabe 6.1 Wir betrachten den filtrierten Wahrscheinlichkeitsraum $(\Omega, \mathscr{A}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$ mit $\Omega = (0, 1], \mathscr{A} = \mathcal{B}((0, 1]), \mathbb{P}$ das Lebesgue-Maß auf $(0, 1], \mathcal{F}_0 = \{\emptyset, \Omega\},$

$$\mathcal{F}_t := \{ A \in \mathscr{A} : A \subset (0, t] \text{ oder } (t, 1] \subset A \}, \quad 0 < t < 1$$

und $\mathcal{F}_t = \mathscr{A}$ für $t \ge 1$ (überzeugen Sie sich, dass $(\mathcal{F}_t)_{t \ge 0}$ tatsächlich eine Filtration bildet). a) Für $Y \in \mathcal{L}^1(\mathbb{P})$ und $t \ge 0$ gilt f.s.

$$\mathbb{E}[Y \mid \mathcal{F}_t] = A_t := \begin{cases} Y(\omega), & 0 < \omega \leq t, \\ \frac{1}{1-t} \int_{(t,1)} Y(u) du, & t < \omega < 1. \end{cases}$$

[Hinweis. Betrachten Sie Ereignisse der Form $\{A_t > a\}$ um zu sehen, dass A_t \mathcal{F}_t -messbar ist.] b) Sei die ZV $Y: \Omega \to \mathbb{R}$ definiert durch $Y(\omega) = 1/\sqrt{\omega}$ und sei $M_t := \mathbb{E}[Y \mid \mathcal{F}_t], t \geq 0$. $(M_t)_{t \geq 0}$ ist ein Martingal und es gilt

$$M_t = \frac{1}{\sqrt{\omega}} 1_{(0,t]}(\omega) + \frac{2}{1 + \sqrt{t}} 1_{(t,1]}(\omega)$$
 P-f.s.

c) Sei $T (= T(\omega))$ eine Stoppzeit mit $\mathbb{P}(T > 0) > 0$. Dann

gibt es ein
$$\varepsilon \in (0,1)$$
 mit $T(\omega) \ge \omega 1_{(0,\varepsilon)}(\omega)$.

[*Hinweis*. Zeigen Sie zunächst, dass für $\omega_0 \in (0,1)$ gilt $\bigcup_{n=1}^{\infty} \{T \leqslant \omega_0 - 1/n\} \supset (\omega_0,1]$, falls $T(\omega_0) < \omega_0$. Führen Sie dann die Annahme, dass $T(\omega_k) < \omega_k$ für eine Folge $\omega_k \downarrow 0$ gilt, zum Widerspruch.]

d) Sei T eine Stoppzeit mit $\mathbb{P}(T>0)>0$. Dann gilt $\mathbb{E}[M_T^2]=\infty$ (d.h. M ist kein lokales \mathcal{L}^2 -Martingal).

Aufgabe 6.2 a) Für $M \in \mathcal{M}^c_{loc}$ ist auch $X_t := M_t^2 - M_0^2 - \langle M \rangle_t$ ein stetiges lokales Martingal. Wenn zusätzlich gilt $\mathbb{E}[M_0^2] < \infty$ und $\mathbb{E}[\langle M \rangle_t] < \infty$ für jedes $t \geqslant 0$, so ist $M \in \mathcal{M}_2^c$.

- b) Können Sie ein stetiges (lokales) Martingal M und eine f.s. endliche Stoppzeit τ (auf einem geeigneten filtrierten W'raum) finden, so dass $\mathbb{E}[\langle M \rangle_{\tau}] = \infty$ gilt aber auch aber $\mathbb{E}[M_{\tau}^2] < \infty$?
- c) Können Sie ein stetiges (lokales) Martingal M und zwei f.s. endliche Stoppzeiten $\sigma \leqslant \tau$ finden mit $\mathbb{E}[|M_{\tau}|] < \infty$ aber $\mathbb{E}[M_{\tau} \mid \mathcal{F}_{\sigma}] \neq M_{\sigma}$?

[Hinweis. Für b) und c) kann man die Brownsche Bewegung und geeignete Stoppzeiten verwenden.]

Aufgabe 6.3 In Kapitel 2.4 der Vorlesung haben wir in Prop. 2.38 und Prop. 2.39 Aussagen, die wir vorher für stochastische Integrale mit Integratoren M aus \mathcal{M}_2^c bewiesen hatten, auf den allgemeineren Fall eines Integrators M aus \mathcal{M}_{loc}^c übertragen. Beweisen Sie einige oder alle dieser Aussagen.